新一代人工智能具有五大特点
科学技术部副部长李萌(刘健摄)
7月21日,国务院新闻办公室举行国务院政策例行吹风会,重点介绍《新一代人工智能发展规划》(以下简称《规划》)的编制情况。科技部副部长李萌在回答记者提问时表示,经过60多年的演进,人工智能出现了一些新特点,包括《规划》当中讲到“它呈现出深度学习、跨界融合、人机协同、群智开放和自主智能的新特点”。新一代的人工智能主要是大数据基础上的人工智能。
李萌指出,人工智能具有以下五个特点:一是从人工知识表达到大数据驱动的知识学习技术。二是从分类型处理的多媒体数据转向跨媒体的认知、学习、推理,这里讲的“媒体”不是新闻媒体,而是界面或者环境。三是从追求智能机器到高水平的人机、脑机相互协同和融合。四是从聚焦个体智能到基于互联网和大数据的群体智能,它可以把很多人的智能集聚融合起来变成群体智能。五是从拟人化的机器人转向更加广阔的智能自主系统,比如智能工厂、智能无人机系统等。
据了解,国际普遍认为人工智能有三类“弱人工智能、强人工智能还有超级人工智能”。弱人工智能就是利用现有智能化技术,来改善我们经济社会发展所需要的一些技术条件和发展功能。强人工智能阶段非常接近于人的智能,这需要脑科学的突破,国际上普遍认为这个阶段要到2050年前后才能实现。超级人工智能是脑科学和类脑智能有极大发展后,人工智能就成为一个超强的智能系统。从技术发展看,从脑科学突破角度发展人工智能,现在还有局限性。《规划》中的新一代人工智能,是建立在大数据基础上的,受脑科学启发的类脑智能机理综合起来的理论、技术、方法形成的智能系统。
跟以往相比,新一代人工智能不但以更高水平接近人的智能形态存在,而且以提高人的智力能力为主要目标来融入人们的日常生活。比如跨媒体智能、大数据智能、自主智能系统等。在越来越多的一些专门领域,人工智能的博弈、识别、控制、预测甚至超过人脑的能力,比如人脸识别技术。新一代人工智能技术正在引发链式突破,推动经济社会从数字化、网络化向智能化加速跃进。
版权所有,转载请注明出处。
人工智能的定义及特征是什么
1.人工智能是相对人的自然智能而言,即用人工的方法和技术,模仿、延伸和扩展人的智能,实现某些``机器思维“。2.人类智能的主要特点:感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。3.归纳能力是通过大量实例,总结出具有一般性规律的知识的能力。演绎能力是根据已有的知识和所感知到的事实,推理求解问题的能力。
人工智能的三大特征
一、通过计算和数据,为人类提供服务
从根本上说,人工智能系统必须以人为本,这些系统是人类设计出的机器,按照人类设定的程序逻辑或软件算法通过人类发明的芯片等硬件载体来运行或工作,其本质体现为计算,通过对数据的采集、加工、处理、分析和挖掘,形成有价值的信息流和知识模型,来为人类提供延伸人类能力的服务,来实现对人类期望的一些“智能行为”的模拟,在理想情况下必须体现服务人类的特点,而不应该伤害人类,特别是不应该有目的性地做出伤害人类的行为。
二、对外界环境进行感知,与人交互互补
人工智能系统应能借助传感器等器件产生对外界环境(包括人类)进行感知的能力,可以像人一样通过听觉、视觉、嗅觉、触觉等接收来自环境的各种信息,对外界输入产生文字、语音、表情、动作(控制执行机构)等必要的反应,甚至影响到环境或人类。借助于按钮、键盘、鼠标、屏幕、手势、体态、表情、力反馈、虚拟现实/增强现实等方式,人与机器间可以产生交互与互动,使机器设备越来越“理解”人类乃至与人类共同协作、优势互补。这样,人工智能系统能够帮助人类做人类不擅长、不喜欢但机器能够完成的工作,而人类则适合于去做更需要创造性、洞察力、想象力、灵活性、多变性乃至用心领悟或需要感情的一些工作。
三、拥有适应和学习特性,可以演化迭代
人工智能系统在理想情况下应具有一定的自适应特性和学习能力,即具有一定的随环境、数据或任务变化而自适应调节参数或更新优化模型的能力;并且,能够在此基础上通过与云、端、人、物越来越广泛深入数字化连接扩展,实现机器客体乃至人类主体的演化迭代,以使系统具有适应性、灵活性、扩展性,来应对不断变化的现实环境,从而使人工智能系统在各行各业产生丰富的应用。
1人工智能概述
文章目录1.4机器学习工作流程学习目标1什么是机器学习2机器学习工作流程机器学习工作流程总结2.1获取到的数据集介绍2.2数据基本处理2.3特征工程2.4机器学习2.5模型评估拓展阅读完整机器学习项目的流程3小结1.4机器学习工作流程学习目标了解机器学习的定义知道机器学习的工作流程掌握获取到的数据集的特性1什么是机器学习-机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。
2机器学习工作流程机器学习工作流程总结1.获取数据2.数据基本处理3.特征工程4.机器学习(模型训练)5.模型评估
结果达到要求,上线服务没有达到要求,重新上面步骤2.1获取到的数据集介绍数据简介在数据集中一般:
一行数据我们称为一个样本一列数据我们成为一个特征有些数据有目标值(标签值),有些数据没有目标值(如上表中,电影类型就是这个数据集的目标值)数据类型构成:
数据类型一:特征值+目标值(目标值是连续的和离散的)数据类型二:只有特征值,没有目标值数据分割:机器学习一般的数据集会划分为两个部分:
训练数据:用于训练,构建模型测试数据:在模型检验时使用,用于评估模型是否有效划分比例:
训练集:70%80%75%测试集:30%20%25%2.2数据基本处理-即对数据进行缺失值、去除异常值等处理
2.3特征工程2.3.1什么是特征工程特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
意义:会直接影响机器学习的效果2.3.2为什么需要特征工程(FeatureEngineering)机器学习领域的大神AndrewNg(吴恩达)老师说“Comingupwithfeaturesisdificult,time-consuming,requiresexpertknowledge.“Appliedmachinelearning"isbasicallyfeatureengineering.”注:业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。2.3.3特征工程包含内容
特征提取特征预处理特征降维2.3.4各概念具体解释特征提取
将任意数据(如文本或图像)转换为可用于机器学习的数字特征特征预处理通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程特征降维指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程2.4机器学习选择合适的算法对模型进行训练(具体内容见1.5)
2.5模型评估对训练好的模型进行评估(具体内容见1.6)
拓展阅读完整机器学习项目的流程1抽象成数学问题明确问题是进行机器学习的第一步。机器学习的训练过程通常都是一件非常耗时的事情,胡乱尝试时间成本是非常高的。这里的抽象成数学问题,指的明确我们可以获得什么样的数据,抽象出的问题,是一个分类还是回归或者是聚类的问题。2获取数据
数据决定了机a学习结果的上限,而算法只是尽可能逼近这个上限。数据要有代表性,否则必然会过拟合。而且对于分类问题,数据偏斜不能过于严重,不同类别的数据数量不要有数量级的差距。而且还要对数据的量级有一个评估,多少个样本,多少个特征,可以估算出其对内存的消耗程度,判断训练过程中内存是否能够放得下。如果放不下就得考虑改进算法或者使用一些降维的技巧了。如果数据量实在太大,那就要考虑分布式了。3特征预处理与特征选择
良好的数据要能够提取出良好的特征才能真正发挥作用。特征预处理、数据清洗是很关键的步骤,往往能够使得算法的效果和性能得到显著提高。归一化、离散化、因子化、缺失值处理、去除共线性等,数据挖掘过程中很多时间就花在它们上面。这些工作简单可复制,收益稳定可预期,是机器学习的基础必备步骤。筛选出显著特征、摒弃非显著特征,需要机器学习工程师反复理解业务。这对很多结果有决定性的影响。特征选择好了,非常简单的算法也能得出良好、稳定的结果。这需要运用特征有效性分析的相关技术,如相关系数、卡方检验、平均互信息、条件熵、后验概率、逻辑回归权重等方法。4训练模型与调优
直到这一步才用到我们上面说的算法进行训练。现在很多算法都能够封装成黑盒供人使用。但是真正考验水平的是调整这些算法的(超)参数,使得结果变得更加优良。这需要我们对算法的原理有深入的理解。理解越深入,就越能发现问题的症结,提出良好的调优方案。5模型诊断如何确定模型调优的方向与思路呢?这就需要对模型讲行诊断的技术。
3小结机器学习义【掌握】
机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测·机器学习工作流程总结【掌握】1.获取数据2.数据基本处理3.特征工程4.机器学习(模型训练)5.模型评估
结果达到要求,上线服务没有达到要求,重新上面步骤获取到的数据集介绍【掌握】
数据集中一行数据一般称为一个样本,一列数据一般称为一个特征。数据集的构成:-由特征值+目标值(部分数据集没有)构成为了模型的训练和测试,把数据集分为:-训练数据(70%-80%)和测试数据(20%-30%)特征工程包含内容【了解】特征提取特征预处理特征降维