如何认识人工智能对未来经济社会的影响
原标题:如何认识人工智能对未来经济社会的影响人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。
人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。
总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。
作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。
一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。
另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。
当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。
(作者单位:国务院发展研究中心创新发展研究部)
(责编:赵超、吕骞)分享让更多人看到
人工智能:2023的十大进展+2023 年十大技术趋势
2020年11月30日,Google旗下DeepMind公司的AlphaFold2人工智能系统在第14届国际蛋白质结构预测竞赛(CASP)中取得桂冠,在评估中的总体中位数得分达到了92.4分,其准确性可以与使用冷冻电子显微镜(CryoEM)、核磁共振或X射线晶体学等实验技术解析的蛋白质3D结构相媲美,有史以来首次把蛋白质结构预测任务做到了基本接近实用的水平。
《自然》杂志评论认为,AlphaFold2算法解决了困扰生物界“50年来的大问题”。
蛋白质折叠
相关链接:https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
03
分子动力学
进展3:深度势能分子动力学研究获得戈登·贝尔奖
2020年11月19日,在美国亚特兰大举行的国际超级计算大会SC20上,包括智源学者王涵(北京应用物理与计算数学研究院)在内的“深度势能”团队,获得了国际高性能计算应用领域最高奖项“戈登·贝尔奖”。“戈登·贝尔奖”设立于1987年,由美国计算机协会(ACM)颁发,被誉为“计算应用领域的诺贝尔奖”。
该团队研究的“分子动力学”,结合了分子建模、机器学习和高性能计算相关方法,能够将第一性原理精度分子动力学模拟规模扩展到1亿原子,同时计算效率相比此前人类最好水平提升1000倍以上,极大地提升了人类使用计算机模拟客观物理世界的能力。美国计算机协会(ACM)评价道,基于深度学习的分子动力学模拟通过机器学习和大规模并行的方法,将精确的物理建模带入了更大尺度的材料模拟中,将来有望为力学、化学、材料、生物乃至工程领域解决实际问题(如大分子药物开发)发挥更大作用。
论文地址:https://arxiv.org/abs/2005.00223
04
薛定谔方程
进展4:DeepMind等用深度神经网络求解薛定谔方程,促进量子化学发展
作为量子力学的基本方程之一,薛定谔方程提出已经有90多年的时间,但如何精确求解薛定谔方程,却一直困扰着许多科学家。
DeepMind开发的费米神经网络(Fermionicneuralnetworks,简称FermiNet)来近似计算薛定谔方程,为深度学习在量子化学领域的发展奠定了基础,2020年10月,DeepMind开源了FermiNet,相关论文发表在物理学期刊PhysicalReviewResearch上。FermiNet是利用深度学习来从第一性原理计算原子和分子能量的尝试,在精度和准确性上都满足科研标准,且是目前在相关领域中较为精准的神经网络模型。
FermiNet示意图
另外,2020年9月,德国柏林自由大学的几位科学家也提出了一种新的深度学习波函数拟设方法,它可以获得电子薛定谔方程的近乎精确解,相关研究发表在NatureChemistry上。该类研究所展现的,不仅是深度学习在解决某一特定科学问题过程中的应用,也是深度学习能在生物、化学、材料以及医药领域等各领域科研中被广泛应用的一个远大前景。
论文地址:https://deepmind.com/blog/article/FermiNet
05
视皮层打印
进展5:美国贝勒医学院通过动态颅内电刺激实现高效“视皮层打印”
对于全球4000多万盲人来说,重见光明是一个遥不可及的梦想。2020年5月,美国贝勒医学院的研究者利用动态颅内电刺激新技术,用植入的微电极阵列构成视觉假体,在人类初级视皮层绘制W、S和Z等字母的形状,成功地能够让盲人“看见”了这些字母。
结合马斯克创办的脑机接口公司Neuralink发布的高带宽、全植入式脑机接口系统,下一代视觉假体有可能精准刺激大脑初级视觉皮层的每一个神经元,帮助盲人“看见”更复杂的信息,实现他们看清世界的梦想。
论文地址:https://doi.org/10.1016/j.cell.2020.04.033
06
类脑计算完备性
进展6:清华大学首次提出类脑计算完备性概念及计算系统层次结构
2020年10月,包括智源学者张悠慧、李国齐、宋森等在内的清华大学研究团队首次提出“类脑计算完备性”概念以及软硬件去耦合的类脑计算系统层次结构,通过理论论证与原型实验证明该类系统的硬件完备性与编译可行性,扩展了类脑计算系统应用范围使之能支持通用计算。
该研究成果发表在2020年10月14日的《自然》(Nature)期刊。《自然》周刊评论认为,“‘完备性’新概念推动了类脑计算”,对于类脑系统存在的软硬件紧耦合问题而言这是“一个突破性方案”。
论文地址:https://www.nature.com/articles/s41586-020-2782-y
07
神经网络高速训练系统
进展7:北京大学首次实现基于相变存储器的神经网络高速训练系统
2020年12月,智源学者、北京大学杨玉超团队提出并实现了一种基于相变存储器(PCM)电导随机性的神经网络高速训练系统,有效地缓解了人工神经网络训练过程中时间、能量开销巨大并难以在片上实现的问题。
该系统在误差直接回传算法(DFA)的基础上进行改进,利用PCM电导的随机性自然地产生传播误差的随机权重,有效降低了系统的硬件开销以及训练过程中的时间、能量消耗。该系统在大型卷积神经网络的训练过程中表现优异,为人工神经网络在终端平台上的应用以及片上训练的实现提供了新的方向。该文章发表在微电子领域的顶级会议IEDM2020上。
文章:YingmingLu,XiLi,LonghaoYan,TengZhang,YuchaoYang*,ZhitangSong*,andRuHuang*,AcceleratedLocalTrainingofCNNsbyOptimizedDirectFeedbackAlignmentBasedonStochasticityof4MbC-dopedGe2Sb2Te5PCMChipin40nmNode.IEDMTech.Dig.36.3,2020.
08
19个类脑神经元实现自动驾驶
进展8:MIT仅用19个类脑神经元实现控制自动驾驶汽车
受秀丽隐杆线虫等小型动物脑的启发,来自MIT计算机科学与人工智能实验室(CSAIL)、维也纳工业大学、奥地利科技学院的团队仅用19个类脑神经元就实现了控制自动驾驶汽车,而常规的深度神经网络则需要数百万神经元。此外,这一神经网络能够模仿学习,具有扩展到仓库的自动化机器人等应用场景的潜力。这一研究成果已发表在2020年10月13日的《自然》杂志子刊《自然·机器智能》(NatureMachineIntelligence)上。
09
全新无监督表征学习算法
进展9:Google与Facebook团队分别提出全新无监督表征学习算法
2020年初,Google与Facebook分别提出SimCLR与MoCo两个算法,均能够在无标注数据上学习图像数据表征。两个算法背后的框架都是对比学习(contrastivelearning)。对比学习的核心训练信号是图片的“可区分性”。
模型需要区分两个输入是来自于同一图片的不同视角,还是来自完全不同的两张图片的输入。这个任务不需要人类标注,因此可以使用大量无标签数据进行训练。尽管Google和FaceBook的两个工作对很多训练的细节问题进行了不同的处理,但它们都表明,无监督学习模型可以接近甚至达到有监督模型的效果。
SimCLR框架示意图
论文地址:https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
10
无偏公平排序模型
进展10:康奈尔大学提出无偏公平排序模型,可缓解检索排名的马太效应问题
近年来,检索的公平性和基于反事实学习的检索和推荐模型已经成为信息检索领域重要的研究方向,相关的研究成果已经被广泛应用于点击数据纠偏、模型离线评价等,部分技术已经落地于阿里和华为等公司的推荐及搜索产品中。
2020年7月,康奈尔大学ThorstenJoachims教授团队发表了公平无偏的排序学习模型FairCo,一举夺得了国际信息检索领域顶会SIGIR2020最佳论文奖。该研究分析了当前排序模型普遍存在的位置偏差、排序公平性以及物品曝光的马太效应问题等,基于反事实学习技术提出了具有公平性约束的相关度无偏估计方法,并实现了排序性能的提升,受到了业界的广泛关注和好评。
论文地址:https://arxiv.org/abs/2005.14713
2021人工智能十大趋势
在12月31日,智源研究院发布了2020年十大AI进展。新的一年,人工智能又将走向何处?
2021年开年,全体智源学者经过深入研讨,从人工智能的基础理论、算法、类脑计算、算力支撑等方面进行预测,提出2021年人工智能十大技术趋势,共同展望人工智能的未来发展方向。
我们相信,随着人工智能技术的逐渐成熟,将能够更好地帮助人类应对后疫情时代的各种不确定性,助力构建充满希望与变化的世界。
趋势1:科学计算中的数据与机理融合建模
趋势2:深度学习理论迎来整合与突破
趋势3:机器学习向分布式隐私保护方向演进
趋势4:大规模自监督预训练方法进一步发展
趋势5:基于因果学习的信息检索模型与系统成为重要发展方向
趋势6:类脑计算系统从“专用”向“通用”逐步演进
趋势7:类脑计算从散点独立研究向多点迭代发展迈进
趋势8:神经形态硬件特性得到进一步的发掘并用于实现更为先进的智能系统
趋势9:人工智能从脑结构启发走向结构与功能启发并重
趋势10:人工智能计算中心成为智能化时代的关键基础设施
趋势1:科学计算中的数据与机理融合建模
机器学习与科学计算的结合,即数据和机理的融合计算,为科学研究提供了新的手段和范式,成为了前沿计算的典型代表。从机理出发的建模以基本物理规律为出发点进行演绎,追求简洁与美的表达;从数据出发的建模从数据中总结规律,追求在实践中的应用效果。这两方面的建模方法都在科学史中发挥了重要作用。
近年来,科学计算发展的一个重要趋势是由单纯基于机理或数据的范式向数据与机理的融合建模与计算发展。众多前沿科学领域中的许多重要问题常常涉及多个发生在不同时空尺度上相互耦合的物理过程,具有高度的各向异性、奇异性、非均匀性以及不确定性等特征。人类只能知道部分原理和数据,此时机理与数据结合的方式将成为研究这些问题的有力手段。
趋势2:深度学习理论迎来整合与突破
深度学习在应用领域取得了令人瞩目的成功,但其理论基础仍十分薄弱,研究者对深度学习为何表现出比传统机器学习方法更优越的性能背后存在的机理尚不清楚。深度学习的理论分析需要从数学、统计和计算的不同角度,以及表示能力、泛化能力、算法收敛性和稳定性等多个方面进行探索和创新。当前对深度学习理论碎片式的理解,将进一步迎来整合与突破,从对浅层网络和局部性质的理解向深度网络和全局性质不断深化,最终能够完整解答关于深度学习能力与极限的重大理论问题。
趋势3:机器学习向分布式隐私保护方向演进
当前,全球多个国家和地区已出台数据监管法规,如HIPAA(美国健康保险便利和责任法案)、GDPR(欧盟通用数据保护条例)等,通过严格的法规限制多机构间隐私数据的交互。分布式隐私保护机器学习通过加密、分布式存储等方式保护机器学习模型训练的输入数据,是打破数据孤岛、完成多机构联合训练建模的可行方案。
趋势4:大规模自监督预训练方法进一步发展
GPT-3的出现激发了研究人员在视觉等更广泛的范围内,对大规模自监督预训练方法继续开展探索和研究,未来,基于大规模图像、语音、视频等多模态数据,以及跨语言的自监督预训练模型将进一步发展,研究人员也将持续探索解决当前大规模自监督预训练模型不具有认知能力等问题的方法。
趋势5:基于因果学习的信息检索模型与系统成为重要发展方向
人工智能算法是推荐系统、搜索引擎等智能信息检索系统的核心技术,深刻地影响着亿万互联网产品用户的工作和生活。当前基于人工智能算法的信息检索模型大多关注给定数据中变量间相关性的建立,而相关性与更为本源的因果关系并不等价,导致当前信息检索的结果存在较为严重的偏差,对抗攻击的能力不佳,且模型往往缺乏可解释性。
为了实现真正智能化的信息检索系统,基于因果学习的检索模型是必然要迈过的一道坎。因果学习能够识别信息检索中变量间的因果关系,厘清事物发展变化的前因后果,全面认识用户需求和检索方法的本质,修正检索模型中的偏差,提升检索系统的可解释性、可操作性和可溯源性。
趋势6:类脑计算系统从“专用”向“通用”逐步演进
以类脑计算芯片为核心的各种类脑计算系统,在处理某些智能问题以及低功耗智能计算方面正逐步展露出优势。但从设计方法角度看,类脑芯片往往根据目标应用要求通过归纳法来确定其硬件功能与接口,并定制化工具链软件,导致软硬件紧耦合、目标应用范围受限等问题。
类脑计算芯片设计将从现有处理器的设计方法论及其发展历史中汲取灵感,在计算完备性理论基础上结合应用需求实现完备的硬件功能。同时类脑计算基础软件将整合已有类脑计算编程语言与框架,提出与具体芯片无关的高层次编程抽象与统一开发框架,针对目标芯片研发类脑计算编译优化与映射优化技术,实现类脑计算系统从“专用”向“通用”的逐步演进。
趋势7:类脑计算从散点独立研究向多点迭代发展迈进
类脑计算在诸多方面已经取得了大量基础性研究成果,但目前的研究仍呈现相对独立狭窄的纵向分布特点,尚未形成相互促进的横向贯通局面。未来的类脑计算将更加注重在单点独立研究的同时与其他层面研究的结合,推动类脑计算的基础理论算法、芯片硬件平台、评估测试基准、编程编译工具以及系统应用的相互协同和促进,构建更具全栈性的类脑计算迭代发展生态,进入良性前进的轨道。
趋势8:神经形态硬件特性得到进一步的发掘并用于实现更为先进的智能系统
新型神经形态器件,如RRAM(可变电阻式存储器)、PCM(相变存储器)等,目前已经在人工智能领域发挥了重大作用,基于这些器件构建的智能硬件系统已经能够有效地提升智能算法执行的速度和能效,并保持算法的性能。
然而当前大部分硬件智能系统仅仅利用了神经形态器件的部分特性,如非易失性、线性等,缺乏对器件更丰富特性,如易失性、非线性、随机性等特性的应用。通过对器件的全面探究,下一代智能系统将会把算法的各种需求同器件的丰富特性紧密结合起来,从而进一步拓展智能系统的功能和应用范围,提升系统的性能和效率。
趋势9:人工智能从脑结构启发走向结构与功能启发并重
脑启发的人工智能在强调对脑结构和神经形态模仿的同时,还需要了解人类神经元和神经回路的功能与机制。这是因为脑结构与脑功能并不存在简单的一一对应的关系,即类似的结构可能有着不同的功能。
例如,作为古老结构的海马体在人和动物的大脑上有着类似的结构,但是它们采用了不同的记忆编码方式。动物的海马体在编码记忆时,采用的是“模式分离”的方式,即神经元形成不同的神经元群组来存储记忆,以避免记忆的混淆。但是,人类的海马体则采用了“概念和联想”的编码方式,即同样的一组神经元可以储存多个不同的记忆。人类这种独特的记忆编码方式可能是人类智能脱颖而出的一个关键因素,有助于解释人类相比于其它物种所具备的独特的认知能力,如人类的抽象思维能力和创造性思维能力。
趋势10:人工智能计算中心成为智能化时代的关键基础设施
近年来,人工智能对算力的需求迅猛增长,并成为最重要的计算算力资源需求之一。AI计算是智能时代发展的核心动力,以人工智能算力为主的人工智能计算中心应运而生。
人工智能计算中心基于最新人工智能理论,采用领先的人工智能计算架构,是融合公共算力服务、数据开放共享、智能生态建设、产业创新聚集的“四位一体”综合平台,可提供算力、数据和算法等人工智能全栈能力,是人工智能快速发展和应用所依托的新型算力基础设施。未来,随着智能化社会的不断发展,人工智能计算中心将成为关键的信息基础设施,推动数字经济与传统产业深度融合,加速产业转型升级,促进经济高质量发展。
京东购书,赠送超值大礼包
返回搜狐,查看更多
2023年人工智能发展创新的十大趋势
创新是永无止境的,像人工智能(AI)这样的技术正在悄悄改变世界。人工智能已经成为趋势,影响着每一个行业。
疫情以前,移动支付、语音识别、自动驾驶。疫情后,人脸识别、时空伴随、智慧城市。人工智能的逐渐普及和应用,让我们的生活更加方便和便捷。
2022年,人工智能的创新又会有哪些突破,发展又会有哪些方向?国外知名咨询机构V-SoftConsulting预测2022年人工智能创新发展的10大方向。
[[436357]]
RPA
1.RPA+AIRoboticProcessAutomation是一种 业务流程自动化,允许任何人定义或者使用RPA机器人来实现模仿大多数人机交互,以高容量和高速度执行大量无错误的任务。
RPA是关于一些最平凡和重复的基于计算机的任务和过程。例如,考虑Copy/Paste任务和将文件从一个位置移动到另一个位置。
相信很多公司已经引入和部署了自己的RPA,主动进行公司的数字化革转型,不仅缩减了成本,让工作流程更加标准和可控。
然而,将人工智能与RPA集成,可以将流程自动化和任务处理提升到一个新的水平。
2.智能过程自动化(IPA)智能流程自动化(IPA)是人工智能在应用程序中自动化特定任务的另一个用例。通过IPA,公司可以自动化非结构化内容的处理过程。
该技术还可以与认知自动化、机器学习、RPA和计算机视觉等其他技术合作,以呈现强大的结果,IPA服务于零售、银行、金融等行业。
投资银行家使用IPA来识别研究数据中的不一致性,而人类几乎不可能识别出这些不一致性。
2021年,我们将看到更多的行业考虑采用IPA。
[[436358]]
AI+IoT
3.人工智能的网络安全和数据隐私随着信息技术的快速发展,网络安全威胁也在急速增长。在2022年及以后,数据风险和网络骗子仍将仍是一个全社会的问题。
随着《个人信息保护法》的正式施行,更多组织将会利用人工智能来防范网络安全和保护个人隐私。
4.物联网人工智能人工智能是一项无可挑剔的技术,加上物联网(IoT)的力量,我们得到了一个强大的商业解决方案。
到2022年,这两种技术的合作将给智慧城市业带来截然不同的变化。
在未来,智能家居设备,比如智能冰箱,智能插头,智能锁等将预测和服务人类的需求。
目前,这些设备只在命令下工作,但与人工智能技术相结合,这些设备可以自动预测人类的需求,启动设备和流程,而无需人工干预。
AI+loT将在2022年引领更多的智能家居,将效率和安全性提高到一个新的水平。
深度学习
5.大众机器学习许多行业和组织都对采用机器学习(ML)感兴趣。2022年,我们将看到更多数据分析的需求。模块化的机器学习将允许非专业人士理解和利用ML算法。
像谷歌CloudAutoML,百度的Apollo,这样的工具在未来会变得更加流行。这些工具可以帮助企业快速部署机器学习的项目,而无需了解ML的复杂开发过程。
6.计算机视觉的进展全世界已经在使用面部识别技术,无论是社交媒体平台还是手机,刷脸支付,人脸安全识别都得到了深入的运用。
在后疫情时代,人脸识别进行智能识别和判断是否安全有效的场所和工作很有必要。
到2022年,我们将看到更精确、更灵敏的计算机视觉系统得到更广泛的采用。
[[436359]]
VR
7.智能客服在过去的一年里,许多行业和企业都实施了智能AI客服。
智能AI客服不仅能降低成本,也能够提供更好更快为客户提供服务。
2022年,这些AI客服将在理解和与客户沟通方面继续学习和提高。
智能客服使用ML和自然语言处理(NLP)来理解自然命令,通过模仿人类与用户的对话来提供自然的交流。
[[436360]]
智能客服
8.数字化转型后疫情时代,远程办公的需求增加,每个公司都致力于实现组织敏捷和高效的工作,引入各种数字工具就势在必行。
钉钉、腾讯会议、飞书等手机APP在疫情期间下载量激增,以满足云办公的需求。
数字化工具正在蓬勃发展,数字工作流自动化的趋势将在2022年及以后发展更加快速。
9.GPUGPU人工智能处理器将用于增强所有业务领域,这些注入人工智能的芯片大大提高了CPU利用率,在很多领域性能表现优异,如物体检测、面部识别等。
许多公司,如AMD,NVIDIA,Qualcomm等,正在创造这些人工智能处理器,这些芯片将改善用户体验,并提高所有人工智能应用程序的性能。
[[436361]]
人类和机器人合作
10.人机协助现代的工作场景正在发生变化,人类劳动力将与机器人合作,以更有效地完成工作。
比如现在电视语音助手,苹果手机的Siri,已经能够在不动手的情况下完成很多指令。
在2022年,像远程代驾这样的人机协助的产业将快速发展成熟。
人工智能是一项杰出的技术,在帮助各行业和办公室改善工作流程方面发挥着关键作用。随着2022年即将到来的创新趋势,人工智能仍将是商业和行业不可或缺的一部分。
人工智能的发展与未来
随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。
现如今,各种AI产品已经逐步进入了我们的生活|Pixabay
19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。
20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。
至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。
智能,是一种特殊的物质构造形式。
就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?
图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。
英国数学家,计算机学家图灵
这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。
虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。
1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。
而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。
而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。
而这之后,人工智能的发展也与图灵的想象有所不同。
现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。
但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。
人工智能让芯片的处理能力得以提升|Pixabay
从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。
虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。
参考文献
[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.
[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.
[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.
[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.
[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.
[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987
作者:张雨晨
编辑:韩越扬
[责编:赵宇豪]未来人工智能,有什么新的发展趋势
AI芯片包含三大类市场,分别是数据中心(云端)、通信终端产品(手机)、特定应用产品(自驾车、头戴式AR/VR、无人机、机器人……)。目前来看,未来AI发展有八大新趋势。
趋势一:AI于各行业垂直领域应用具有巨大的潜力
人工智能市场在零售、交通运输和自动化、制造业及农业等各行业垂直领域具有巨大的潜力。而驱动市场的主要因素,是人工智能技术在各种终端用户垂直领域的应用数量不断增加,尤其是改善对终端消费者服务。
当然人工智能市场要起来也受到IT基础设施完善、智能手机及智能穿戴式设备的普及。其中,以自然语言处理(NLP)应用市场占AI市场很大部分。随着自然语言处理的技术不断精进而驱动消费者服务的成长,还有:汽车信息通讯娱乐系统、AI机器人及支持AI的智能手机等领域。
趋势二:AI导入医疗保健行业维持高速成长
由于医疗保健行业大量使用大数据及人工智能,进而精准改善疾病诊断、医疗人员与患者之间人力的不平衡、降低医疗成本、促进跨行业合作关系。
此外AI还广泛应用于临床试验、大型医疗计划、医疗咨询与宣传推广和销售开发。人工智能导入医疗保健行业从2016年到2022年维持很高成长,预计从2016年的6.671亿美元达到2022年的79.888亿美元年均复合增长率为52.68%。
趋势三:AI取代屏幕成为新UI/UX接口
过去从PC到手机时代以来,用户接口都是透过屏幕或键盘来互动。随着智能喇叭(SmartSpeaker)、虚拟/增强现实(VR/AR)与自动驾驶车系统陆续进入人类生活环境,加速在不需要屏幕的情况下,人们也能够很轻松自在与运算系统沟通。
这表示着人工智能透过自然语言处理与机器学习让技术变得更为直观,也变得较易操控,未来将可以取代屏幕在用户接口与用户体验的地位。
人工智能除了在企业后端扮演重要角色外,在技术接口也可承担更复杂角色。例如:使用视觉图形的自动驾驶车,透过人工神经网络以实现实时翻译,也就是说,人工智能让接口变得更为简单且更有智能,也因此设定了未来互动的高标准模式。
趋势四:未来手机芯片一定内建AI运算核心
现阶段主流的ARM架构处理器速度不够快,若要进行大量的图像运算仍嫌不足,所以未来的手机芯片一定会内建AI运算核心。正如,苹果将3D感测技术带入iPhone之后,Android阵营智能手机将在明年跟进导入3D感测相关应用。
趋势五:AI芯片关键在于成功整合软硬件
AI芯片的核心是半导体及算法。AI硬件主要是要求更快指令周期与低功耗,包括GPU、DSP、ASIC、FPGA和神经元芯片,且须与深度学习算法相结合,而成功相结合的关键在于先进的封装技术。
总体来说GPU比FPGA快,而在功率效能方面FPGA比GPU好,所以AI硬件选择就看产品供货商的需求考虑而定。
例如,苹果的FaceID脸部辨识就是3D深度感测芯片加上神经引擎运算功能,整合高达8个组件进行分析,分别是红外线镜头、泛光感应组件、距离传感器、环境光传感器、前端相机、点阵投影器、喇叭与麦克风。苹果强调用户的生物识别数据,包含:指纹或脸部辨识都以加密形式储存在iPhone内部,所以不易被窃取。
趋势六:AI自主学习是终极目标
AI“大脑”变聪明是分阶段进行,从机器学习进化到深度学习,再进化至自主学习。目前,仍处于机器学习及深度学习的阶段,若要达到自主学习需要解决四大关键问题。
首先,是为自主机器打造一个AI平台;还要提供一个能够让自主机器进行自主学习的虚拟环境,必须符合物理法则,碰撞,压力,效果都要与现实世界一样;然后再将AI的“大脑”放到自主机器的框架中;最后建立虚拟世界入口(VR)。
目前,NVIDIA推出自主机器处理器Xavier,就在为自主机器的商用和普及做准备工作。
趋势七:最完美的架构是把CPU和GPU(或其他处理器)结合起来
未来,还会推出许多专门的领域所需的超强性能的处理器,但是CPU是通用于各种设备,什么场景都可以适用。所以,最完美的架构是把CPU和GPU(或其他处理器)结合起来。例如,NVIDIA推出CUDA计算架构,将专用功能ASIC与通用编程模型相结合,使开发人员实现多种算法。
趋势八:AR成为AI的眼睛,两者是互补、不可或缺
未来的AI需要AR,未来的AR也需要AI,可以将AR比喻成AI的眼睛。为了机器人学习而创造的在虚拟世界,本身就是虚拟现实。还有,如果要让人进入到虚拟环境去对机器人进行训练,还需要更多其它的技术。
展望未来,随着AI、物联网、VR/AR、5G等技术成熟,将带动新一波半导体产业的30年荣景,包括:内存、中央处理器、通讯与传感器四大芯片,各种新产品应用芯片需求不断增加,以中国在半导体的庞大市场优势绝对在全球可扮演关键的角色。
人工智能专业前景广阔,就业岗位众多但人才缺口十分巨大,未来人才会逐渐趋于饱和,现在入行正是时候!
这里我整理的一份人工智能200G学习资料大礼包,内含(Python快速入门、深度学习入门、深度学习必备框架TensorFlow、pytorch、计算机视觉OpenCV、NLP自然语言处理等视频课程、学习笔记或源码等)对于想学习人工智能或者转行到AI行业的,大学生都非常实用,免费提供!扫码加VX就能领取!
人工智能(AI)的发展趋势是怎样的?
什么是人工智能?
人工智能即ArtificialIntelligence,简称AI。它是计算机科学的一个分支,是一门用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的技术科学。它的独特性是以人为样,生产出一种能以人类相似的方式做出反应的智能机器。在专业技术人员的开发和研究下,已有不少智能机器能够模仿人的动作、语言,甚至能做人类做不到的事。人工智能自诞生以来,理论和技术日益成熟,可应用AI的领域也在不断扩大,如医疗、教育、金融等等。
人工智能促发展
“人工智能”一词在1956年达特茅斯会议(DartmouthConference)上被提出后,经过几十年的发展沉淀,人工智能技术现已融入到我们的生活当中,为人类文明的推进做出贡献。例如,在追捕犯罪嫌疑人时,当把犯罪嫌疑人照片输入系统后,计算机程序便“记住”了他的相貌,人脸识别技术便可以在千千万万的人脸中寻找到与之匹配的脸,人类警察就可以通过识别出的结果对犯人进行抓捕;在医疗技术上,人工智能可以模拟医生的思维和诊断推理,通过大量学习医学影像,可以帮助医生进行病灶区域定位,从而给出患者可靠的诊断和治疗方案,减少漏诊误诊的问题。简而言之,记住数据、调取数据就是人工智能的优势之一。
全球互联网行业的预言家凯文•凯利曾说过:“未来20年最伟大的事情可能还没有出现,但可以预判的是,人工智能将是未来20年内最重要的技术趋势。”毋庸置疑,人工智能的发展趋势已经不可阻挡。未来,从住房、物业服务,到新能源汽车、无人驾驶,以及平台经济、共享经济等领域,都将推进完善标准化建设,我们也将拭目以待,共处便捷的智能时代。