人工智能在中国航天的应用与展望
1.4深度学习算法
深度学习算法作为机器学习的一个分支,由Hinton等人于2006年提出,是人工智能迎来新一轮飞速发展最重要的核心技术[1]。深度学习算法用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征,其中最广为使用的算法包括卷积神经网络(convolutionalneuralnetworks,CNN)、循环神经网络(recurrentneuralnetwork,RNN)长短期记忆网络(longshort-termmemory,LSTM)等,需要根据具体应用场景和数据特征加以选择。深度学习是对人类思维方式的建模,让机器能够理解人的行为,并将知识运用到与用户的交互中,达到机器“人性化”的终极目标,实现人工智能技术在商业中的落地。
2人工智能的细分领域
2.1图像识别
通过结合大数据的训练,人工智能可以对图像进行预处理、图像分割、特征提取和判断匹配。在图像识别的技术框架中,人脸识别应用非常广泛。人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。目前国内领先企业旷视科技的人脸识别准确率已高达99.999%。此外,在产品生产质量检验上,图像识别技术应用也非常广泛,例如:机械类产品的裂纹自动识别检测。
2.2语音/语义识别
利用特征提取技术、模式匹配准则及模型训练技术,语音识别能够让机器对采集到的语音信息进行识别和理解,转化为文本或命令。例如在军事上,可通过语音识别确认说话人的身份、侦听情报内容、或下发操作指令,具有非常重要的价值。目前,针对中小词汇量非特定人的语音识别系统识别精度已超过98%,针对特定人的识别精度甚至更高。
2.3自然语言处理
语言是人类区别其他动物的本质特性,因此理解语言也是人工智能的一个核心方向。综合语言学、计算机科学、数学等多种科学,自然语言处理研究能实现人与计算机之间有效通信的各种理论和方法,以一种智能高效的方式,对文本数据进行系统化分析、理解与信息提取。通过使用自然语言处理技术,可以管理大块的文本数据,或执行大量的自动化任务,并且解决如自动摘要,机器翻译,命名实体识别,关系提取等语言相关任务[2]。
2.4无人驾驶
无人驾驶的核心技术是即时空间建模和人工智能技术。低成本高效率的感知解决方案是无人驾驶的基础,高精度底图的建立是无人驾驶的关键,具有深度学习的算法芯片是无人驾驶的核心。在过去六年内,谷歌无人驾驶汽车在公路上安全行驶220多万公里,仅发生17起交通以外,而且均是由人类失误引发的。
2.5智能机器人
智能机器人融合了几乎所有人工智能分支技术,它至少需要具备感觉要素、反应要素和思考要素。它能够理解人类语言,感知、分析周围环境信息并调整自己的动作。目前已发展出多样化的机器人种类,从智能水平较低的工业机器人,到智能陪护机器人再到高级智能机器人。
3人工智能在中国航天上的应用前景
3.1更自主的任务规划
航天飞行任务规划是一个典型的知识处理过程,其中涉及较为复杂的逻辑推理和众多的约束条件,这种问题适合采用人工智能的方式加以解决,实现“人工智能+”。
3.1.1“人工智能+运载火箭”——高容错飞行
运载火箭的飞行入轨面临的是一个地面难以复制和仿真等效的全新环境,飞行阶段程序转弯、发动机关机、级间分离、再次点火、姿态修正、载荷分离诸多环节中数百个零部件任一失效偏差都可能给火箭带来不可挽回的损失,是运载火箭成败与否的核心一环。高机动性、短飞行周期、恶劣环境都意味着人无法有效干预,因此,发动机推力下降、姿控极性接反均直接造成了任务失败,飞行风险居高不下。
目前的箭载计算机大多不具备重新规划飞行任务的能力,或需要地面人工计算制导诸元后,通过测量系统进行了上行注入,一定程度上实现弹道的重规划,将卫星送入轨道[3]。
未来,将运载火箭设计阶段梳理的飞行过程故障模式与传感器参数相结合,研究基于人工智能的运载火箭飞行阶段故障自诊断以及深度学习训练方法,在分秒必争的运载火箭飞行段完成故障预测、故障定位与故障隔离工作,并通过轨迹弹道重规划、制导姿控模型重生成,有效隔离局部故障,规避失败风险,最优化飞行轨迹与姿态控制,有效挖掘潜在运力资源[4]。
除此之外,在运载火箭发动机关机、级间分离后,分离的舱部段通过自主感知和自主控制技术,与卫星定位信息、地形布局信息动态匹配,通过发动机再次点火,实现舱部段自主飞行、平稳下落、精准落地以及主动防护,通过舱部段及各级发动机的回收再利用,显著压缩运载火箭任务周期,降低运载火箭制造成本。
3.1.2“人工智能+深空探测器”——自主规划
现有行星探测器的主要前进方式为:拍摄前方照片通过遥测发回地面站,操作人员根据图像确定前进路线,再通过上行通道上注行动指令,实现探测车的行驶操作。这种模式过于依赖地面测试人员,效率较低,很多时候由于行星表面环境较为恶劣,或者由于距离的确过于遥远,遥测控制信号也比较微弱,或者由于地球自转引起相对位置改变,无法实现遥测遥控,更难以实现探测器的实时控制。基于人工智能、视觉计算、监控装置的自动驾驶将大幅提高探测、地形勘测的效率。根据视频摄像头、雷达传感器以及激光测距器来了解周围的地形状况,利用图像识别等智能感知技术、智能决策和智能控制技术可以实现行星探测车的自主行动,选取最优探测路线,智能避开障碍物体,以最小的代价、最高的效率采集有用信息,大大辅助深空探测应用。
深空探测应用中,复杂航天器是由大量元器件和软件组成,长期的在轨运行,元器件的故障和软件的不完善在所难免,由于太空环境的特殊性,当某部分损坏时,难以通过人员进入太空进行判别和修复,利用人工智能技术结合空间高精度、高灵敏度机械臂,通过智能分析航天器数据,实现故障的自主定位、自动识别和在轨自主修复,在轨操作、组装、拆卸、管理。
3.1.3“人工智能+武器装备”——智能作战
通过多维度侦查探测系统,智能感知、发现、定位、跟踪敌方动态、电磁频谱信息、作战行动等战场态势信息,以最少的人员、更少的代价、最大化地获取战场情报数据,辅助智能判别与智能决策应用。如利用覆盖红外、可见光、微波雷达等多种技术手段,实现一体化、集成化的多模融合探测装置,智能感知多维度、多层次、多类型数据,然后应用数据配准、智能去噪等预处理手段获取高质量多源数据,再利用深度学习、模糊推理、专家系统等智能技术,建立目标识别和威胁判别模型,实现武器装备作战环境中目标智能探测感知和识别。
通过给武器装备各类传感器、探测器,智能探测感知飞行空间信息、拦截弹信息等,数据传输给弹载智能“大脑”,设定相应的优化准则、目标等,通过数据分析,智能自主决策,规划调整飞行弹道,通过动力学气动调整,改变飞行轨迹,增强突防性能[5]。
人工智能使无人机个体具备较高的智能水平,协同作战能力显著提高,从而形成低成本的无人机蜂群战术。目前,以美国国防高级研究计划局(DARPA)为首的众多机构,都投入了大量经费就无人机集群在空中的协同作战理论和技术展开研究,包括无人机的快速编队、多机间通信协同,自主战术决策与下达作战命令等,构建多无人飞行器的任务自组织系统分布式体系结构。
3.2更高效的地面测试
运载火箭的测试发射同样是一个多学科交叉,多专业耦合的复杂系统工程,是运载火箭成败与否的关键一环。状态准备、测试操作、预案决策、数据判读,每一环都是技术能力的保障,都是知识经验的考验,同样每一步都离不开人的参与,成败维系在每一名人员身上,高水平人员的稀缺造成测试发射无法多任务并举,以及连续疲劳带来的风险造成测试发射周期无法进一步压缩,通过应用人工智能技术,可显著提升测试效率,降低发射成本[6]。
3.2.1采集层
通过多样化的手段代替传统的传感器采集或人工直接观测,基于视频语音识别技术的应用可以大大减少火箭本身测点的布置。例如:发动机工作状态,可以通过对其工作时的声音进行频谱分析;一些机构的动作,可以通过非接触的摄像机直接观察;仪器仪表的指示灯状态监控,可以通过摄像头摄录信息,之后在后台用图像识别的方式的进行自动判断。
3.2.2处理层
人工智能技术极大的提升了设备的数据处理与故障诊断的能力。对地面测试数据进行统一管理和应用,除了完成流程自闭环的反馈判断,还能够对数据的趋势、关联进行综合分析,设备不但可以掌握自身的运行状态,实现故障检测与隔离,启用合适的故障预案,还能够想设计操作人员提供辅助决策和任务规划建议。
3.2.3执行层
前端无人值守是未来火箭发展的必然趋势。电测过程中的脱查脱拔等人为操作、异常故障时的抢险操作,可以采用带视觉定位系统的机械臂来完成。此外,后端的人机交互也可以加入语音识别、手势感知等新型指挥手段,提高测试效率。
3.3更全面的设计保障
3.3.1智能设计
引入人工智能技术,可以将目前的半智能化计算机辅助设计系统升级为智能化计算机辅助设计系统,整合现有的海量资料及资源,模拟人脑思考的过程,彻底解决上述三类问题。采用人工智能技术的“航天大脑”可以根据型号需求提供总体文件的初稿,总体设计师进行决策修改后,“航天大脑”将系统需要的文件自动下发至系统级,并形成系统级文件的初稿,系统设计师进行决策修改后,“航天大脑”再将单机需要的文件下发至单机。在进行具体设计时,设计师仅需将设计输入文件提交至“航天大脑”,系统则会根据需求以及所学习的设计文件完成设计工作。如设计电缆网图时,设计师仅需将电缆的几何尺寸、点位定义等提交至“航天大脑”,“航天大脑”会自动绘制出电缆网图的模板,并自动给出诸如线缆型号推荐、连接器型号推荐等辅助决策信息,设计师将不需逐个翻阅厂家的手册即可完成设计,设计效率将大大提高。此外,由于“航天大脑”能够在很短的时间内完成大量文件的学习工作,并从中找出最优方案,设计的标准化和设计水平也能够得到保证。
3.3.2智能制造
智能制造是一种由智能机器和人类专家共同组成的人机一体化智研制造系统,通过人与智能机器的合作共事,扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。它把制造自动化的概念更新,扩展到柔性化、智能化和高度集成化。
利用大数据技术,对于运载火箭制造装配需要的物资、工具、生产线、场地、工装、人员、运输车辆都统一进行编码采集与实时定位管理,将散布在全国各地的运载火箭制造装配资源条件,进行投筹管理,真正做到全国一盘棋。并与运载火箭发射任务计划有机对接,通过态势分析与智能预测,实现生产规模进度的最优化预测管理,成本进度最优化,并能够实现突发风险的动态应变处置,实现成本最优化管理。
在生产过程中,也完成了对火箭全生命周期信息的收集与保障。建立火箭的综合档案履历资料库,收集制造、装配、测试各个过程的数据与知识,构建大数据分析中心,作为智慧火箭的数据支撑与健康诊断的依据,降低设计和研制成本、提升测发效率、提升火箭的可靠性[7]。
3.3.3远程支持
随着在运载火箭高密度发射、零窗口点火变得常态化,靠大量人力在靶场保障发射任务的模式已难以适应未来的发展需求。发射中心将从逐步从靶场向远程后方迁移,以日本epsilon火箭为例,科研人员远程使用两台笔记本就可实现火箭发射控制。
远程支持中心能够统一接收、存储各靶场各型号发回的测试数据并存储,并通过智能搜索引擎随时搜索查看关心的数据及相关文档;针对当发测试数据,结合历史数据进行大数据分析,提前识别出可能有质量隐患的关键节点;当靶场出现故障时,远程支持中心通过多媒体、虚拟现实等手段开展协同排故工作。
4中国航天发展人工智能的对策建议
4.1聚焦航天“大脑”技术体系,做好战略规划和顶层设计
基于对大数据与人工智能的探索和积累,提出以技术-产品-服务为核心的航天“大脑”,其技术体系设想如图1所示。
图1航天“大脑”技术体系
4.1.1技术层
智能感知是为机器装上触觉、视觉、听觉、神经和运动机构等智能硬件,使其具备感知世界的能力。通过集群和虚拟化技术实现对海量数据的快速预处理、分布式存储、并行计算等,为智慧大脑提供强大的记忆”和“计算”能力。
4.1.2产品层
智慧产品包括智慧院所、智慧火箭、智慧装备和智慧民用产业。其中,智慧院所是所有智慧产品研制的基础,其可以充分激发员工创新创业热情,并为员工提供高效便捷的管理方式;智慧火箭指的是为火箭装上“触觉”和“大脑”,降低测发控对人的依赖,提升火箭可靠性;智慧装备指的是通过全寿命周期的健康管理,实现装备自主保障;智慧民用产业指的是通过军民融合方式,将军用技术转向民用领域,如智能健康监测、智慧家电远程测控、智慧照明、智慧安防等领域。
4.1.3服务层
未来应全力推动大数据人工智能等技术与航天装备的结合,实现装备信息智能采集、远程保障、智能决策的完美集成,发展模式也将由提供产品向提供全方位解决方案的服务转变。
4.2打造航天“大脑”系列产品,快速形成专业的能力和队伍
4.2.1智慧院所
以创新为驱动、以信息化为基础、以知识为载体,利用智能科学理论、技术、方法和信息及自动化技术工具,充分有效地整合和优化利用各类内外部资源,保证能够持续创新,不断开发新产品、新服务,为航天单位的发展提供智能决策。
4.2.2数据银行
建立航天大数据中心,成立“航天数据银行”,对产品研制、生产等多环节的数据进行统一管控、统一挖掘,实现数据挖掘效果的最大化,创造服务价值。智慧管理通过实现产品全寿命周期的统一管控,建立基于数据信息驱动的智能化研制模式,提升工作效率。智慧决策基于大数据技术,将先进管理理念、业务流程和管理模式等融合,实现管理信息化和智能化,达到“降本增效”的目的。
4.2.3智能装备
通过大数据与互联网等高新技术,实现火箭的高度信息化与智能化。包括智慧的远程发射支持平台,智慧的测发指控平台,智慧的全寿命周期综合保障平台。智慧的远程发射支持平台通过大数据技术,训练后方的智能机器大脑,提升异地协同保障能力,减免专家到一线协助排故,解决问题。智慧的测发指控平台依托于语音识别、图像识别、大数据等技术,实现自主的测发指控过程。智慧的全寿命周期综合保障平台利用大数据技术保障数据统一化规范,完成自主健康评估、精准的寿命预测和数据驱动的视情维修[8]。
4.2.4智慧产业
依托剩余载荷和末级监控,实现对地观测等服务,依托远程测控、健康监测、大数据、新一代信息应用技术,通过融合智慧城市中的多源数据,在智慧城市和智慧产业中,提升城市的精细化管理水平,同时为航天单位军民融合开拓增收,锻炼队伍。
4.3分布落地执行,拓展航天“大脑”的服务
未来,应全力推动大数据人工智能等技术与航天装备的结合,实现装备信息智能采集、远程保障、智能决策的完美集成,航天企业的发展模式也将由提供产品向提供全方位解决方案的服务转变,如智慧的发射服务、全面的体系作战服务和智慧的军民融合服务。智慧发射最终要实现输入一个指定的位置坐标,为其精准、快速、智能、高效、低廉地发射到指定地点。全面的体系作战服务基于大数据和人工智能技术,能够实现装备的自主保障、战时智能决策和一体化的体系作战。智慧的军民融合服务结合现有的技术和民用产业,开展更多的智慧产业服务,通过信息和通信技术的应用,提升城市的管理水平,提高市民的生活质量,令城市运行和市民生活更加智能。
参考文献:
[1]夏定纯,徐涛.人工智能技术与方法[M].华中科技大学出版社,2004.
[2]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,30(2):4-7.
[3]沈林城,关世义.开放式飞行任务规划方法[J].宇航学报,1998,19(2):13-18.
[4]席政.人工智能在航天飞行任务规划中的应用研究[J].航空学报,2007,28(4):791-795.
[5]张克,邵长胜,强文义.基于面向Agent技术的任务规划系统研究[J].高技术通讯,2002,12(5):82-86.
[6]鲁宇.中国运载火箭技术发展[J].宇航总体技术,2017(3):5-12.
[7]郭凤英,何洪庆.人工智能技术在航天领域的应用[J].中国航天,1996(6):19-21.
[8]谭勇,王伟.智能故障诊断技术及发展[J].飞航导弹,2009(7):35-38.
ApplicationandProspectofArtificialIntelligenceinChinaAerospace
YueMengYun,WangWei,ZhangXige
(BeijingInstituteofAerospaceSystemEngineering,Beijing100076,China)
Abstract:Withthebreakthroughoftechnologysuchasnetworking,massivelyparallelcomputing,bigdataanddeeplearningalgorithms,ArtificialIntelligencehasachievedrapiddevelopmentinrecentyears,excitingprospectsfordevelopmentinimageidentification,voicerecognition,NaturalLanguageProcessing(NLP),self-driving,thusgottheattentionandsupportfromgovernmentsoftheworld.Thispapercombinesartificialintelligencetechnologywithspaceapplicationssuchasrockets,deep-spacedetectorandweaponequipment,thendescribesitsapplicationprospectinspaceMissionPlanning,GroundTesting,IntegratedSupport,etc.AndputsforwardrelevantcountermeasuresandsuggestionsonthesubsequentdevelopmentofAItechnologyinChinaAerospace.
Keywords:ArtificialIntelligence;BigData;ChinaAerospace
收稿日期:2019-02-18;修回日期:2019-02-26。
作者简介:岳梦云(1988-),女,安徽合肥人,硕士,工程师,主要从事运载火箭与导弹的地面测发控系统设计方向的研究。
文章编号:1671-4598(2019)06-0001-04
DOI:10.16526/j.cnki.11-4762/tp.2019.06.001
中图分类号:TP18
文献标识码:A返回搜狐,查看更多
人工智能:从“作坊式”走向“工业化”新时代
对于普通人来说,人工智能是一个既熟悉而又神秘的词。在我国“十四五”规划中,多次提到要推动人工智能产业发展。当前产业现状如何?正在走向何方?哪些领域最有可能取得突破?带着这些问题,记者采访了中国科学院自动化研究所所长徐波。
中国科学院自动化研究所所长徐波。受访者供图
人工智能创新不断“一体两翼”快速发展
人民网:当前,人工智能技术创新不断,应用层出不穷。它究竟走到了哪一步?能否谈谈您是如何看待我国人工智能技术发展现状的?
徐波:人工智能是一个高度交叉复合、快速发展的领域。如果要对其发展现状作一个全面概括,可以从人工智能“一体两翼”构成来着手分析。
其中“一翼”是指人工智能的基础理论。人工智能快速发展无疑受益于大数据和大算力发展,但基础还是15年前深度学习基础理论和方法的突破。人工智能越发展,其计算、生物、数学、材料、心理学和社会学等交叉复合特性就越明显。我国人工智能高水平论文发表数量已经位居世界一二,人工智能基础研究发展态势良好,已经成为人工智能基础研究大国。但成为人工智能基础研究强国,还需要在需求牵引下,按照问题导向继续弘扬“十年磨一剑”的科学家专注精神。
另外“一翼”就是人工智能的应用。人工智能具有无所不在的广阔应用场景,技术落地需要和工业制造、农业发展、医疗制药、社会治理等领域深度结合。我国有市场、人才、规模、数据等方面的优势,在应用方面走得比较快,对各行业的渗透深度和广度前所未有,具有世界上独一无二的优势,已经走在世界发展最前列。
人工智能中间非常关键的“一体”,指的是人工智能的基础软硬件,包括芯片、算法、软件硬件协同、开源框架、应用开发接口等等。它作为一个桥梁,把人工智能基础研究成果和场景应用广泛地结合在一起。目前,我们的基础软硬件研发已经从“可用”走到基本“好用”的阶段,发展了自主可控的人工智能基础软硬件生态。
人民网:产业应用是技术发展中很重要的部分。您认为我国要发展人工智能产业,占领关键技术高地,未来的突破口在哪里?
徐波:随着我国新一代人工智能的发展,人工智能应用呈现出遍地开花的良好发展态势。但人工智能落地中,也碰到很多问题,例如对数据质量要求高、缺乏相应标准、落地周期长成本高、人才昂贵等。
我认为可以从这几方面寻找突破口。
首先是复合型人才的培养。智能社会发展过程中需要培养一批既懂行业需求流程、又懂人工智能的专业人才。人工智能还完全没有发展到可以通过调几个参数就能上线替代部分人工作的水平。其中行业数据的获取、清洗和加工,以及如何按照业务需求建立相应的应用模型都需要一些这样的复合型人才支撑。
其次要降低人工智能的应用门槛。现在按照专用人工智能技术发展的应用,在很多时候发现还不如用个人更省成本。所以,如何从专用型的人工智能,逐步向更具泛化能力的人工智能技术发展,是一个重要的技术突破口,也是未来5-10年人工智能技术发展的主流。
这个过程中,从推动产业发展的角度选择一些超级场景对于牵引人工智能应用发展非常关键。例如,自动驾驶会是人工智能在单一领域里最大的产业场景,也是汽车工业发展的必争之地。类似的还有人工智能+医疗,也是一个特别大的场景。中国有四百万医生、全世界最大的临床海量医疗数据,最适合人工智能去发挥智能化优势。所以,要选择一些这样的超级场景,作为推动人工智能进步的突破口。
加快原始创新策源努力占据制高点
人民网:中科院自动化所作为我国“国家战略科技力量”的重要组成部分,“十四五”期间在人工智能领域的研究和应用方面,有哪些相应的目标和计划?
徐波:我们按照“两加快一努力”要求,加快原始创新策源和关键核心技术突破,努力占据人工智能科技创新制高点。
中国科学院自动化研究所始终关注人工智能中长远发展布局。十年前在深度学习刚刚开始应用于语音、图像并产生技术突破时,我们意识到感知类人工智能应用将逐渐由产业界为主导,于是开始布局更前瞻性的类脑智能,推动人工智能和脑科学的交叉研究实现,并与科学院神经所成立脑科学与智能技术交叉研究中心。目前这个方向已经成为研究所三大主力研究方向,相信在下一代人工智能发展中也将扮演重要角色。
人工智能想要在经济发展、社会治理、大工程系统等复杂问题的决策中发挥作用,需要人工智能与复杂系统进行交叉融合,这也是人工智能从感知、认知走向决策的必然发展趋势。因此,研究所进一步布局了可自主进化智能方向,研究建模人、环境和机器之间的演化、合作和竞争等关系,并通过交互提升人和机器对环境的认识和认知。这项技术可广泛应用于大量复杂问题的智能辅助决策。
这儿要重点谈一下我们最近研发的“紫东太初”多模态大模型。这是基于我们多年基础积累形成的面向关键技术攻关的研究方向。我们人类对世界的认识天然是多模态的。举个例子,我说“猫”这个字,你马上脑子里能想到猫的图片、猫叫的声音、猫的文字。我们大脑里面把猫有关的声音、图像和文字关联在一起,共同组成了“猫”这样一个语义。这个语义是跨模态存在的。模拟人的多模态认知特点,自动化所推出了全球首个千亿参数的三模态大模型“紫东太初”,把图像、文本和语音结合起来,它采用了多层次、多任务、自监督、预训练的学习方式,不仅可以实现跨模态理解,还能实现跨模态生成。这是我们在已有多个很好技术积累基础上,通过多模态把人工智能众多方向加以融合创新的研究成果,服务于产业和国民经济主战场。
人民网:在人工智能创新链中,科研院所在扮演怎样的角色?自动化所又是如何面向国民经济主战场,为我国人工智能产业链发展赋能?
徐波:人工智能包括智能和智能化。智能即智能科学内涵、基础理论和模型算法等,智能化则是智能与各个领域行业的结合。研究所发展规划一方面要承担主责主业,大力探索智能本身。同时,需要考虑智能怎么去和社会、和企业、和政府合作,政产学研结合,面向国民经济主战场,为人工智能产业链发展赋能。无论从科研还是产业化,我们始终秉持在低潮时坚守、在高潮时冷静的理念,努力成为默默的开拓者和引领者。
六年前,人工智能落地应用刚刚萌芽,基于人工智能自身发展特点,研究所及时推出了“离岗创业”制度,鼓励已在智能应用领域深耕多年的团队进行转化。制度实施以来,已经诞生了在工业视觉、融媒体、生物特征识别等垂直行业里多家有影响力的企业。离岗创业,这是一种人工智能技术转化1.0版本形式。
作为一种赋能千行百业的技术,我们不能止步于此。我们正在探索人工智能技术转化的2.0版。2.0核心就是要利用研究所力量,以核心创新为抓手,以构建创新生态为目标,做一个大的人工智能平台。如上所述,目前人工智能存在落地周期、成本、人才等问题,同时国产基础软硬件从基本“好用”到非常“好用”,都需要协同各方力量共同努力。
为了解决这一行业痛点,今年5月,中国科学院自动化研究所、华为技术有限公司、武汉东湖高新区管委会签署《人工智能技术开发合作备忘录》,三方共同筹建武汉多模态大模型人工智能平台。该平台以自动化所的“紫东太初”大模型为核心,以全国产的昇腾AI基础软硬件为底座(包含昇腾AI处理器、异构计算架构CANN和全场景AI框架昇思MindSpore等),通过合作支撑当地产业实现智能升级。大模型、大底座、大数据形成了一个天然的合作模式,来为各个行业赋能。这是我们技术转化2.0的一个开始的初步尝试。
打破应用门槛解决人工智能“落地难”痛点
人民网:您如何看待这个平台的未来发展?
徐波:这是人工智能向更加通用化方向迈出的重要一步。以前的人工智能是属于“作坊式”的。想要做一个应用,需要从算法开始进行开发,类似于我们常说的“重复造轮子”。多模态大模型人工智能平台,是人工智能从“作坊式”向“工业化”转型升级的一次重要探索。通过对多模态大模型人工智能平台的持续研发、应用、优化、升级等,大大降低应用门槛和对应用人才要求,同时推动全自主可控软硬件体系的形成。
这个过程中大模型技术持续创新研发是我们的主责主业。例如现在计算量还比较大、成本和能耗也比较大,未来大模型在现有基础上还会有很多突破。需要我们不断融合类脑等智能新机制,使得大模型的运营成本越来越低,越来越好用。
目前,我们也正在同步研究大模型基础上蒸馏出小模型技术,这也非常重要。对于不想上云的,或者是应用场景不那么复杂的,其实并不需要用到大模型。因为大模型的参数特别多,使用成本非常高。这个时候,就可以用大模型中蒸馏出一个小模型,小到可能只有几兆的大小,不但降低成本,而且实现从通用向专用的进一步优化。
打个比方来说,大模型类似于一个知识非常渊博的老师,他学了无数多的数据,但是如果从事一件具体的工作,就不需要那么渊博的知识,这时候,我们可以根据需求,自动蒸馏出一个小模型,教出一个小徒弟来做这项工作。
人工智能要迈上工业化阶段,必须要满足以下几个条件,批量化,成本低,易访问,轻能耗以及最大程度的开源开放。未来,“云端的大模型+末端小模型”很可能会成为人工智能应用的重要模式。
人民网:这个平台,目前是否有一些成功的应用?
徐波:我们已经有一些应用,效果很好。以前解决不了或者解决不好的现在有了全新的技术手段。
我们在智慧媒体方面做了一些探索。和头部视频网站合作,针对其海量的短视频、电影和电视剧,做到了跨模态内容的检索。比如输入一段文字,就能定位到视频中的某一个片段;可以根据电视剧的简介自动生成1分钟的视频摘要;还可以指定某个特定演员出现的场景、某件事的前因后果等内容进行“跳播”。
工业视听觉已经进行了应用尝试。过去,人工智能在工业领域的应用是一个痛点,因为样本非常少,而且很多时候数据是多模态的。比如发动机的质检,往往是靠老师傅们“听”出来的。用人工智能怎么做呢?我们把各种各样的工业缺陷数据混合在一起,首先让机器进行模型自学,应用的时候只需要给两个样本,就可以达到很高的质检精度。这方面我们已经实验过了,原来可能需要一万个样本才能做到90%以上的识别率,现在只要用几个或几十个样本,精度就能达到90%,大幅降低了人工智能的应用门槛。
另外一个应用案例是具像化的教学,可以在打手语的同时生成对应图片,辅助学生理解,更好地达到教学目的。
类似的应用还有很多,只靠自动化所一家单位去落地,会错失大量的助推产业升级的机会,也会比较慢,所以一定要在推广模式上创新,吸引更多的人、更多的机构来实践,来应用。我刚才说的“2.0”就是这个意思。现在我们自己先做一些样例出来,然后进一步完善模型,通过标准化、流程化等一系列手段,将门槛降下来。未来越多人用,这个模型就会越完善,也越好用。
近期,自动化所联合大学、产业界等在积极推进“多模态人工智能产业联盟”的建设,这个联盟的成立就是为了让产学研各界都能更好的应用我们创新的成果,并基于这些成果再去推广、完善。12月18日即将在武汉举行的“2021东湖国际人工智能高峰论坛”上,我们也会就推动人工智能通用化、技术应用国产化和参会嘉宾进行进一步的探讨与合作。
人民网:多年来您在研究人工智能的过程中,有没有觉得它的发展速度超越了您的想象?
徐波:有句话说,“大多数人高估了他们一年所能做的事情,却低估了他们十年所能做的事情。”
这句话来描述人工智能的发展也很适用。它的影响是潜移默化的。目前人工智能落地碰到一些困难,但过了十年以后回头来看,人工智能的发展速度会比你原来想象的要快。
目前,全世界很多优秀的人在研究人工智能,每个人都从不同的角度攻克其中一块砖,最终合力去建立起一座人工智能的高楼大厦。人工智能的发展非常激动人心。
这里的每一块砖可能就是一个很小的研究或者应用领域,它们正在以飞快的速度不断迭代和突破。人工智能研究离终极目标还有很远的距离,但人类正在朝着它光明前景的快速道上大步前进,并看到沿途一路风景。
(责编:赵竹青、吕骞)分享让更多人看到