人工智能产业发展现状与四大趋势
随着全球新一轮科技革命和产业变革孕育兴起,人工智能等数字技术加速演进,引领数字经济蓬勃发展,对各国科技、经济、社会等产生深远影响,已成为驱动新一轮科技革命和产业变革的重要力量。近年来,各国政府及相关组织持续加强人工智能战略布局,以人工智能为核心的集成化技术创新成为重点,人工智能相关技术产业化和商业化进程不断提速,正在加快与千行百业深度融合,其“头雁”效应得以充分发挥。此外,全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识。
一人工智能的内涵与产业链
(一)人工智能的内涵
人工智能(ArtificialIntelligence)作为一门前沿交叉学科,与数学、计算机科学、控制科学、脑与认知科学、语言学等密切相关,自1956年首次提出以来,各方对其界定一直存在不同的观点。通过梳理不同研究机构和专家学者提出的相关概念,关于“人工智能”的内涵可总结如下:人工智能是指研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,赋予机器模拟、延伸、扩展类人智能,实现会听、会看、会说、会思考、会学习、会行动等功能,本质是对人的意识和思想过程的模拟。
图1:人工智能内涵示意图
来源:火石创造根据公开资料绘制
(二)人工智能的发展历程
从1956年“人工智能”概念在达特茅斯会议上首次被提出至今,人工智能发展已经历经60余年,经历了三次发展浪潮。当前全球人工智能正处于第三次发展浪潮之中。
第一次浪潮(1956-1980年):训练机器逻辑推理能力。在1956年达特茅斯会议上,以“人工智能”概念被提出为标志,第一次发展浪潮正式掀起,该阶段的核心是:让计算机具备逻辑推理能力。这一时期内,开发出了计算机可以解决代数应用题、证明几何定理、学习和使用英语的程序,并且研发出第一款感知神经网络软件和聊天软件,这些初期的突破性进展让人工智能迎来发展史上的第一个高峰。但与此同时,受限于当时计算机的内存容量和处理速度,早期的人工智能大多是通过固定指令来执行特定问题,并不具备真正的学习能力。
第二次浪潮(1980-2006年):专家系统应用推广。1980年,以“专家系统”商业化兴起为标志,第二次发展浪潮正式掀起,该阶段的核心是:总结知识,并“教授”给计算机。这一时期内,解决特定领域问题的“专家系统”AI程序开始为全世界的公司所采纳,弥补了第一次发展浪潮中“早起人工智能大多是通过固定指令来执行特定问题”,使得AI变得实用起来,知识库系统和知识工程成为了80年代AI研究的主要方向,应用领域不断拓宽。
第三次浪潮(2006年至今):机器学习、深度学习、类脑计算提出。以2006年Hinton提出“深度学习”神经网络为标志,第三次发展浪潮正式掀起,该阶段的核心是实现从“不能用、不好用”到“可以用”的技术突破。与此前多次起落不同,第三次浪潮解决了人工智能的基础理论问题,受到互联网、云计算、5G通信、大数据等新兴技术不断崛起的影响,以及核心算法的突破、计算能力的提高和海量数据的支撑,人工智能领域的发展跨越了从科学理论与实际应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。
图2:人工智能的三次发展浪潮
来源:火石创造根据公开资料绘制
(三)人工智能的产业链
人工智能产业链分为三层:基础层、技术层以及应用层。基础层涉及数据收集与运算,这是人工智能的发展基础,包括智能芯片、智能传感器、大数据与云计算等;技术层处理数据的挖掘、学习与智能处理,是连接基础层与应用层的桥梁,包括机器学习、类脑智能计算、计算机视觉、自然语言处理、智能语音、生物特征识别等;应用层是将人工智能技术与行业的融合发展的应用场景,包括智能机器人、智能终端、智慧城市、智能交通、智能制造、智能医疗、智能教育等。
图3:人工智能产业链
来源:火石创造根据公开资料绘制
二全球人工智能产业发展现状
(一)人工智能产业规模保持快速增长
近年来人工智能技术飞速发展,对人类社会的经济发展以及生产生活方式的变革产生重大影响。人工智能正全方位商业化,AI技术已在金融、医疗、制造、教育、安防等多个领域实现技术落地,应用场景也日益丰富。人工智能的广泛应用及商业化,加快推动了企业的数字化、产业链结构的优化以及信息利用效率的提升。全球范围内美国、欧盟、英国、日本、中国等国家和地区均大力支持人工智能产业发展,相关新兴应用不断落地。根据相关统计显示,全球人工智能产业规模已从2017年的6900亿美元增长至2021年的3万亿美元,并有望到2025年突破6万亿美元,2017-2025年有望以超30%的复合增长率快速增长。
图4:2017-2025年全球人工智能产业规模(单位:亿美元)
数据来源:火石创造根据公开资料整理
(二)全球主要经济体争相布局,中美两国占据领先位置
人工智能作为引领未来的战略性技术,目前全球主要经济体都将人工智能作为提升国家竞争力、维护国家安全的重大战略。美国处于全球人工智能领导者地位,中国紧随其后,欧洲的英国、德国、法国,亚洲的日本、韩国,北美的加拿大等国也具有较好的基础。从全球各国人工智能企业数量来看,美国人工智能企业数量在全球占比达到41%,中国占比为22%,英国为11%,以上三个国家的人工智能企业数量合计占到全球的七成以上。
图5:全球人工智能企业数量分布
数据来源:中国信通院,火石创造整理
(三)公共数据集不断丰富,关键平台逐步形成
全球数据流量持续快速增长,为深度学习所需要的海量数据提供良好基础。商业化数据产业发展迅速,为企业提供海量图片、语音等数据资源和相关服务。公共数据集为创新创业和行业竞争提供优质数据,也为初创企业的发展带来必不可少的资源。优势企业例如Google、亚马逊、Facebook等都加快部署机器学习、深度学习底层平台,建立产业事实标准。目前业内已有近40个各类AI学习框架,生态竞争十分激烈。中国的代表企业如科大讯飞、商汤科技利用技术优势建设开放技术平台,为开发者提供AI开发环境,建设上层应用生态。
(四)人工智能技术飞速发展,应用持续深入
近十年来,得益于深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能真正大范围地从实验室研究走向产业实践。以深度学习为代表的算法爆发拉开了人工智能浪潮的序幕,在计算机视觉、智能语音、自然语言处理等领域广泛应用,相继超过人类识别水平。人工智能与云计算、大数据等支撑技术的融合不断深入,围绕着数据处理、模型训练、部署运营和安全监测等各环节的工具链不断丰富。工程化能力持续增强,人工智能的落地应用和产品交付更加便捷高效。AI在医疗、制造、自动驾驶、安防、消杀等领域的应用持续深入,特别是新冠疫情以来,社会的数字化、智能化转型不断提速,进一步推动人工智能应用迈入快车道。
三全球人工智能产业发展趋势
(一)算法、算力和数据作为人工智能产业的底层支撑,仍是全球新一代人工智能产业的核心引擎
算法、算力和数据被全球公认为是人工智能发展的三驾马车,也是推动人工智能发展的重要基础。在算力层面,单点算力持续提升,算力定制化、多元化成为重要发展趋势;计算技术围绕数据处理、数据存储、数据交互三大能力要素演进升级,类脑芯片、量子计算等方向持续探索智能芯片的技术架构由通用类芯片发展为全定制化芯片,技术创新带来的蓝海市场吸引了大量的巨头企业和初创企业进入产业。在算法层面,Cafe框架?CNTK框架等分别针对不同新兴人工智能算法模型进行收集整合,可以大幅度提高算法开发的场景适用性,人工智能算法从RNN、LSTM到CNN过渡到GAN和BERT还有GPT-3等,不断涌现的新兴学习算法将在主流机器学习算法模型库中得到更高效的实现。在数据层面,以深度学习为代表的人工智能技术需要大量的标注数据,催生了专业的技术服务,数据服务进入深度定制化阶段。
(二)全球新兴技术持续孕育涌现,以人工智能为核心的集成化技术创新成为重点
随着全球虚拟现实、超高清视频、新兴汽车电子等新技术、新产品将不断孕育涌现,并与人工智能加速交叉集成,推动生产生活方式和社会治理方式智能化变革的经济形态;与此同时,人工智能与5G、云计算、大数据、工业互联网、物联网、混合现实(MR)、量子计算、区块链、边缘计算等新一代信息技术互为支撑。这意味着以交叉融合为特征的集成化创新渐成主流,多种新兴技术交叉集成的价值将使人工智能发挥更大社会经济价值。例如:人工智能与汽车电子领域加速融合,实现感知、决策、控制等专用功能模块,推动形成自动驾驶、驾驶辅助、人车交互、服务娱乐应用系统;人工智能与虚拟现实技术相结合,为生产制造、家装等提供工具,并为虚拟制造、智能驾驶、模拟医疗、教育培训、影视娱乐等提供场景丰富、互动及时的平台环境等。
(三)新基建春风与场景赋能双轮驱动,全球泛在智能时代加速来临
在新冠肺炎疫情成为全球发展“新常态”背景下,全球主要经济体均面临经济社会创新发展和转型升级挑战,对人工智能的运用需求愈加迫切,纷纷推动人工智能与实体经济加速融合,助力实现新常态下产业转型升级。一方面,全球大力布局智能化基础设施建设和传统基础设施智能化升级,推动网络泛在、数据泛在和应用需求泛在的万物互联生态加速实现,为人工智能的应用场景向更多行业、更多领域、更多环节、更多层面拓展奠定基础;另一方面,AI应用场景建设成为国内外关注和紧抓的关键举措,面向医疗健康、金融、供应链交通、制造、家居、轨道交通等重点应用领域,积极构建符合本地优势和发展特点的人工智能深度应用场景,探索智能制造、智能物流、智能农业、智慧旅游、智能医疗、智慧城市等模式创新和业态创新,同时典型场景建设也吸引了全球资本市场的重点关注,泛在化智能经济发展时代即将到来。
(四)全球高度关注人工智能治理工作,发展安全可信人工智能已成为全球共识
随着全球人工智能发展步入蓬勃发展阶段,人工智能深入赋能引发的挑战与风险广受关注,并在全球范围内掀起了人工治理浪潮。2019年6月,二十国集团(G20)批准了倡导人工智能使用和研发“尊重法律原则、人权和民主价值观”的《G20人工智能原则》,成为人工智能治理方面的首个政府间国际公约,发展安全可信的人工智能已经成为全球共识。此后,全球各国纷纷加速完善人工智能治理相关规则体系,聚焦自动驾驶、智慧医疗和人脸识别等重点领域出台分级分类的监管措施,推动人工治理从以“软法”为导向的社会规范体系,向以“硬法”为保障的风险防控制度体系转变。与此同时,面向人工智能治理体系建设和打造安全可信生态的相关需求,围绕着安全性、稳定性、可解释性、隐私保护、公平性等方面的可信人工智能研究持续升温,其理念逐步贯彻到人工智能的全生命周期之中,基于模糊理论的相关测试技术、AI结合隐私计算技术、引入公平决策量化指标的算法模型等新技术陆续涌现,产业实践不断丰富,已经演变为落实人工智能治理相关要求的重要方法论。
原文标题 : 全球视野下人工智能产业发展现状与四大趋势
2023年中国人工智能行业区域市场发展现状对比 北上广引领产业发展
当前位置:前瞻产业研究院»经济学人»研究员专栏2021年中国人工智能行业区域市场发展现状对比北上广引领产业发展UVc分享到:刘甜•2021-06-0113:00:51来源:前瞻产业研究院E15476G02023-2028年中国人工智能行业发展前景预测与投资战略规划分析报告2023-2028年全球人工智能芯片(AI芯片)行业市场调研与发展前景研究报告2023-2028年中国大数据产业发展前景与投资战略规划分析报告2023-2028年中国云计算产业发展前景预测与投资战略规划分析报告2023-2028年中国生物识别技术行业市场调研与投资预测分析报告从城市群来看,目前,我国人工智能企业主要分布在京津冀、长三角、珠三角、川渝四大都市圈。京津冀区域竞争力最强,长三角位列第二,珠三角位列第三。
从省市自治区来看,北京、广东、上海、浙江、江苏人工智能企业数量排名前五;从城市来看,北上广深AI企业数量最多,产业链发展相对完善。
人工智能行业主要上市公司:阿里巴巴(BABA)、腾讯(00700.HK)、科大讯飞(002230)、赛为智能(300044)、科大智能(300222)、海康威视(002415)、四维图新(002405)等
本文核心数据:人工智能企业在全国都市圈的分布、主要省市/城市人工智能企业数量占比
京津冀、长三角和珠三角城市群AI企业集聚,引领产业发展
根据中国新一代人工智能发展战略研究院发布的最新《中国新一代人工智能科技产业发展报告2021》数据显示,截至2020年,我国人工智能企业主要分布在京津冀、长江三角洲和珠江三角洲三大都市圈,占比分别为31.02%,30.23%和26.39%。
依托科技创新和互联网产业发展优势,京津冀、长江三角洲和珠江三角洲地区在人工智能科技产业的发展中走在了全国的前列。
由此可见,中国人工智能区域发展与国家区域战略高度协同相互促进,区域要素汇聚加速人工智能产业引领。京津冀、长三角和粤港澳大湾区已成为我国人工智能发展的三大区域性引擎,成渝城市群、长江中游城市群也展现出人工智能发展的区域活力,产业集聚区初显区域引领和协同作用。
北上广深AI企业数量较多
具体来看,在各省市自治区中,人工智能企业主要分布在北京市、广东省、上海市、浙江省、江苏省、四川省、山东省、湖北省、福建省和湖南省。其中,北京市占比最高,为29.73%;其次是广东省,占比为26.39%,主要分布在深圳市和广州市;排名第三的是上海市,占比为14.07%;排名第四的是浙江省,占比为8.81%,主要集中在杭州市。
从主要城市来看,人工智能企业分布密集的城市是北京市、上海市、深圳市和广州市,占比分别为29.73%,14.07%,13.99%和8.14%,是中国人工智能科技产业发展的前沿城市。西部地区的成都市和中部地区的武汉市同样是人工智能企业数量排名靠前的城市。
北上广地区人工智能产业链发展相对完善,细分领域龙头企业较多
从产业链来看,北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。
其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;
技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;
应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。此外,上海和广东地区人工智能产业链代表企业分布也较为广泛。
更多数据来请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,同时前瞻产业研究院提供产业大数据、产业规划、产业申报、产业园区规划、产业招商引资、IPO募投可研、招股说明书撰写等解决方案。
更多深度行业分析尽在【前瞻经济学人APP】,还可以与500+经济学家/资深行业研究员交流互动。
前瞻产业研究院-深度报告REPORTS2023-2028年中国人工智能行业发展前景预测与投资战略规划分析报告本报告前瞻性、适时性地对人工智能行业的发展背景、供需情况、市场规模、竞争格局等行业现状进行分析,并结合多年来人工智能行业发展轨迹及实践经验,对人工智能行业未来...
查看详情
本文来源前瞻产业研究院,内容仅代表作者个人观点,本站只提供参考并不构成任何投资及应用建议。(若存在内容、版权或其它问题,请联系:service@qianzhan.com)品牌合作与广告投放请联系:0755-33015062或hezuo@qianzhan.com在招股说明书、公司年度报告等任何公开信息披露中引用本篇文章内容,需要获取前瞻产业研究院的正规授权。如有IPO业务合作需求请直接联系前瞻产业研究院IPO团队,联系方式:400-068-7188。
p17q0我要投稿
UVc分享:标签:人工智能区域市场发展现状AI企业人工智能行业品牌、内容合作请点这里:寻求合作››
产业规划
园区规划
产业招商
可行性研究
碳中和
市场调研
IPO咨询
前瞻经济学人专注于中国各行业市场分析、未来发展趋势等。扫一扫立即关注。前瞻产业研究院中国产业咨询领导者,专业提供产业规划、产业申报、产业升级转型、产业园区规划、可行性报告等领域解决方案,扫一扫关注。相关阅读RELEVANT2023年中国证券行业区域市场现状分析广东省发展态势好【组图】
2023年中国人工智能芯片行业发展现状分析行业处于萌芽期【组图】
2023年全球航空涂料行业区域市场现状分析美国为全球行业发展重要区域【组图】
聚焦中国产业:2021年深圳市特色产业之人工智能产业全景分析(附产业空间布局、发展现状及目标、竞争力分析)
2022年中国冷库行业区域市场发展现状分析华东地区冷库建设领先【组图】
2023年中国人工智能芯片行业市场现状及发展前景分析AI芯驱动引领未来【组图】
有关人工智能方面的调研报告
一、人工智能可与哪些领域结合进行研究1专家系统专家系统是依靠人类专家已有的知识建立起来的知识系统,是一种具有特定领域内大量知识与经验的程序系统。它应用人工智能技术、模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过人类专家的水平。目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域,广泛应用于医疗诊断、地质勘探、文化教育等各方面。它是在特定的领域内具有相应的知识和经验的程序系统,它应用人工智能技术、模拟人类专家解决问题时的思维过程,来求解领域内的各种问题,达到或接近专家的水平。2机器学习机器学习就是机器自己获取知识。机器学习的研究,主要是研究人类学习的机理、人脑思维的过程;机器学习的方法;建立针对具体任务的学习系统。还有机器人学这个领域所研究的问题,包括从机器人手臂的最佳移动到实现机器人的目标动作序列的规划方法等。因此开发高智能机器人是一个重要研究方面。3模式识别模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别,如识别物体、地形、图像、字体(如签字)等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。特别神经网络方法在模式识别中取得较大进展。当前模式识别主要集中在图形识别和语音识别。图形识别方面例如识别各种印刷体和某些手写体文字,识别指纹、白血球和癌细胞等的技术已经进入实用阶段。语音识别主要研究各种语音信号的分类。语音识别技术近年来发展很快,现已有商品化产品如扫描仪的上市。4人工神经网络人工神经网络是在研究人脑的奥秘中得到启发,试图用大量的处理单元(人工神经元、处理元件、电子元件等)模仿人脑神经系统工程结构和工作机理。是通过范例的学习,修改了知识库和推理机的结构,达到实现人工智能的目的。在人工神经网络中,信息的处理是由神经元之间的相互作用来实现的,知识与信息的存储表现为网络元件互连间分布式的物理联系,网络的学习和识别取决于和神经元连接权值的动态演化过程。人工神经网络也许永远也无法代替人脑,但是他能帮助人类扩展对外部世界的认识和智能控制。多年来,人工神经网络的研究取得了较大的进展,成为具有一种独特风格的信息处理学科。目前,人工神经网络的发展趋势有如下特点:①新的人工神经网络模型产生频率非常之快。②现有的人工神经网络模型的完善改进速度喜人。③人工神经网络结合和其他一些现代优化计算方法的结合运用日见增多。如结合混沌理论、遗传+神经、模拟退火+神经算法等成功运用的实例。5智能决策支持系统决策支持系统是属于管理科学的范畴,它与“知识-智能”有着极其密切的关系。自20世纪80年代以来专家系统在许多方面取得成功,将人工智能中特别是智能和知识处理技术应用于决策支持系统,扩大了决策支持系统的应用范围,提高了系统解决问题的能力,这就成为智能决策支持系统。
二、2017年人工智能十大趋势参考链接:(http://mp.weixin.qq.com/s/4KEzXU1kygE36ohFE7-cQw)
1.人工智能聊天机器人在TechEmergence进行的一项2016年调查中,询问了人工智能的高管和创业者,什么人工智能应用在未来五年内可能会获得成功。他们的首选是虚拟代理和聊天机器人,获得了37%的投票。这些软件程序能够理解自然语言,并通过消息传递服务或电子邮件与人沟通。包括IBM和Facebook在内的几家公司已经宣布了帮助开发者创建聊天室的平台,这些平台似乎越来越受欢迎。去年夏天,Facebook宣布,在其飞书信(Messenger)服务上有超过11,000个机器人。根据IBM的统计,65%的千禧一代(Millennials,出生于1980-1990s)喜欢与机器人进行交流而不是与现场助理交谈。2.应用开发创建聊天机器人并不是开发人员使用人工智能的唯一方式。许多企业正在将人工智能和深度学习功能集成到他们的Web应用、移动应用和内部的企业应用中。人工智能正在发展推荐引擎、安排会议、排定待办事项列表、在大数据中查找隐藏的价值的一系列功能等等。在其2017年十大战略技术趋势列表中,Gartner将智能应用排在了第二位。其中写道,“Gartner预计,到2018年,全球最大的200家企业大多数都会利用智能应用,并使用大数据的完整工具包和分析工具,来优化自身的产品和改善客户体验。”3.智能物件人工智能也与物联网(IoT)的趋势相关,“智能物件”(intelligentthings)在Gartner的2017年前十大战略技术趋势列表中排名第三。其中说道,“现有的物联网设备将使智能物联网人工智能的功能无处不在,包括家庭、办公室、工厂车间和医疗设施。”例如,下一代健身追踪器不仅可以监控您的健康信息,还可能具有机器学习和分析功能,使它们能够根据您的个人健康史和过去的追踪器数据提出改善健康的建议。4.医学研究人工智能的最热门领域之一是医疗健康行业。IDC在其《全球半年度认知/人工智能支出指南》中将诊断和治疗系统列为2016年吸引最多投资的领域之一,并表示在未来五年内,包括药物研究和发现以及诊断和治疗系统的使用案例将获得最大的发展。在五年期间,它预测医疗健康人工智能投资的年复合增长率为69.3%。同样,CBInsights将医疗健康列为人工智能中最热的领域,并作为今年的创业项目。5.生物模型人工智能和健康科学之间的关系有两种方式:不只有健康研究人员转向人工智能,用以帮助他们回答医疗健康问题,计算机科学研究人员也正在转向生物模型,用以帮助他们创建更好的人工智能软件。麻省理工学院和谷歌最近都被报道在创建与人类大脑功能相似的神经网络,这个领域的研究可能会持续一段时间。未来学家RayKurzweil甚至预测到2030年,我们将能够合并人类的大脑和计算机网络,创造一种混合形式的人工智能。
三、人工智能技术的应用1实现远程自主规划和控制该项技术能够对距离我们上百万公里以外太空中航天器进行远程规划和控制,例如:美国航天局利用计算机智能程序对航天器进行操作、调整和控制,并成为国际上首例利用计算机人工智能技术远程遥控的国家。远程智能程序能够结合地面系统中预先设定好的任务和目标,进行自主规划,并在对航天器实现实时监督和控制,了解和掌握航天器运行情况,及时发现与程序相悖之处,并发出指令进行调整,实现检测、诊断及恢复目标,从而确保航天器在遥远的外太空稳定、可靠运行,为科学家研究提供参考。2预测步骤,提高博弈技巧将一些技术运用于下棋过程中,能够将下棋涉及的复杂问题分解为多个小问题,提供下棋数据信息,促使其朝着搜索和问题归纳等方向发展,从而为下棋者科学决策提供支持,近年来,这项技术发展速度及应用范围十分广泛。诚然,技术能够达到国际象棋锦标赛的水平,但是,还不能够很好的解决人类棋手的表达和洞察等能力,人们仅能够实现具体问题具体分析,基于此,还需要进一步提高。3结合目标需求,实现自主控制技术涉及的视觉系统能够应用于引导汽车沿着行车道前进,结合这一应用,美国将这一技术安装到微型汽车上,实现了自主导航前进两千公里,其中98%以上时间是由该系统控制汽车前进,剩余部分由人类控制,通过调查发现,人类控制部分主要是公路出口寻找,也就是说,通过对技术进一步完善,能够促使系统获取更多应用经验,从而计算出最佳驾驶方向,从而控制汽车前进。因此,无人驾驶这一目标将会在不久的未来实现。4提高医疗水平,实现准确诊断该项技术在医疗领域中的应用,能够有效突破传统医疗诊断的弊端,进一步提高诊断水平,例如:建立在概率分析基础之上的医疗诊断程序已经得到了应用,且效果十分明显,在一定程度上提高了专家医师的实践水平。诚然,一部分医师对程序诊病这一事实并不认可,但是,程序通过对病人的检查,提出了影响判断的原因,并阐述了并发症状等,最后得到了医师的认可和肯定。技术在医疗领域的应用,不仅能够有效提高医疗水平,还能够更好的解决病人的疑难杂症。5深度理解语言,解决问题建立在该项技术基础之上的程序,在解答纵横字谜问题中得到了重视,其解答效果优于人类,在具体应用过程中,该项程序通过利用填充词限制及相关字谜数据库等多项资源解决问题。6提高专业化水平,完善专家系统专家系统主要是建立在专家已具备知识基础之上的系统,具有特定知识、经验的系统,与人类专家水平基本一致。专家系统是计算机人工智能技术研究较早、且成果最为显著的领域,在地质勘探等方面得到了广泛的推广和普及。
四、谭铁牛院士谈人工智能参考链接:https://mp.weixin.qq.com/s?__biz=MjM5MTQzNzU2NA==&mid=2651644094&idx=1&sn=601c77e370fa56b15ea59e6245e37a36&scene=25&srcid=0827BvgC0x8ppDwCNQQCDPPS#wechat_redirect
过去一年人工智能领域的十件大事:第一项,阿尔法狗;第二项,各国政府高度重视人工智能发展,包括今年5月份美国白宫举行4场研讨会讨论,包括我们国家大家也知道5月份几个部委发布了《互联网+人工智能三年的行动实施方案》还是值得一提的事;第三项,IBM发布类脑超级计算机平台,是基于前几年发布的芯片;第四项,软银320亿美元收购ARM,这还是很大的收购;第五项,谷歌、facebook等开源人工智能基础平台,这是值得一提的,反映了一个趋势和动向;第六项,创建公益性的人工智能机构OpenAI,我认为很值得一体,10亿美金;第七项,学术方面的,Science发表BayesianProgram论文;第八项,微软深层残差网络夺冠2015年ImagnNet;第九项,谷歌量子计算机取得重要的突破,为人工智能计算搭建一个平台;第十项,剑桥大学成立人工智能伦理研究所。
人工智能在过去一年的十大趋势动态第一,人工智能热潮全球化,从东方到西方,从发达国家到发展中国家,从大国到小国,应该都是掀起了热潮。第二,产业竞争白热化,各种并购大家也可以看到,招聘人才,都希望来竞争。第三,投资并购密集化,过去一年大的小的收购、投资,数不胜数,从几百亿到几个亿,更小规模的也不用说了,太多了。第四,人工智能应用普适化,各个领域的渗透。第五,人工智能的服务专业化,一个是研究通用化的人工智能,一个是专业化的人工智能。第六,基础平台开源化,包括IBM、谷歌开源的平台,过去一年特别明显的一个新的特征,我不知道大家赞不赞同。第七,关键技术硬件化,包括IBM的类脑计算平台。第八,技术方法集成化,单一的人工智能计算理论和方法不可能包打天下,集成创新势在必行,阿尔法狗里面集成了很多,都是我们非常熟悉。第九,学科创新协同化,多学科跨界融合交叉协同创新人工智能创新途径,包括量子技术跟人工智能的结合。第十,社会影响大众化,我不用解释,包括我的司机前两天问,这一年多人工智能很火热,他都很关心,说明人工智能的影响的社会化大众化。