博舍

人工智能需要学哪些课程 人工智能专业需要学什么课程内容呢女生初中

人工智能需要学哪些课程

人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2018年4月,教育部研究设立人工智能专业,进一步完善中国高校人工智能学科体系…

人工智能需要学习的基础课程

首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析

其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;

然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少;

人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。

人工智能专业的主要领域是:机器学习人工智能导论(搜索法等)图像识别生物演化论自然语言处理语义网博弈论等。需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(最好有数据结构基础)。

自学人工智能需要学的专业知识

人工智能是一个综合学科,如楼上所说。而其本身又分为多个方面如神经网络、机器识别、机器视觉、机器人等。一个人想自学所有人工智能方面并不是很容易的一件事。对于你想知道人工智能在编程方面需要多深的要求。怎么说好呢无论C++还是汇编他都是一门语言主要会灵活运用。

大多机器人仿真都用的混合编程模式,也就是运用多种编程软件及语言组合使用。之所以这样是为了弥补语言间的不足。prolog在逻辑演绎方面比突出。C++在硬件接口及windos衔接方面比较突出,MATLAB在数学模型计算方面比较突出。如果单学人工智能算法的话prolog足以,如果想开发机器仿真程序的话VC++MATLAB应该多学习点。对于你想买什么书学习。我只能对我看过的书给你介绍一下,你再自己酌量一下。

人工智能算法方面:《人工智能及其应用》第三版、人工智能与知识工程。这两本感觉买一本就可以了~第一本感觉能简单并且全面点。这类书其实很多可是。大多内容都是重复的所以买一到两本即可。

机器视觉算法方面:《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。

机器人方面:新版《机器人技术手册》日译的书,可能是我当初在网里找到唯一一本比较全面实用的机器人方面的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。强烈建议买一本。

人工智能专业发展历史

2018年4月3日,中国高校人工智能人才国际培养计划启动仪式在北京大学举行。教育部将进一步完善中国高校人工智能学科体系,在研究设立人工智能专业,推动人工智能一级学科建设。教育部在研究制定《高等学校引领人工智能创新行动计划》,通过科教融合、学科交叉、进一步提升高校人工智能科技创新能力和人才培养能力。

2018年4月8日,西安交通大学人工智能拔尖人才培养试验班宣告成立,将于2018年面向全国招生。每年计划招生40人左右,高考招生选拔15人左右,校内新生选拔15人左右,少年班再选拔10人左右。

人工智能需要学习哪些专业知识怎么样学才能更好的掌握专业知识呢

当前学习人工智能是不错的选择,随着人工智能技术的不断发展和应用,整个行业领域会释放出大量的相关人才需求。中国人工智能发展迅猛,中国政府也高度重视人工智能领域的发展。到今年,中国人工智能产业规模超过1500亿元,带动相关产业规模超过1万亿元。全球新兴人工智能项目中,中国占据51%,数量上已经超越美国。但全球人工智能人才储备,中国却只有5%左右,人工智能的人才缺口超过500万。

 

全球共有超过360所具有人工智能研究方向的高校,其中美国拥有近170所,中国仅30多所。虽然一些中国高校开设了相关课程,但总体上缺乏人工智能的基础教学能力,高校在独自培养具有动手能力的应用型人才上有所欠缺。那么,学习人工智能需要学习哪些课程呢?怎么样学才能更好的掌握专业知识呢?

 

人工智能产业应用型人才的摇篮

学习人工智能需要学习认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程相关专业知识。

 

1、认知与神经科学课程群

 

具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程

 

2、人工智能伦理课程群

 

具体课程:《人工智能、社会与人文》、《人工智能哲学基础与伦理》

 

3、科学和工程课程群

 

新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、健康的发展道路上。

 

4、先进机器人学课程群

 

具体课程:《先进机器人控制》、《认知机器人》、《机器人规划与学习》、《仿生机器人》

 

5、人工智能平台与工具课程群

 

具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》……

 

6、人工智能核心课程群

 

具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》……

人工智能,开启新世界

 

怎么样的方法才能更好地掌握专业知识?

 

学习人工智能技术通常要根据自身的知识基础来选择一个学习切入点,对于初学者来说,可以按照三个阶段来学习人工智能技术,分别是基础知识阶段、人工智能平台阶段和实践阶段。

想学好人工智能,这些一定要学好

1.机器学习

首先要学习机器学习算法,这是人工智能的核心,也是重中之重。

在学习机器学习算法理论同时,建议大家使用scikit-learn这个python机器学习的库,试着完成一些小项目。同时关注一下能否各种算法结合使用来提高预测结果准确率。在学习的过程中不必强求自己能够完全掌握各种算法推导,抓住重点理解算法,然后把算法用起来才是王道。

掌握一种编程工具,比如说PyCharm或者JupyterNotebook,当然工具掌握不难,大约只需要30分钟。

2.深度学习

深度学习是当今非常热门的一个领域,是机器学习算法神经网络的延申,是把机器学习的拟人更加发扬光大的领域。深度学习工程师也是各大公司需要的人才。

学习深度学习可以从Google开源的tensorflow框架开始学习如何完成DNN(深度神经网络)的构建以及应用。然后还是使用tensorflow框架来学习如何完成CNN(卷积神经网络)的构建以及应用。最后来使用tensorflow框架来学习如何完成RNN(循环神经网络)的构建以及应用。

3.Python数据分析模块

Python当今作为数据科学的第一语言,熟练掌握numpy、scipy、pandas、matplotlib等数据分析的模块不光是作为数据分析师必须的,也是作为人工智能工程师所必须的,如果大家认为自己的python语言掌握的不够熟练,可以从学习这些基础的模块开始,来锻炼自己。因为scikit-learn机器学习算法库是基于numpy、scipy、matplotlib开发的,所以大家掌握好了这些基础库,对于分析别人封装的算法源代码,甚至日后自己开发一些算法也有了可能性。

4.SparkMLlib机器学习库

如果说当今有什么是算法工程师的加分项,那么分布式计算框架Spark中算法库MLlib就是一个,如果想掌握SparkMLlib首先需要会使用spark计算框架,建议大家还是使用python语言通过pyspark来学习,在掌握了前面的机器学习部分后,这里再来学习里面的算法使用将变得异常容易。

5.做一个人工智能项目

学了这么多,也做了一些小项目,最后一定要做一些个大项目整合一下自己的知识。做一些个人工智能领域的譬如医疗图像识别、人脸识别、自动聊天机器人、推荐系统、用户画像等的大项目才是企业很需要的经验。可以将理论结合实际的运用也是成为高手的必经之路,也是在企业工作所需要的能力。

6.数学

数学是一个误区,很多人说自己的数学不够好,是不是做不了算法工程师?面对这样的问题,公司里面的算法工程师谁又敢说自己的数学真的好?数学是在学习机器学习阶段算法推导用的到的,但是这里的推导你又不需要非要一步步扣数学计算过程,举个例子,2+2=4,那么数据基础是1+1=2,但是咱们需要证明1+1=2吗?不需要,对吧,所以在机器学习阶段算法推导这里更重要的还是理解算法证明的思想,能够把讲的算法推导理清楚足够了,而这在讲的过程中如何有好的引导,又何须非自己没头绪的补数学然后走那个弯路呢?

 

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇