博舍

人工智能认知分型及演进逻辑 人工智能的认识论问题是什么意思

人工智能认知分型及演进逻辑

从不同人工智能范式模拟了人的不同认知活动这一关联中,我们还可以进一步在人工智能与人的认知之间区分出“同理关系”“同构关系”和“同行关系”等不同的特征,甚至在基于“情感算法”的情感AI成为可能之后,还会形成“同情关系”或“同感关系”。

人的认知中还有情感、意志、直觉、灵感等要素或方面,存在大量基于本能的“凭感觉行事”的现象,这些方面的能力还未能开发出相应的算法(如情感算法、意志算法……),甚至它们能否被算法化都是存疑的,所以至少迄今还未能与某种算法的类型建立起成熟的关联。乐观的看法认为赋予机器情感只是时间问题。如果相应的算法(如“情感算法”)在将来可以开发出来,则将形成的就是人工智能与人的认知之间的“同情”或“同感”、“同意(志)”“同觉”即“同情共感”(sympathy)的关系,这也正是“终极算法”和“超级人工智能”所追求的目标。目前“人工情感”(情感计算、情感智能体)、“人工意志”的研究虽然被评价为并不是真正意义上的情感模拟和意志模拟,但从其字面所表达的含义上,至少隐含着建构人与机器之间可以同情共感的期待。

从前面所介绍的算法演进的大致过程来看,如果将以后可能出现的情感算法也包括在内,就有一个如下的演进链条:传统算法—深度学习算法—强化学习算法—情感算法,它们对应了人工智能的演进链条:符号主义人工智能—联结主义人工智能—行为主义人工智能—(未来的)情感人工智能。与这些范式相对应的则可以归纳并分型出如下的认知类别:推算认知—学习认知—行为认知—本能认知。“推算认知”即人所进行的推理和计算活动,是标准的“理性认识”,也是人所从事的“高级形态”的认知活动,甚至是人所具有的与其他动物区别开来(即所谓“人是理性的动物”)的一种认知能力。这一类型的认知也是既有的哲学认识论中被普遍承认的一种认知类型,因此也是一开始就被符号人工智能认定为代表人类认知的本质从而力求加以模拟的对象。作为人工智能及其算法技术发展的起点,推算认知是最早纳入其视野的认知,它是理性主义视野中唯一被推崇的认知类型,基于它开辟了基于人工智能的认知科学中计算主义、功能主义所贯通的信息加工模式:从普遍性的知识出发,根据严格的规则推演出某种特殊的结论,使得输入在经过程序加工后产生输出。“学习认知”是人在学习过程中进行的认知活动。人具有学会某种知识、形成某种认知能力的智能,这就是学习认知,它尤其指借助符号表征或语言媒介在信息交流中进行的学习,即“以语言为中介,自觉地、积极主动地掌握社会和个体经验的过程”,可简称为“基于表征的学习认知”。“行为认知”是人在从事行动、发生行为时贯穿的认知,它主要是人在行动时应对各种周围环境、调节行为指令的认知活动,也是为了在身体与环境的互动中达到预期目的从而需要对行为逻辑加以理解和运用中形成的“实践知识”或“技能知识”,就是基于身体行为的认知或“具身认知”。“本能认知”是基于遗传、可凭借本能对外界进行反应的认知活动,也是人与生俱来确保自己能够生存下去的“天赋”认知能力(广义地还包括人的“天性”“本性”等),如“直觉”地理解世界的运作模式,像“儿童在早期就可以利用结构化的表征和算法处理对象、集合、位置以及时空连续性等概念。”

四种认知尽管不同,但关联性极强,彼此之间形成从初级到高级的前后相继的阶梯。本能认知是最为基础的认知类型,是一切其他类型认知的“始基”,提供了以后可以形成行为能力、学习能力和推算能力的普适的动作机制、学习机制和计算机制,没有它就没有后面的一切其他认知。它也如同初始条件,可以影响后续各类认知的进行。行为认知是在本能认识基础上衍生的认知类型和认知能力,由它又进一步衍生出基于表征的学习认知和学习能力,所以它既以本能认知为基础,又是学习和推算认知的基础,这也是实践(行)对于认识(知)的基础关系。从行为认知到学习认知,也是从直观认知到符号认知或间接认识的能力提升,使人在不和对象直接交互(行为)时也能认识对象,这是人的认知发展的一次重大飞跃,它使人从只能以实指的方式把握概念到可以用定义(符号界定符号)的方式把握概念,从而使更多无法直观的对象得以认识。基于表征的学习认知对于行为认知和推算认知具有居间性:学习是为了行动,或者说学习包括习得如何行为,如何控制自己的肢体,形成行为方面的默会知识和明言知识;学习也包括推算能力的习得。学习认知可以下沉为感知经验,以便更好地去行动,也可以上升为理性和逻辑能力,以便更好地去进行推算。从总体上四种认知的递进关系是,能推算者必先能学习(通过学习而掌握推算的原理和规则,并掌握熟能生巧的推算技艺),能学习者必先能行动(只有行动中才能取得直接经验,有了直接经验才可能形成间接经验),能行动者必先有生存的本能。

这一认知分型与“感性”和“理性”的分型之间也相互交叉且部分重叠。如果行为认知多属感性认识,推算认知属于理性认识,学习认知则介于两者之间,既有感性也有理性。于是从行为认知经学习认知再到推算认知,也体现出人的认知由初级阶段的感性到高级阶段的理性的提升过程。

基于人工智能范式区分的这种认知分型对于认知外延的覆盖也具有一定程度的全面性。人工智能力求越来越完全地模拟人的智能,在这一历程中所形成的上述演进,也真实地反映了它对人类智能逐渐趋向更多认知类型的覆盖,所以才有了关于人工智能的越来越多的定义,如认为“人工智能是与人类思考方式相似的计算机程序”,“是会学习的计算机程序”,“是根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序”,如此等等。这些定义也反映了三种范式的人工智能所模拟的分别是人的三种类型的认知,这种“分别模拟”不仅缺乏统一的AI范式,而且还未进入对本能认知的模拟,所以还处于“弱人工智能”的阶段。而到了“强人工智能”阶段,不仅需要实现对三种认知模拟的整合,形成统一的人工智能范式,而且还要能够模拟包括情感认知在内的人的本能认知。如果四类认知能够在人工智能中实现融合与会聚,就可以构成具有完整意义的智能:从情感、意志到感知、认知、推理、学习和执行,这也是所谓“通用人工智能”的真实追求所在。还需要指出的是,这种认知分型并不是为了在人的认知类型之间划出不可逾越的鸿沟。实际上它们之间是互相渗透和彼此交织的,还是可以过渡和转化的。

人工智能本身的发展就是一个新的范式不断克服先前范式缺陷的过程,但新的范式同时也形成了新的局限,所以范式间的融合就成为人工智能进一步发展或突破的根本要求。这种融合的可能性,其根基在于它们所模拟的认知类型之间的可融合性。人的认识能力提高的一种普遍路径:认识的各种类型在融会贯通的过程中往往可以生成更高的认知能力,就类似于不同的物种在杂交后有可能形成品性更优良的物种一样。目前人工智能“分而治之”所面临的各自困境,正是它们排他性地秉持单一的认识论理念和方法所致;而要实现AI的纲领融合或算法融合,在基底上还是要寻求一场“认识论革命”,即走向一种可以整合理性主义、经验主义和具身认知的新的认识论。认识论和人工智能的内在关联在此也愈加紧密。人工智能不同流派和算法的融合,也反映了人工智能对人的认知本质的更全面、更完整的把握以及在此基础上的模拟;如果要追求“通用人工智能”,也只能在此基础上去追求。这里同样也展现了人工智能与认识论的互释互惠关系,即:我们将智能或认知的本质在认识论上理解为什么,就会在技术上去追求将人工智能做成什么;而我们实现了什么样的人工智能,则印证了我们对认知本质的相关理解之合理性,所以在一定意义上我们甚至可以说:人工智能就是认识论。

(作者单位:华南理工大学马克思主义学院。原题《人工智能与认识论的哲学互释:从认知分型到演进逻辑》,《中国社会科学》2020年第6期,中国社会科学网阮益嫘/摘)返回搜狐,查看更多

对人工智能的看法

    人工智能是一门研究机器智能和智能机器的新型的、综合性的、具有强大生命力的边缘学科,它研究怎样让计算机或智能机器模仿、延伸和扩展人脑从事推理、规划、计算、思考、学习等思维活动,解决迄今为止需要人类专家才能处理好的复杂问题。

    首先必须要认清楚一点,任何科技的发展都是有两面性的,比如说,医学的发展,解决了很多人的健康问题,以前看不了的病,现在都能看了,但是医学的发展同样会带来很多问题,例如人口暴涨。再比如说汽车的发展会带来交通的遍历,同样每年的车祸数量也会上升等等。

    一方面,我们知道人工智能给人类带来了诸多便利之处,提高了人们的工作效率,减轻了人们的负担。比如物流机器人,拥有AI的机器人具有自主学习能力,通过每天的运行,可以不断进行不同场景的训练,从而拥有越来越强的自主判断能力。在在各个物流场景,AI机器人可以来回穿梭,互不影响,相互协作,无论环境如何变化,机器人们都能通过自己的智慧来从容应对。另一方面,我们又看到了人工智能给我们带来的威胁。特斯拉创始人马斯克曾在社交网上说过一句话:人人都应该关心人工智能安全,它的威胁要比朝鲜核武器大多了。伟大的物理学家霍金也在说人工智能威胁论,足以见得,他对人工智能发展如此迅速,是比较忌惮的。与此同时,马斯克还说到,人工智能是关系人类文明存亡的最大威胁,这是汽车事故、飞机坠毁、滥用药物或劣质食品都比不了的威胁。

    人工智能只是一种技术,就像任何技术一样,可以用来造福人类,也可能带来危害。条件反射式的立法,对于把控人工智能不太可能奏效。我们需要以负责和道德的方式使用人工智能,正如最近全球关于自主武器的讨论取得进展一样,国际社会需要应对解决人工智能带来的挑战。

传统人工智能中的三大问题

基于神经网络和大样本统计规律的深度学习越来越走入瓶颈,人工智能的发展越来越向基于符号推理和因果推理的传统人工智能回归。AI算法工程师不能把眼光仅仅局限在海量样本的统计规律上,而应该学习并掌握基于符号推理和小样本学习的传统人工智能技术。否则,当深度学习的热点一过,你很可能无法适应企业和市场对AI的新的需求。

本文介绍了传统人工智能要解决的三大问题:问题求解、博弈和谓词逻辑。它们都是基于符号推理和白盒推理的。了解相应的解决方案和算法有助于算法工程师开拓眼界,加深对算法本质的理解,增加解决问题、适应未来需求的能力。

1.传统人工智能的三大问题

人工智能包括传统人工智能和现代人工智能两部分。机器学习、深度学习、遗传算法和强化学习是现代人工智能的主要分支。他们主要解决分类、回归、聚类、关联和生成等问题。而传统人工智能主要解决问题求解、博弈和谓词逻辑三大问题。

传统人工智能之所以重要是因为:

传统人工智能的算法比较成熟、可靠、有效。很多能够用传统人工智能解决的问题就不应该使用复杂且成本高昂的现代人工智能方法。比如求上海到北京之间的最短路径问题,用A*算法就要比深度神经元网络高效得多;传统人工智能更基础。很多应用场景中,现代人工智能方法必须在传统人工智能基础上发挥作用。比如战胜围棋世界冠军李世石的AlphaGo其基础部分仍然是博弈算法,而残差神经元网络(深度学习技术之一)只不过在评价棋局优劣时发挥了作用。作为一个算法工程师,如果你只懂深度学习不懂博弈算法,是很难编写出高效的围棋程序的;深度学习是基于黑盒推理的,往往知其然而不知其所以然。也就是说,它能解决问题,但是我们不知道它为什么能解决问题。而传统人工智能的各种算法一般都是基于白盒推理的,知其然更知其所以然;更重要的是,我们不能以“有没有用”为标准来评价传统人工智能。就像数学中某些当时看来“没有用”的理论和方法一样,当它“有用”时你再去研究它就迟了。2.问题求解2.1状态和状态转化

这里的问题是指可以用状态来描述的,且起始状态和终止状态明确的问题。比如,八数码问题的一个可能的起始状态如下图所示:

 在一个3*3的网格中随机放置了1-8八个数码。其中有一个网格是空着的。这个空网格可以跟上下左右四个方向的任何一个临近的数码交换。但不能跟斜方向上的数码交换。比如上图中空网格可以和右边的那个数码3相交换,得到的子状态就是: 

八数码问题就是研究如何用最少的次数移动空网格,从而使得八个数码最终呈现出如下所示的终止状态:

 

2.2搜索树

问题求解的一个最简单的方法就是构造搜索树。方法是:

把初始状态看成是根结点,构成仅含有一个结点的搜索树T;任选T中的一个候选结点a,把它的所有可能的子结点都挂在a之下。这个过程称为对a的扩展。所谓候选结点就是没有被扩展过的结点;不断重复2)直到找到终止状态,或者没有候选结点为止。

下图就是一个搜索树的例子(其中排除了重复的结点)。尽管上述算法并不能保证给出最少移动次数,甚至我们都不能保证它一定能终止(如果我们不排除重复结点的话),但是它仍然给出了问题求解算法的最基本框架。问题求解的各种算法(比如宽度优先、深度优先、爬山法、分支定界法和A*算法等)就是在这个框架基础上按照不同思路进行优化的结果。

比如宽度优先搜索,就是在算法的第2)步选择距离根结点最近的候选结点优先扩展。这个方法找到的第一个解一定也是最优解。所谓解就是从根结点到终止结点的一个路径。

所谓分支定界法就是在找到一个解之后,就把这个解的路径长度与以前找到的解的路径长度相比较,只保留路径短的那个。以后我们在扩展任何一个结点时,都要看看当前路径的长度是否短于解的路径长度。如果回答是“否“,则当前这个结点就没有必要扩展下去了。

至于其他更高明的算法,比如A*,这里就不再赘述。感兴趣的同学请关注方老师博客http://fanglin.blog.csdn.net。

与八数码问题类似的著名问题还有:

华容道问题:见上图,一个4*5的棋盘上有曹操、卒、马云、......大小不同的棋子。4个卒的大小都是1*1,黄忠、赵云、张飞和马超的大小是1*2,关羽的大小是2*1,曹操最大,大小是2*2。棋盘上还有两个1*1的空格以便棋子移动。游戏的目的是把曹操移到下方关口位置处,从而逃出华容道;八皇后问题:在8*8的国际象棋棋盘上(见下图)如何放置八个皇后使得任意两个皇后都不在同一行、同一列或者同一斜线上;求两个城市之间的最短路径问题;背包问题:给定有限个物品以及每个物品的重量以及价值,比如罐头200克6元,手机125克5000元,等等。另外再给你一个最大负重为2000克的背包。问在不超过最大负重的情况下应该在背包中放置哪些物品从而获得最大的价值?路径规划问题,怎样规划一个或者多个快递小哥的路径使得他们跑最少的路把一堆快递送到客户手中。这个问题还可以扩展到物流规划、船舶航运规划上。

 八皇后问题

 解决这些问题的关键在于如何描述问题的状态以及父状态如何生成子状态。比如最短路径问题中,状态就可以用当前所在的城市表示。城市与城市之间有道路直接连通的就可以构成父子状态的转换。由于道路一般是双向的,则父子状态的转换也是双向的。

而背包问题的状态可以用背包里当前所拥有的所有物品的集合表示。所谓子状态就是往父状态背包里添加任意一个不超重的物品构成的。

3.博弈3.1博弈树

我们通常所说的博弈其实是博弈的最简单形式,即信息全透明的封闭环境下的两人零和博弈。围棋、象棋、国际象棋等都是这样的博弈。而扑克、麻将、多人跳棋等就不是。以下除非特指,所谓博弈都是指这种两人零和博弈。

博弈要解决的问题是:当人类棋手下一步棋之后,电脑该如何应对呢?跟搜索树一样,博弈所采用算法也是从当前的根结点出发构建博弈树。以井字棋为例,井字棋是一种两人轮流在一个3*3的棋盘上下棋的游戏。目的是看谁先把自己的棋连成了一行、一列或者一条斜线。与中国的五子棋类似。以下是井字棋博弈树的部分结构:

井字棋的博弈树  

与搜索树不同的是:

博弈树在扩展过程中,是双方轮流下棋的。而搜索树无需这样的考虑;搜索树通常要考虑从根结点到当前结点的耗费,而A*算法甚至还要考虑从当前结点到可能的终止结点的预期耗费。耗费越小越好。而博弈树通常只考虑当前状态对双方的价值。价值越大越好,价值也称为得分。得分可以小于0(这表示对对方有利);由于我们考虑的仅仅是两人零和博弈,所以当一个状态对一方的价值(或者说得分)是v的话,则同一个状态对另一方的价值就是-v;如果某个状态下,当前走棋的一方已经获胜的话(比如井字棋中己方有三个棋子已经连成一条线),则他的得分就是正无穷大或接近无穷大,而另一方的得分就是负无穷大或接近负无穷大;由于结点的数目会呈几何指数增加,所以博弈树和搜索树一样,都要解决组合爆炸问题。3.2简单博弈算法

简单博弈算法主要思想是:

博弈树上所有结点的得分都相对于当前下棋的一方计算。正得分表示对他有利,负得分表示对对方有利;采用深度优先方法扩展候选结点。也就是说,优先扩展离根结点远的结点;为了避免组合爆炸,当博弈树的高度达到一定高度h时,就停止扩展。此时当前结点的得分采用估算法或者深度学习方法获得。这个问题下面还要谈;当一个结点的所有子结点的得分都确定之后,就可以确定该结点的得分。结点的得分总是等于所有子结点得分中最大得分的相反数。比如,假设所有子结点的得分分别是-3,12,7,-10,则当前结点的得分就是-12。这是因为,博弈算法假设对方是理性的,总是会走对他自己最有利的一步棋。而这一步的得分如果是v的话,对当前下棋的一方就是-v。因为是两人零和博弈嘛!有意思的是,这个方法也可以用来计算当前结点的父结点的得分。包括当前结点在内的所有兄弟节点中最大得分的相反数就是父结点的得分。所谓兄弟结点就是父结点相同的结点。这个过程可以不断地向上传播直到根结点;根结点的所有子结点中得分最大的那个就是计算机的解。

假设下图是一个限高4层的博弈树,其中所有叶子结点的得分都已经估算出来了:

 

    博弈树(叶子结点的得分已被估算出来)

我们的问题是:A、B、C三个结点中,电脑会选择哪个下棋呢?我们只需沿着叶子结点向上,一层一层计算各个结点的得分即可。记住:每个非叶子结点的得分等于其所有子结点中最大得分的相反数。下面是计算结果:

从叶子结点出发向上一层层计算得分 

根据上述结果我们显然知道,电脑应该选择结点A作为自己的应对。

3.3估算得分

可能有人会问,我怎么估算结点的得分呢?这要看你们下的是什么棋。如果是井字棋,一般来说正中间的那个位置特别重要,谁占据了那个位置应该给谁高分。给多少分您就自己看着办吧。如果是象棋,可以计算一下双方的剩余棋力,比如“车”给100分,“兵”给1分。然后以双方的棋力差作为得分。这个方法没有考虑棋子的位置。其他棋类游戏都可以以此类推。

值得一提的是,深度学习方法可以在估算得分时发挥重要作用。AlphaGo等就是采用这个方法解决了围棋的组合爆炸问题。由于这个问题比较复杂,并且超出了本文的讨论范围,这里不再赘述。有兴趣的读者可以参考我以后的文章。

3.4Alpha-Beta剪裁

绝大多数博弈游戏都面临组合爆炸问题。即随着结点的指数级扩展,博弈树的规模很快就达到天文数字。围棋的博弈程序就是基于这个原因才长期得不到解决直到引入深度学习方法。

Alpha-Beta剪裁算法可以部分地解决这个问题。它的核心思想就是:如果当前结点的某个兄弟结点的得分是v,则当前结点的所有子结点的得分都必须小于-v。只要其中有一个子结点的得分大于或者等于-v,则当前结点及其以它为根结点的整个子树都可以从博弈树上删除。如下图:

 Alpha-Beta剪裁示例 

假设D的得分是4,E是D的兄弟结点。则E的子结点F和G的得分都必须小于-4。否则就应该把以E为根结点的子树从博弈树上删除。为什么呢?假设F的得分是-3,这意味着E和所有兄弟结点的最大得分至少是-3即:

max_value>=-3

前面我们讲过,E的得分应该等于-max_value。根据上面公式,我们得出E的得分必然小于等于3,从而小于D的得分4。这意味着我们根本就没有必要去扩展E的任何其他子结点了(比如G),因为即使扩展了G,E的得分也不会大于4。这就是Alpha-Beta剪裁的原理!

所以,使用Alpha-Beta剪裁算法时,博弈树的扩展常采用深度优先策略。这不仅更节省空间(因为没有必要保存整棵博弈树,只需把当前路径上的结点保存在一个堆栈中即可),更重要的是,深度优先策略有助于算法快速找到一个叶子结点,从而能把该结点的得分用来对相关结点进行剪裁。

关于Alpha-Beta剪裁的更多细节请关注方老师的博客。我在实践中使用这个方法实现了包括井字棋、五子棋、黑白棋等游戏的开发,证明了它的有效性。

4.谓词逻辑4.1命题、谓词和规则

谓词逻辑主要研究如何进行逻辑推理。逻辑推理的基础是事实和规则。“张三和李四是朋友”,“太阳总是从东方升起”等就是事实。事实在谓词逻辑中是以命题的形式给出的。比如上述两个事实对应的命题分别是:

Is_Friend(“张三”,“李四”)

Rise_From(“Sun”,”Oriental”)

这里Is_Friends和Rise_From就是谓词,双引号扩起来的是字符串型逻辑常量。

规则形如:

If 条件 then 结论

其中条件和结论都是命题。比如:

IfIs_Friend(X,Y)thenIs_Friend(Y,X)

这个规则的含义是:如果X是Y的朋友,那么Y也是X的朋友。言下之意:朋友是相互的,不存在X是Y的朋友而Y却不是X朋友的情况。其中X和Y都是逻辑变量。

4.2逻辑运算和复合命题

两个谓词之间可以用“and”或者“or”连接,分别表示“与”运算和“或”运算。比如,Is_Father(X,Y)andIs_Father(Y,Z)表示X是Y的父亲,Y是Z的父亲。这样由多个命题经过逻辑运算构成的命题称为复合命题。。

第三个逻辑运算是“not”,表示逻辑“非”操作。它是一个一元运算符。含义自明。

这样我们就可以用复合命题构成复杂的规则。比如:

IfIs_Father(X,Y)andIs_Father(Y,Z)thenIs_Grandpa(X,Z)

这个规则的意思是说:如果X是Y的父亲,Y是Z的父亲,则X是Z的爷爷。

4.3自动逻辑推理

当我们把已知的命题和规则罗列在一起时,就能进行逻辑推理。逻辑推理的方法主要有两种,第一种是著名的三段式。比如,所有的猫都是哺乳动物,凯蒂是一只猫,所以凯蒂是哺乳动物。

第二种是利用规则进行反向推导。比如,假设我们想知道Tom的爷爷是谁。这实际上是求解命题Is_Grandpa(X, “Tom”)中X的值。怎么做呢?首先我们可以寻找所有结论是谓词Is_Grandpa的规则,这样的规则目前只有一条那就是:

IfIs_Father(X,Y)andIs_Father(Y,Z)thenIs_Grandpa(X,Z)

然后把Z=“Tom”代入其条件部分,则原命题Is_Grandpa(X, “Tom”)被替换为求解两个命题:

Is_Father(X,Y)andIs_Father(Y,“Tom”)

而求解这两个命题的方法是递归地调用上述步骤,直到所有命题都可以用三段式解决为止。

我们可以开发一个系统自动完成上述推理过程,这就是自动推理系统。事实上逻辑程序设计语言Prolog就是干这事的。如果你想自己开发一个这样的自动逻辑推理系统,你一定要注意:满足当前命题的规则可能不止一个,你应该在找到第一个答案前把所有可能的路径都走一遍而不是一旦一条路径走不通就下结论说原命题不成立。

递归显然不能满足这个要求,所以自动推理系统通常采用的是回溯法。如果你对如何构建自动推理系统感兴趣,请关注我以后的文章。

4.4高阶谓词逻辑

我们前面所说的谓词逻辑实际是一阶谓词逻辑,也就是说,谓词的参数要么是变量,要么是常量。如果谓词的参数也是谓词,则这样的谓词就是二阶谓词。这已经超出了本文的讨论范围,本文不再赘述。

4.5谓词逻辑的应用

谓词逻辑特别适合构建基于规则的专家系统、决策支持系统和规则系统。这与深度学习基于大量样本的黑盒推理完全不同。深度学习是从特殊(的样本)出发归纳出一般性的结论,谓词逻辑则是从一般性的规则出发推导出特殊情况下的结论,这是两个截然相反的过程。人脑就是这两个过程的完美结合体。

5.结束语

本文简单介绍了传统人工智能的问题求解、博弈和谓词逻辑,目的是帮助非计算机专业的算法工程师开拓眼界增加认知的。要想了解更多的详情还需要你系统学习《人工智能》课程,或者关注我的博客。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇