博舍

从近期到远期:人工智能在实际生活中的应用场景和未来整合趋势 人工智能在网络技术中的应用

从近期到远期:人工智能在实际生活中的应用场景和未来整合趋势

人工智能(ArtificialIntelligence,AI)在实际生活中的应用场景非常广泛,涵盖了从近期到远期的多个领域。以下是一些典型的应用场景,以及未来可能整合的技术和应用。

 

近期应用场景:

虚拟助手:智能助手(如Siri、Alexa、小冰)帮助用户管理日程安排、提供实时天气信息、回答问题等。图像识别:AI技术可以通过分析和识别图像内容,应用于人脸识别、物体识别、图像搜索等领域。语音识别:语音助手(如Siri、GoogleAssistant)能够识别和理解人类语音指令,并执行相应操作,如播放音乐、发送短信等。自动驾驶:将AI技术应用于汽车领域,实现自动驾驶功能,提高行车安全性和交通效率。

远期应用场景:

机器人助手:智能机器人能够协助人类进行家务、照顾老人、甚至扮演陪伴角色。医疗诊断:AI技术能够辅助医生进行疾病诊断,提供个性化的医疗方案、药物推荐等。智能城市:AI技术可以在城市中应用于交通管理、环境监测、能源优化等方面,提高城市的智能化程度。个性化教育:AI可以根据学生的个体差异,提供定制化的教育内容和学习辅助工具,提高教育质量和效果。

将来整合的技术和应用:

跨领域整合:不同领域的AI技术和应用将会整合,形成更加全面和智能的解决方案。例如,将语音识别、图像识别和自然语言处理技术整合,实现更加人性化和智能的交互方式。强化学习:强化学习是一种让机器通过试错和反馈来学习的方法,未来将应用于更复杂的决策和控制任务,如自动驾驶、智能机器人等。大数据和云计算:AI需要海量的数据进行训练和学习,未来将进一步整合大数据和云计算技术,提供更强大的计算和存储能力,以支持更复杂的AI应用。

总之,人工智能在实际生活中的应用场景将越来越广泛,从简单的语音助手和图像识别,到复杂的自动驾驶和智能机器人,AI技术将为我们的生活带来更多便利和智能化。未来,不同领域的AI技术将会整合,搭建更加智能和全面的解决方案,推动人工智能进一步发展和应用。

适应人工智能驱动科研新范式

当前,随着新科技革命和产业变革深入发展,人工智能技术不断突破并向科研领域广泛渗透,为科研工作注入了新元素、新动能,对科研效率提升和范式变革形成显著催化作用,现代科研活动由此更加高效、精准,“人工智能驱动的科学研究”已成为全球人工智能新前沿,必将为未来科技发展开启全新局面。

近年来,我国人工智能技术快速发展,科研数据和算力资源日益丰富,顺应新时代新趋势,利用新技术新优势,推动人工智能赋能科学研究恰逢其时、大有可为。

应用场景是新范式的孕育土壤和实训基地,人工智能技术与科学研究互动互促需要在诸多应用场景中反复实践、不断完善,随着应用范围不断拓展延伸,科研能力持续实现智慧升级。为此,以需求为牵引谋划人工智能技术应用场景,基于促进科学研究更加紧密拥抱人工智能技术,拓展人工智能技术在数学、化学、地学、材料、生物和空间科学等重大科学领域的应用。充分发挥人工智能技术在文献数据获取、实验预测、结果分析等方面的作用,围绕具有典型代表意义和辐射带动性的基础科学、应用科学领域,创造更多实战式应用场景,融合人工智能模型算法和领域数据知识,不断探索重大科学问题研究突破的新路径、新范式,持续积累可复制可推广的经验做法。

人工智能技术在科研活动应用中涉及多专业、多环节,离不开不同类型、不同链条主体机构的合理分工和有效协作。为此,要鼓励企业运用人工智能开展关键技术研发、新产品培育等科研活动,支持高校、科研院所、新型研发机构探索人工智能技术用于重大科学研究和技术开发的先进模式,培育壮大一批跨界技术转化和企业孵化机构、科研中介服务机构,探索多元主体合作协作新机制。面向重大科学问题的人工智能模型和算法创新,发展一批针对典型科研领域的“人工智能驱动的科学研究”专用平台,推动国家新一代人工智能公共算力开放创新平台建设,支持高性能计算中心与智算中心异构融合发展,鼓励各类科研主体按照分类分级原则开放科学数据。支持成立“人工智能驱动的科学研究”创新联合体,搭建国际学术交流平台。

适应性人才是新范式突破和推广的根本源泉。提高人工智能技术在科学研究领域的应用水平,既需要人工智能和相应学科的专业人才,也离不开跨领域复合型人才为跨界沟通协作提供高效支撑,这需要多渠道构筑相关人力资源引育平台和机制。为此,要多渠道培养和汇聚跨越人工智能和专业领域的复合型人才。支持更多数学、物理等科学领域的科学家、研究人员投身相关研究,鼓励普通高校、职业院校在人工智能学科专业教学中设置科技创新类专业课程,提升人工智能专业学生科研专业素养。鼓励开展相关人才培训,通过开设研修班、开展实践交流、组织专题培训等多种形式,培养一批人工智能与专业科研能力兼顾的复合型人才。鼓励地方政府、央企、行业领军企业通过“揭榜挂帅”、联合创新等方式支持相关优秀人才和科研团队开展智慧赋能科研工作。(作者:张璐璐来源:经济日报)

人工智能在图像处理、语音识别和自然语言处理中的应用有哪些

当谈到人工智能在图像处理、语音识别和自然语言处理领域的应用时,我们可以看到它们正发挥着重要的作用。人工智能技术利用计算机科学和机器学习算法,使得计算机能够模仿人类的智能行为和决策过程。

 人工智能在图像处理、语音识别和自然语言处理领域有广泛的应用。以下是这些领域中人工智能的一些常见应用:

图像处理:图像分类和识别:利用深度学习和卷积神经网络等技术,实现图像的分类和识别任务,例如物体识别、人脸识别等。目标检测和跟踪:通过训练神经网络模型,实现对图像中特定目标的检测和跟踪,例如行人检测、车辆跟踪等。图像生成和增强:利用生成对抗网络(GAN)等技术,生成逼真的图像,并进行图像增强,例如超分辨率图像生成、图像修复等。语音识别:语音转文本:利用深度学习模型,将语音信号转化为文字,实现语音识别任务,例如语音助手、语音转写等。语音情感分析:通过分析语音信号的声调、语速等特征,实现对语音中情感的识别和分析。自然语言处理:文本生成和翻译:通过神经网络模型,实现文本的生成和翻译任务,例如文本摘要生成、多语言翻译等。问答系统和对话机器人:利用自然语言处理和知识图谱等技术,实现智能问答系统和对话机器人,能够回答用户的问题和进行自然对话。整理了有关人工智能的籽料,有图像处理opencv自然语言处理、机器学习、数学基础等人工智能资料,深度学习神经网络+CV计算机视觉学习(两大框架pytorch/tensorflow+源码课件笔记)关注公众H:AI技术星球 回复 123这些只是人工智能在图像处理、语音识别和自然语言处理领域中的一些应用示例,随着技术的发展和创新,还会出现更多新的应用和突破。人工智能的应用不仅限于这些领域,还延伸到医疗诊断、智能交通、金融风控等多个行业。随着技术的进步和数据的丰富,人工智能在各个领域的应用将会更加广泛和深入。

联合学习在传统机器学习方法中的应用

 

在大数据和分布式计算时代,传统的机器学习方法面临着一个重大挑战:当数据分散在多个设备或竖井中时,如何协同训练模型。这就是联合学习发挥作用的地方,它提供了一个很有前途的解决方案,将模型训练与直接访问原始训练数据脱钩。

联合学习最初旨在实现去中心化数据上的协作深度学习,其关键优势之一是其通信效率。这种相同的范式可以应用于传统的ML方法,如线性回归、SVM、k-means聚类,以及基于树的方法,如随机森林和boosting。

开发传统ML方法的联合学习变体需要在几个层面上进行仔细考虑:

算法级别:您必须回答关键问题,例如客户端应该与服务器共享哪些信息,服务器应该如何聚合收集的信息,以及客户端应该如何处理从服务器接收的全局聚合模型更新。实施级别:探索可用的API并利用它们来创建与算法公式一致的联邦管道是至关重要的。

值得注意的是联邦的和分布式的与深度学习相比,传统方法的机器学习可能不那么独特。对于某些算法和实现,这些术语可以是等效的。

图1。对基于联邦树的XGBoost

在图1中,每个客户端构建一个唯一的增强树,该树由服务器聚合为树的集合,然后重新分发给客户端进行进一步的训练。

要开始使用显示此方法的特定示例,请考虑K-Means聚类示例。在这里,我们采用了Mini-BatchK-Means聚类中定义的方案,并将每一轮联合学习公式化如下:

本地培训:从全局中心开始,每个客户端都用自己的数据训练一个本地的MiniBatchKMeans模型。全局聚合:服务器收集集群中心,统计来自所有客户端的信息,通过将每个客户端的结果视为小批量来聚合这些信息,并更新全局中心和每个中心的计数。

对于中心初始化,在第一轮中,每个客户端使用k-means++方法生成其初始中心。然后,服务器收集所有初始中心,并执行一轮k均值以生成初始全局中心。

从制定到实施

将联邦范式应用于传统的机器学习方法虽然说起来容易,但做起来却很困难。NVIDIA新发布的白皮书《联合传统机器学习算法》提供了许多详细的示例,以展示如何制定和实现这些算法。

我们展示了如何使用流行的库,如scikit-learn和XGBoost,将联邦线性模型、k-means聚类、非线性SVM、随机森林和XGBoost应用于协作学习。

总之,联合机器学习为在去中心化数据上协同训练模型提供了一种令人信服的方法。虽然通信成本可能不再是传统机器学习算法的主要约束,但要充分利用联合学习的好处,仍然需要仔细制定和实施。

要开始使用您自己的联合机器学习工作流,请参阅联合传统机器学习算法白皮书和NVIDIAFLAREGitHub回购。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇