博舍

预见2023:《2023年中国人工智能行业全景图谱》(附市场现状、竞争格局和发展趋势等) 中国人工智能产品有哪些公司

预见2023:《2023年中国人工智能行业全景图谱》(附市场现状、竞争格局和发展趋势等)

当前位置:前瞻产业研究院»经济学人»研究员专栏预见2021:《2021年中国人工智能行业全景图谱》(附市场现状、竞争格局和发展趋势等)UVc分享到:朱茜•2021-08-0310:20:36来源:前瞻产业研究院E17250G02023-2028年中国人工智能行业发展前景预测与投资战略规划分析报告2023-2028年全球人工智能芯片(AI芯片)行业市场调研与发展前景研究报告2023-2028年中国大数据产业发展前景与投资战略规划分析报告2023-2028年中国云计算产业发展前景预测与投资战略规划分析报告2023-2028年中国生物识别技术行业市场调研与投资预测分析报告

人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。

本文核心数据:人工智能分类,人工智能行业产业链,人工智能行业全景图谱,中国人工智能发展历程,人工智能行业重点方向变化,工智能企业核心技术分布情况,中国人工智能市场规模,中国人工智能市场应用份额,人工智能在各行业中的应用情况,中国人工智能行业投融资情况,中国人工智能行业投融资轮次分布,人工智能各技术方向岗位人才供需,人工智能本科新专业高校名单,人工智能科技产业中国城市竞争力,工智能行业代表性企业区域,中国人工智能行业投融资事件数量地区分布,中国人工智能行业竞争派系,人工智能发展趋势,中国人工智能产业规模预测,中国新一代人工智能创新发展区数量

行业概况

1、定义

人工智能作为一门前沿交叉学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,将其视为计算机科学的一个分支,指出其研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能行业属于战略新兴产业,根据国家发展改革委发布的《战略性新兴产业重点产品和服务指导目录(2016)》来看,我国人工智能可分为三个下属行业,分别为人工智能软件开发、人工智能消费相关设备制造和人工智能系统服务。

2、产业链剖析:产业链涵盖行业庞大

人工智能产业链包括三层:基础层、技术层和应用层。其中,基础层是人工智能产业的基础,主要是包括AI芯片等硬件设施及云计算等服务平台的基础设施、数据资源,为人工智能提供数据服务和算力支撑;技术层是人工智能产业的核心,以模拟人的智能相关特征为出发点,构建技术路径;应用层是人工智能产业的延伸,集成一类或多类人工智能基础应用技术,面向特定应用场景需求而形成软硬件产品或解决方案。

行业发展历程:行业处在突飞猛进阶段

人工智能概念的提出始于1956年的美国达特茅斯会议。人工智能至今已经有60多年的发展历史,从诞生至今经历了三次发展浪潮。分别是1956-1970年、1980-1990年和2000年至今。

1959年ArthurSamuel提出了机器学习,推动人工智能进入第一个发展高潮期。此后70年代末期出现了专家系统,标志着人工智能从理论研究走向实际应用。

80年代到90年代随着美国和日本立项支持人工智能研究,人工智能进入第二个发展高潮期,期间人工智能相关的数学模型取得了一系列重大突破,如著名的多层神经网络、BP反向传播算法等,算法模型准确度和专家系统进一步提升。期间,研究者专门设计了LISP语言与LISP计算机,最终由于成本高、难维护导致失败。1997年,IBM深蓝战胜了国际象棋世界冠军GarryKasparov,是一个里程碑意义的事件。

当前人工智能处于第三个发展高潮期,得益于算法、数据和算力三方面共同的进展。2006年加拿大Hinton教授提出了深度学习的概念,极大地发展了人工神经网络算法,提高了机器自学习的能力,随后以深度学习、强化学习为代表的算法研究的突破,算法模型持续优化,极大地提升了人工智能应用的准确性,如语音识别和图像识别等。随着互联网和移动互联的普及,全球网络数据量急剧增加,海量数据为人工智能大发展提供了良好的土壤。大数据、云计算等信息技术的快速发展,GPU、NPU、FPGA等各种人工智能专用计算芯片的应用,极大地提升了机器处理海量视频、图像等的计算能力。在算法、算力和数据能力不断提升的情况下,人工智能技术快速发展。

行业政策背景:行业发展从技术过渡到产业融合

2017年之前,人工智能相关政策主要集中在人工智能技术研发突破方面。从2017年开始,政策的重点已经从人工智能技术转向技术和产业的深度融合,特别是2017年7月国务院印发的《新一代人工智能发展规划》明确指出要“加快人工智能深度应用”。

从2018年两会发言的不完全汇总也可以看出,人工智能+产业的融合将是未来的重点,包括科技部、工信部、民政部等官方部门和百度、腾讯、联想等民间代表,均提出了人工智能+产业、人工智能+医疗等。

2019年,两会更是将“智能+”写入政府工作报告,人工智能技术对于社会的赋能被给予最高层次的期待。在工业经济由数量和规模扩张向质量和效益提升转变的关键期,“智能+”的理念给人工智能等数字技术提供了最广阔的落地空间和回报想象。通过智能化手段把传统工业生产的全链条要素打通,可以更好地推动制造业的数字化、网络化和智能化转型,更能反向助推技术自身的迭代和进步。

2020年,明确人工智能作为“新基建”建设重要一环,“十四五”指出要推动互联网、大数据、人工智能等同各产业深度融合。并且各省市也在大力推动人工智能与产业融合,打造应用场景,示范项目。

行业发展现状

1、大数据和云计算为占比最高的核心技术

从人工智能企业核心技术分布看,大数据和云计算占比最高,达到41.13%;其次是硬件、机器学习和推荐、服务机器人,占比分别为7.64%,6.81%,5.64%;物联网、工业机器人、语音识别和自然语言处理分别占比5.55%,5.47%,4.76%。

2、行业呈现快速增长趋势

2017年7月,国务院印发了《新一代人工智能发展规划》,将人工智能上升到国家战略层面,受益于国家政策的大力支持,以及资本和人才的驱动,我国人工智能行业的发展走在了世界前列。初步估计,2020年中国人工智能行业市场规模约为1858.2亿元。

3、下游应用主要集中在政府城市治理和运营

2020年,中国人工智能市场主要客户来自政府城市治理和运营(公安、交警、司法、城市运营、政务、交运管理、国土资源、监所、环保等),应用占比达到49%,互联网与金融行业紧随其后,占比分别为18%和12%。

企业和政府对人工智能的应用逐渐升温。在决定企业产生经济效益的各个环节,都已能够看到人工智能的身影:AI核身帮助人们安全生活、远程交易、便捷通行;深度学习和知识图谱帮助企业在生产过程中分析预测、科学决策;人机对话提升了拜访登记、服务响应中的用户体验。

人工智能将催生新技术、新产品、新产业、新业态、新模式,实现社会生产力的整体跃升,推动社会进入智能经济时代。前瞻估算,目前中国大型企业基本都已在持续规划投入实施人工智能项目,而全部规上企业中约有超过10%的企业已将人工智能与其主营业务结合,实现产业地位提高或经营效益优化。

3、资本更倾向于人工智能企业的早期投资

2014-2020年,中国人工智能行业总计共有4796起投融资事件发生,总计融资金额为7685.39亿元。其中2014-2018年在融资事件及融资规模上呈现持续增长态势,2018年融资金额达1482.46亿元,融资事件965起。

2019-2020年,我国人工智能行业市场相较之前冷静不少,融资事件有所下降但是融资规模有所上升。2020年,我国人工智能行业投融资事件发生723起,总金额达1468.37亿元。2021年1-7月,共有融资事件506起,融资金额达到1839.92亿元,融资金额已经超过2020年总金额。

注:2021年数据截至7月27日。

从我国人工智能行业融资轮次分布情况来看,由于初创型企业融资金额与估值相对较合理,泡沫较小,因此对资本更倾向于人工智能企业的早期投资,2014-2019年,人工智能行业天使轮和A轮占比最高。

随着人工智能市场板块的逐渐成熟,早期的投资占比逐渐降低,人工智能投资轮次逐渐后移。2020年,A轮占比为42.20%,B轮则上升至20.22%,天使轮占比下降至9.23%。

注:2021年数据截至7月27日。

4、技术方面人才不足,高校开设相关专业

根据工信部发布的相关数据,人工智能不同技术方向岗位的人才供需比均低于0.4,说明该技术方向的人才供应严重不足。从细分行业来看,智能语音和计算机视觉的岗位人才供需比分别为0.08、0.09,相关人才极度稀缺。

注:岗位人才供需比=意向进入岗位的人才数量/岗位数量。

相对国外,我国高校人工智能培育起步较晚,但近年来我国人工智能学科和专业加快推进,多层次人工智能人才培养体系逐渐形成。2018年4月,教育部发布的《高等学校人工智能创新行动计划》提出,到2020年建立50家人工智能学院、研究院或交叉研究中心。

2019年,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,全国共有35所高校获首批建设“人工智能”本科专业资格。

行业竞争格局

1、区域竞争:北京人工智能竞争能力遥遥领先

从1990年至今,我国人工智能产业发展的城市格局几经变化,目前北京、上海、深圳、杭州等城市表现稳定,这些城市都将电子信息产业作为支柱产业之一,在互联网业发展中也排名靠前。这些城市均强化科研与人才优势、加速补充完善人工智能自身及面向行业落地的产业链、建设示范性智能应用场景、前瞻性布局人工智能相关标准体系、推动公共资源共享、提升城市环境与宜居性、支持系统性超前研发布局等措施将成为城市把握人工智能发展重大历史机遇的谋划方向。

其中北京在我国人工智能科技产业城市竞争力评价指数排名中以80.3遥遥领先于其他城市。排名第二的上海指数为30.5,其次是深圳和杭州分别为28.6和22.4.

从人工智能行业代表性企业的所属地分布来看,北京、深圳市人工智能代表性企业的集中地。同时北京也是2020年人工智能行业投融资事件数量最多的区域。2020年,北京、上海、广东三地聚集了全国74.29%的人工智能投融资事件数量,其中北京占比32.53%,上海占比21.76%,广东占比20%。浙江和江苏则紧随其后,分别占比7.91%和7.25%。

其中以城市据点来看,北京、深圳、上海、杭州四座国内一线城市已成为了我国人工智能行业发展的着力点,以点带面地带动京津冀发展区、粤港澳大湾区、长三角经济区的人工智能技术崛起,并覆盖全国。

2、企业竞争:参与者众多,主要分为三个派系

从企业的竞争来看,我国人工智能企业主要可以分为三个派系,分别是头部平台代表企业、融合产业活跃企业、技术层面代表企业。

人工智能平台的代表性企业主要有百度、阿里云、腾讯、华为、京东和科大讯飞为;而小米、平安科技、苏宁、滴滴是融合产业较活跃的企业;技术层企业代表有商汤科技、旷视科技、云从科技和依图科技作为独角兽公司。

从人工智能企业的核心技术布局来看,百度、腾讯、阿里云、华为等头部平台企业已布局了多项AI技术;而像平安科技、京东、小米等融合性公司,其技术布局主要针对应用层,针对性较强。

从专利授权量来看,截至2020年10月,百度、华为、腾讯的AI专利授权量分别排名全国前三,说明这三家公司的技术研发能力较强。

行业发展前景及趋势预测

1、“十四五”建设继续推进,高质量、现代化、智能化发展

近年来,人工智能在经济发展、社会进步、国际政治经济格局等方面已经产生重大而深远的影响。《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》对"十四五"及未来十余年我国人工智能的发展目标、核心技术突破、智能化转型与应用,以及保障措施等多个方面都作出了部署。

2、核心产业规模达到4000亿,布局建设20个试验区

根据《新一代人工智能发展规划》,到2025年,我国人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展,人工智能核心产业规模将超过4000亿元,带动相关产业规模超过5万亿元;到2030年,我国人工智能理论、技术与应用总体达到世界领先水平。

此外,为加快落实《国务院关于印发新一代人工智能发展规划的通知》,科技部于2019年8月印发《国家新一代人工智能创新发展试验区建设工作指引》,旨在有序推动国家新一代人工智能创新发展试验区建设。截至2021年3月末,我国已有14个市+1个县获批建设试验区;至2023年,试验区数量预计将达20个左右。

以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,同时前瞻产业研究院还提供产业大数据、产业研究、产业链咨询、产业图谱、产业规划、园区规划、产业招商引资、IPO募投可研、招股说明书撰写等解决方案。

更多深度行业分析尽在【前瞻经济学人APP】,还可以与500+经济学家/资深行业研究员交流互动。

前瞻产业研究院-深度报告REPORTS2023-2028年中国人工智能行业发展前景预测与投资战略规划分析报告

本报告前瞻性、适时性地对人工智能行业的发展背景、供需情况、市场规模、竞争格局等行业现状进行分析,并结合多年来人工智能行业发展轨迹及实践经验,对人工智能行业未来...

查看详情

本文来源前瞻产业研究院,内容仅代表作者个人观点,本站只提供参考并不构成任何投资及应用建议。(若存在内容、版权或其它问题,请联系:service@qianzhan.com)品牌合作与广告投放请联系:0755-33015062或hezuo@qianzhan.com

在招股说明书、公司年度报告等任何公开信息披露中引用本篇文章内容,需要获取前瞻产业研究院的正规授权。如有IPO业务合作需求请直接联系前瞻产业研究院IPO团队,联系方式:400-068-7188。

p26q0我要投稿

UVc分享:标签:人工智能全景图谱市场现状发展趋势人工智能行业

品牌、内容合作请点这里:寻求合作››

产业规划

园区规划

产业招商

可行性研究

碳中和

市场调研

IPO咨询

前瞻经济学人专注于中国各行业市场分析、未来发展趋势等。扫一扫立即关注。

前瞻产业研究院中国产业咨询领导者,专业提供产业规划、产业申报、产业升级转型、产业园区规划、可行性报告等领域解决方案,扫一扫关注。相关阅读RELEVANT

预见2023:《2023年中国光电子器件行业全景图谱》(附市场现状、竞争格局和发展趋势等)

预见2023:《2023年中国人工智能芯片行业全景图谱》(附市场规模、竞争格局和发展前景等)

预见2023:《2023年中国公路养护行业全景图谱》(附市场现状、竞争格局和发展趋势等)

预见2023:《2023年中国特种油品行业全景图谱》(附市场现状、产业链和发展趋势等)

预见2023:《2023年中国塔吊行业全景图谱》(附市场现状、竞争格局和发展趋势等)

预见2023:《2023年中国钻石行业全景图谱》(附市场现状、竞争格局和发展趋势等)

2023年中国人工智能产业及其重点企业分析(阿里巴巴、百度、腾讯、科大讯飞)[图]

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

一、人工智能产业发展现状

目前,Al领域已有十余种行业技术,主要包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。其中“计算机视觉、智能语音、自然语言处理”是三大主要方向。

计算机视觉、智能语音、自然语言处理分析

资料来源:智研咨询整理

2000年以来,受“互联网+”、大数据战略、数字经济等国家政策的指引,云计算、移动互联网、物联网、大数据等快速发展的驱动,以及边缘计算、工业互联网、超高清视频、VR/AR等场景的应用,我国积累了海量数据资源。2021年中国人工智能核心产业规模为1300亿元,同比2020年增加了38.90%。

2018-2022年我国人工智能核心产业规模及增速

资料来源:中国电子学会、《人工智能发展蓝皮书》、智研咨询整理

我国人工智能在国家战略层面上越来越强调系统、综合布局。在计算机视觉、深度学习等核心技术走向成熟的同时,自主无人系统、智能芯片、脑机接口、知识图谱等新兴技术不断创新突破。

2021年中国AI企业人工智能技术领域占比

资料来源:公开资料整理

二、人工智能产业重点企业分析

随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。2017-2018年,科技部等多部门经充分调研和论证,确定了五大国家新一代人工智能开放创新平台:分别依托百度、阿里云、腾讯、科大讯飞公司、商汤集团,建设自动驾驶、城市大脑、医疗影像、智能语音、智能视觉人工智能开放创新平台,并科技部、发改委、财政部、教育部、工信部、中科院等15个部门构成的新一代人工智能发展规划推进办公室来推进项目、基地、人才的统筹布局。这批“国家队”开放创新平台将在四个方面发挥核心使命,包括建立人工智能国际化人才体系并培养国化人才,通过人工智能赋能,创造以众创空间、孵化器为代表的大众创业、万众创新的生态环境等。

阿里巴巴、百度、腾讯、科大讯飞的基本情况对比分析

注:汇率按6.3713:1计算资料来源:企查查、智研咨询整理

从人工智能战略布局方面看,阿里巴巴主要集中在:健康医疗、企业服务、语音交互、AI视频服务、AI视觉、智能硬件、智能汽车、人脸识别、AI光场、AI平台、AI芯片、机器人、智能家电等方面。百度主要集中在:智能芯片、医疗健康、教育、硬件、企业服务、金融、智能硬件、自动驾驶雷达、机器人、AI医疗、医药研发、AI光学芯片、智能家居、智能投顾、自动驾驶、智能汽车、语音交互、AI平台、机器学习营销、汽车交通、金融科技等方面。腾讯主要集中在:行业知识图谱、自动驾驶、计算机视觉、大数据服务、语音识别、智慧医疗、智慧金融、芯片、机器人、智能家居、医药研发、智能安全、智能汽车、智能医疗、数据服务、Al创业孵化器、智能驾驶、智能可穿戴设备等方面。科大讯飞主要集中在:机器人、教育、医疗健康、产业服务、文化、金融、Al芯片、汽车交通等方面。

阿里巴巴、百度、腾讯、科大讯飞在人工智能战略布局方面对比分析

资料来源:公开资料整理

从营业收入看,2020年阿里云计算服务类的营业收入为400.16亿元,百度相关业务营业收入为63.2亿元,腾讯金融科技的营业收入为212.22亿元,科大讯飞的营业收入为130.25亿元。

2020年相关业务营业收入对比分析(亿元)

资料来源:企业年报、智研咨询整理

三、综合分析

人工智能是一个很宽泛的概念,概括而言是对人的意识和思维过程的模拟,利用机器学习和数据分析方法赋予机器类人的能力。人工智能将提升社会劳动生产率,特别是在有效降低劳动成本、优化产品和服务、创造新市场和就业等方面为人类的生产和生活带来革命性的转变。总体来看,阿里巴巴、百度、

腾讯、科大讯飞在人工智能各有优势。

资料来源:智研咨询整理

行业深度!2023年中国人工智能行业竞争格局及市场份额分析 百度依然蝉联龙头地位

1、中国人工智能行业竞争梯队:三大竞争派系

人工智能是引领未来的战略性技术,也成为了国际竞争的焦点。目前,我国人工智能企业数量较多,据中国新一代人工智能发展战略研究院于2020年6月公布的统计数据显示,截至2019年,我国共有797家人工智能企业,约占全球人工智能企业总数的14.8%,仅次于排名第一的美国。以下为我国人工智能行业代表性企业的基本信息:

从竞争派系来看,目前百度、阿里云、腾讯、华为、京东和科达讯飞为人工智能平台的代表性企业;而小米、平安科技、苏宁、滴滴是融合产业较活跃的企业;此外还有技术层企业代表,商汤科技、旷视科技、云从科技和依图科技作为独角兽公司,通过与传统行业的龙头企业合作,不断深化了其技术应用面和市场竞争力。

从人工智能行业代表性企业的所属地分布来看,北京、深圳市人工智能代表性企业的集中地。

2、中国人工智能行业企业排名:百度依然蝉联龙头地位

据中国科学院大数据挖掘与知识管理重点实验室公布的“2019年全球人工智能企业TOP20榜单”中,中国有7家企业上榜,其中,百度、大疆创新和商汤科技排名前三;同时,根据《互联网周刊》发布的2020年人工智能企业百强榜,百度依然蝉联龙头地位。

此外,截至2020年末,科技部为加快实施新一代人工智能重大科技项目,尽快在基础前沿领域取得突破,共宣布了15家国家新一代人工智能开放创新平台,这15个创新平台分别依托15家业内领先的人工智能企业,具体如下:

3、中国人工智能行业区域集中度:行业发展较为密集

从人工智能企业的区域集中度来看,截至2019年末,北京市、广东省、上海市和浙江省的人工智能企业数量合计占全国总数的83%,说明我国人工智能企业的分布是较为集中的,行业发展较为密集。

4、中国人工智能行业企业布局及竞争力评价

从人工智能企业的核心技术布局来看,百度、腾讯、阿里云、华为等头部平台企业已布局了多项AI技术;而像平安科技、京东、小米等融合性公司,其技术布局主要针对应用层,针对性较强。

从专利授权量来看,截至2020年10月,百度、华为、腾讯的AI专利授权量分别排名全国前三,说明这三家公司的技术研发能力较强;再从企业拥有的高层次学者数量来看,根据清华大学人工智能研究院公布的《人工智能发展报告2011-2020》,京东、阿里巴巴和华为的人工智能高层次学者拥有量入围全国前十位,是企业人力资源竞争力的体现。

5、中国人工智能行业竞争状态总结

从五力竞争模型角度分析,由于目前,我国人工智能行业的竞争者较多,企业数量已排名全球第二位,且行业还处于成长期,现有企业间的竞争较为激烈;

人工智能作为新一轮产业变革的核心驱动力,替代品威胁极小;

人工智能行业的上游供应商可概括为基础层,包括AI芯片、传感器等行业,由于技术门槛较高,且国内厂商的技术水平还有待提升,上游的议价能力是较强的;

下游消费市场主要是应用层,由于人工智能与传统产业、新兴产业融合已成为趋势,因此下游的议价能力较弱;此外,由于人工智能行业是技术密集型、资金密集型和高端人才密集型行业,进入门槛较高,因此面临的新进入者威胁较小。

更多行业相关数据及分析请参考于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,同时前瞻产业研究院还提供产业大数据、产业研究、产业链咨询、产业图谱、产业规划、园区规划、产业招商引资、IPO募投可研、招股说明书撰写等解决方案。

2023年中国人工智能产业链上中下游市场分析(附产业链全景图)

中商情报网讯:人工智能即AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。近些年来,人工智能厚积薄发,在全球范围内掀起了科技企业竞争的风潮,受到了各界的关注。

一、市场规模

随着人工智能市场的不断发展,人工智能操作系统融合核心人工智能技术与计算数据能力,为人工智能产业提供智力、计算和数据资源支撑,在产业中实现终端设备、数据与应用的全面连接,是人工智能的生态大脑和能力输出的基础,在人工智能生态体系构建中占据入口的核心价值。人工智能操作系统通过开放AI大规模输出,大幅提升专家、普通从业者、行业管理者的生产效率与产品品质,具有巨大商业价值和市场空间。中国人工智能产业将迎来新一轮的增长点,新技术的引入让更多的创新应用成为可能,预计到2021年,中国人工智能产业规模达到2035.6亿元,增长率为28.8%。

数据来源:中商产业研究院整理

二、产业链

人工智能产业链核心,即基础技术、人工智能技术及人工智能应用。在基础技术方面,大数据管理和云计算技术得到广泛的运用,为人工智能技术的实现和人工智能应用的落地提供基础的后台保障,是一切人工智能应用得以实现的大前提。人工智能技术,目前主要聚焦在人机交互、计算机视觉、深度学习领域。人工智能应用聚焦在智能语音、智能医疗、机器人、智能家居、汽车电子等领域,当前正处于由专业应用向通用应用过度的发展阶段。

                         中国人工智能产业链图谱

资料来源:中商产业研究院整理

中国人工智能上市公司有哪些,人工智能上市公司一览

三、四维图新:在车载前装地图及动态交通信息服务一直处于领先地位,且目前已初步具备“高精度地图+芯片+算法+系统平台”核心能力,战略布局全面。是国内第一个实现精度达20cm的ADAS地图的商业化的公司,同时也是全球第三家、中国第一家通过TS16949(国际汽车工业质量管理体系)认证的导航地图企业。

四、华宇软件:业务范围涵盖法院、检察院、司法行政、食品安全、各级党委和政府部门以及各行业大型企事业单位;服务内容覆盖信息系统的全生命周期。在公司法院业务领域下的法庭业务线下的某些产品上和科大讯飞的智慧法院存在竞争关系。

五、东方网力:为行业用户、运营商和企业用户提供全面的视频监控应用解决方案和高品质视频存储产品,并通过领先的视频中间件技术,为城市反恐应急、互联网、智慧城市、平安城市、移动互联网提供视频应用支撑。2015年9月与商汤科技共同投资设立深圳市深网视界科技有限公司。

六、佳都科技:人脸识别技术和产品近几年发展迅速,但国际国内人脸识别算法评价体系不健全,而针对不同应用场景下的识别算法指标不具备可比性。基于深度学习人脸识别算法的公司,除了公司参股子公司云从科技外,还包括北京市商汤科技开发有限公司、北京旷视科技有限公司、上海依图网络科技有限公司等。全球范围内,提供人脸识别算法的厂家主要有NEC、Cognite(科理达)、Morpho、Neurotec等。

七、神州泰岳:公司目前已确立4大业务板块,即ICT运营管理、手游、人工智能与大数据、物联网通讯技术。自然语言处理作为公司人工智能的核心能力,未来公司将集中内外优秀资源,着力打造泰岳“认知+”的人工智能品牌,致力于成为中国乃至全球范围的人工智能自然语言语义理解第一品牌。

八、金溢科技:人工智能是智能交通技术发展的趋势之一,公司重视并已开展人工智能技术在智能交通领域的应用研究。如正在开发的基于视频流的智能车辆检测设备,将使用机器学习与人工智能方法,进行有无车辆状态及部分违停状态的自动识别。

九、熙菱信息:熙菱魔力眼智慧安防系列产品融合智能图像及大数据分析技术,应用包括视频联网、视频解析、人像识别,大数据建模分析等技术,助力公安实战,取得积极战果。

十、卓翼科技:逐步推行人工智能在生产过程中的应用,建设智慧型工厂,自研并应用了网络监控设备、生产测试设备等自动化设备,提高了生产效率、节约了人力成本。

十一、拓斯达:注重多关节机器人领域,目前重点专注于工业机器人方向。

十二、京东方A:为信息交互和人类健康提供智慧端口产品和专业服务的物联网公司,致力打造“芯屏气/器和”的物联网新生态,主要专注三件事:第一,不断提升新型显示技术和薄膜传感器技术,为互联网终端设备客户提供最佳人机交互产品和服务。第二,不断提升智能制造服务、智慧零售解决方案、智慧车联和智慧能源的核心能力,深化与各细分行业伙伴合作,拓展新应用。第三,将显示、传感、人工智能和大数据等技术与医学、生命科学跨界融合。

十三、欧比特:在人工智能领域公司目前主要布局的是通过融合公司现有的SOC、SIP、图像处理、工业控制、软件设计、系统集成等技术,组建团队,深入探讨嵌入式人脸识别模块、嵌入式行为识别模块、嵌入式机器人视觉系统SLAM模块、飞行器飞控系统模块、飞行器视频拼接模块、飞行器三维图像重建模块等人工智能模块产品开发的可行性,迅速形成方案,开展研制。

十四、东方国信:目前已经成功发布行云生态技术体系,行云生态可以为人工智能的实现,提供全结构化数据采集解析、大数据的高效存储计算、非结构化图像数据算法分析、复杂算法模型设计、云化资源管理等核心能力,已经具备实现人工智能在无人汽车方面的核心技术的基础研发实力,东方国信目前将人工智能技术主要注入在可快速落地的领域,如工业领域、国家安全领域、环境保护领域、农业领域、大数据分析运营领域等。

十五、科大智能:携手复旦大学类脑智能科学与技术研究院共建复旦-科大智能智能机器人联合实验室。积极推动科研项目产业化的落地,实现“人工智能+健康”的战略布局。

十六、久其软件:数字法庭产品在该领域占有过半市场,在以裁判文书自动生成为核心的人工智能领域取得了突破和领先。

十七、埃斯顿:研发协作机器人及移动平台机器人;智能制造系统将重点研发如何实现机器人、自动化与信息化的有效连接,构成工业互联网系统的技术,从而实现通过对工业数据的全面深度感知、实时动态采集与分析,形成智能决策与控制,实现生产系统的智能化目标。

十八、和而泰:研发与家庭生活相关的设备与产品,通过信息传感技术、电子技术、通讯技术、智能控制技术,增加数据获取与数据通讯功能,实现传统产品的智能化升级,并将设备运行数据、操作与控制数据等海量大数据直接传送到云平台,通过大数据平台取得的设备场景、自然环境、人体健康生命体征三类数据,经过数据建模、定义、分析等人工智能(AI)计算及有效融合,服务家庭、服务制造业及服务业等各产业。返回搜狐,查看更多

黄金新十年来临,人工智能面临哪些机遇与挑战

原标题:黄金新十年来临,人工智能面临哪些机遇与挑战?

编者按:本文系专栏作者投稿,作者智能相对论。

3月11日,全国两会闭幕,“人工智能”依然是热议话题,不过今年意义却大不一样,十三届全国人大四次会议表决通过十四五规划纲要,智能经济被寄予厚望。2021年很可能会是智能经济的一道分水岭。

2021年,智能经济分水岭

自2016年以来,两会上关于人工智能的声音就越来越多。2017年两会上,百度CEO李彦宏提交的三份提案就均与AI相关,科大讯飞CEO董事长刘庆峰则提议将“智能+”上升为国家战略……今年两会上“人工智能”依然是高频词汇。

李彦宏提交的5份提案涉及自动驾驶和智能交通、智慧养老进社区等方面,均与AI相关;联想杨元庆则提出“新IT”即IntelligentTransformation(智能转型)的概念;小米雷军的建议涉及智能制造等三个方面;360周鸿祎则建议要尽快加强智能汽车网络安全……

在两会上被表决通过的十四五规划纲要中,“科技”出现36次,“数字”出现17次,“智能”出现7次。“加快数字发展”与“发展战略性新兴产业”均拥有自己的独立篇章。

规划纲要指出:“发展数字经济,推进数字产业化和产业数字化,推动数字经济和实体经济深度融合,打造具有国际竞争力的数字产业集群。加强数字社会、数字政府建设,提升公共服务、社会治理等数字化智能化水平。”

规划纲要明确要“推动互联网、大数据、人工智能等同各产业深度融合,推动先进制造业集群发展,构建一批各具特色、优势互补、结构合理的战略性新兴产业增长引擎,培育新技术、新产品、新业态、新模式。”

今年两会上,代表们都在强调两个字:“应用”,更关注AI在产业经济、社会民生与城市治理等领域的落地。十四五规划纲要指出要大力发展智能经济,2021年是十四五开局年,对中国人工智能产业来说,也将是至关重要的年份。

“十三五”期间,我国全社会研发经费支出从1.42万亿元增至2.21万亿元,着力加强基础研究和关键核心技术攻关,科技实力进一步增强。人工智能是我国科技自主创新的关键领域之一,我国AI产业取得了全球瞩目的成就,人才、算法、算力等基础已完善。

2020年疫情不约而至,AI在防疫中贡献了力量,全社会对智能化达成高度共识。疫情期间我国提出“新基建”战略,人工智能是其重要组成部分之一。已经结束的地方两会也表明,全国多地正加速建设数字经济、发展人工智能产业、加快产业智能化升级。

天时地利人和,2021年人工智能将从小范围应用走向大规模落地。

新十年,智能经济面临哪些新机遇?

1、AI基础技术进一步突破。

AI经历“革命性十年”的大发展,底层算法以深度学习为核心。随着AI的大规模应用,AI技术已出现瓶颈。科学家与工程师们在现有技术框架下克服瓶颈,但却很难将其消除。算法层面,人工智能目前处于初级阶段,从被动感知向主动感知、认知和决策还需要技术全面提升;算力层面,人工智能对计算提出更高要求,当前的计算体系在成本、性能与能耗上均不堪重负。

新十年,AI基础技术或再度跃迁。递归神经网络LSTM之父JürgenSchmidhuber在2020年就曾撰文指出,自然语言处理(NLP)、计算机视觉与强化学习是AI前十年的技术主线,下一个十年,量子计算、无监督学习、浅层学习网络与算力vs深度学习进展,被寄予厚望。量子计算如果能够取得突破性进展,AI将是另外一番景象:“自1975年摩尔定律提出以来一直颠扑不破,但近10年来我们的发展慢了下来。因此,很多人相信技术进步即将到来,很可能就是我们前文讨论的量子计算。这将有助于推动深度学习的重大进步。”

我国已在战略布局下一代AI技术。十四五规划纲要指出,要瞄准人工智能、量子信息、集成电路、生命健康、脑科学、生物育种、空天科技、深地深海等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。

2、智能云将成社会“水电煤”。

越来越多企业意识到AI价值,然而AI技术门槛颇高,企业自行研发并不现实,也无必要。基于“云服务”模式,企业可快速基于云端AI技术能力开发AI应用。

2020年底,IDC报告预测到2021年至少有65%的中国1000强企业将利用自然语言处理、机器学习和深度学习等AI工具,赋能60%在客户体验、安全、运营管理和采购等业务领域的用例。IDC在《中国人工智能云服务市场研究报告(2020H1)》报告中指出,企业智能化转型是驱动AICloud市场规模增长的重要因素,AI云服务厂商在整体AI软件及应用市场中将获得越来越高的市场份额。云计算巨头纷纷在名字中加入“智能”背后,反映出它们对AI云服务的日益重视。

前十年,云计算是社会数字化基础设施;新十年,AI将成为云计算市场的一大增量,智能云则将成为智能社会的水电煤。

3、服务机器人迎来黄金发展期。

前十年,大规模爆发的AI应用却不多。在消费市场,智能音箱、智能汽车、智能家居等少数产品实现智能化并大规模销售;在行业市场,在防疫、教育、金融、物流等少数行业,AI开始逐步应用。

新十年有望爆发式增长的AI应用则是服务机器人。服务机器人是指除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,主要包括个人/家庭用服务机器人和公共服务机器人。

人口老龄化加剧、劳动力成本上升,服务机器人市场需求更加强劲。StrategyAnalytics数据显示,继2020年的年销量增长24%之后,服务机器人销量将在2021年加速增长31%。2020年Covid-19疫情推动服务机器人增长,它们帮助家庭清洁地板、陪伴孩子,帮助企业分拣送货,通过紫外光对环境进行消毒。疫情期间,服务机器人明星公司优必选的防疫机器人就在16个国家/地区被应用;华住旗下将近6000家酒店皆推行了无接触智能服务,酒店机器人每月送物超过20万次,成为疫情期间的一道亮丽“风景线”。

《2020全球机器人统计报告》显示,全球专业服务机器人销售额增长32%,在2019年达到112亿美元。优必选科技创始人周剑提出,过去十年是服务机器人的10年储备期,未来10年则是黄金发展期,越来越多服务机器人解决方案将在垂直领域落地应用,“未来10年,也许会有一家万亿级的服务机器人公司出现。”

服务机器人是我国AI战略的一部分,2017年12月《促进新一代人工智能产业发展三年行动计划(2018-2020年)》提出到2020年,智能家庭服务机器人、智能公共服务机器人实现批量生产及应用。前瞻产业研究院预测,我国服务机器人至2023年销量将超过50万台,销售额预计达277亿美元。

4、AI进一步“下沉”到传统行业。

前十年,AI在一些行业率先落地,主要集中在金融、教育、娱乐、信息等相对新兴的第三产业。新十年,AI则会进一步“下沉”到千行百业,包括制造业、医疗、养老业以及古老的农业。

比如农业,互联网巨头纷纷布局“养猪”业务,落地数字农业战略。AI与IoT设备、农机、无人机、无人车等技术结合,可用于提高农作物产量、优化灌溉系统、保护农田、治理虫害、监测牲畜健康,提升农业效益。有数据显示,农业领域人工智能技术和解决方案方面的支出预计将从2020年的10亿美元增长到2026年的40亿美元。

比如医疗,AI与生物科技、医疗科技等技术结合,将会对医疗健康产业产生深刻影响。DeepMind的AlphaFold应用深度学习技术在数十年来的蛋白质折叠生物学挑战中获得重大突破,科学家们用机器学习模型来学习化学分子的表示,以便制定更有效的化学合成计划;

再比如养老,今年两会关注老人面临的数字鸿沟,科技企业界代表们纷纷建言献策,助老养老正是服务机器人的重点场景。中国老龄人口已有两亿六千万,老龄产业成为“一个巨大的朝阳产业”,康养养老行业均有大量服务机器人应用场景。在两会上,广东移动党委书记、董事长、总经理魏明表示,发展养老机器人产业既能有效破解养老资源紧缺问题,还能促进智慧养老产业蓬勃发展。优必选科技则对外透露其正在研发康养机器人及智慧康养解决方案,通过5G、物联网和人工智能技术,建设软硬一体化的智慧康养平台。

在2020年的世界人工智能大会上,李彦宏有一个判断:AI发展会经历技术智能化、经济智能化、社会智能化三个历史阶段,他认为AI正处在“从经济智能化的前半段向后半段过渡的时期,具体表现在AI能力从逐步向平台化,正在朝向产业化方向演进。”现在看来,李彦宏的判断或许有些悲观,新十年,“社会智能化阶段”已全面来临。

收割季,AI产业化依然面临三道老坎

技术驱动的产业发展,一般都逃离不了高德纳(Gartner)的“技术成熟度曲线”模型(GartnerHypeCycle),该模型认为,一门技术的发展要经历五个阶段。

启动期:概念,媒体有所报道,引起外界兴趣。

泡沫期:个别成功案例,一些激进的公司开始跟进。媒体大肆报道,各种非理性的渲染。

低谷期:该技术的局限和缺点逐步暴露,对它的兴趣开始减弱。基于它的产品,大部分被市场淘汰或者失败,只有那些找到早期用户的公司艰难地活了下来。

爬升期:该技术的优缺点越来越明显,细节逐渐清晰,越来越多的人开始理解它。基于它的第二代和第三代产品出现,更多的企业开始尝试,可复制的成功使用模式出现。媒体重新认识它,业界这一次给予了高度的理性的关注。

高原期:经过不断发展,该技术慢慢成为了主流。技术标准得到了清晰定义,使用起来越发方便好用,市场占有率越来越高,进入稳定应用阶段。配合它的工具和最佳实践,经过数代的演进,也变得非常成熟了。业界对它有了公认的一致的评价。

AI一路走来,经历了最初被高度看好、泡沫化严重后被广泛唱衰,再到泡沫去掉后成熟稳健发展等阶段。今天AI进入高原期,成为主流技术,将被大规模应用。不过,AI产业依然有一些客观问题有待行业给出答案,这些问题都是老问题,只不过当下更加紧迫。

第一个是AI商业化能力有待证明。

AI创业公司最有名的当属“CV四兽”,即专注于机器视觉技术服务的四大独角兽公司:商汤、旷视、依图与云从。2020年旷视科技冲击港股IPO未果,3月12日再度冲刺科创板;此前不久依图与语音AI企业云知声IPO折戟,多家AI公司上市遇阻,核心原因在于商业化能力有待证明。

《财经》披露的数据显示,商汤2019年营收超过50亿元,而云从和依图分别才刚刚超过8亿元、7亿元。2017年至2019年,旷视营收规模逐年增长,营业收入从3亿元增长至12.6亿元。这些AI独角兽公司都有一些共同特征:营收增长快但整体规模较小,但烧钱规模却很可观,大都已完成数亿甚至数十亿美元融资,却一直亏损,招股书显示,报告期内(2017年、2018年、2019年、2020年9月),旷视科技净亏损达到7.7亿元、28亿元、66.4亿元与28.5亿元,因此有媒体将它们称为“吞金兽”。

不只是CV四兽。截至目前,不论是消费端的智能音箱/智能驾驶等AI产品,还是产业端的AI行业服务,普遍都存在“亏损换规模”的现状。对此,一方面,AI企业要积极探寻商业模式,在技术研发外对市场高度重视,强化现金流能力,让AI赚取真金白银,比如可以让AI深度融合场景,对产品做减法,从应用场景的单点和单应用切入,从单点产品到解决方案,再到面,不断壮大AI应用生态。AI企业也要从解决社会重大问题和满足社会重大需求进行突破;另一方面,投资者要给AI公司更多耐心,要有放长线钓大鱼的长期思维,毕竟AI大规模爆发时点才刚刚到来。市场已经证明AI不是技术泡沫,资本应该放宽心,给予AI创业者更多耐心。

第二个是AI人才荒依然有待缓解。

前些年AI快速爆发,导致AI人才一度供不应求,企业年薪百万招聘AI专业大学毕业生、高价挖角高校AI专家的新闻不少。后来,国家重视AI教育、高校开设AI专业、产学研共同培育AI人才,AI人才荒得到一定程度解决,仅仅是百度就宣称自己已给行业培养100万AI人才;优必选科技则宣称在全球40多个国家,有约150万名学生通过优必选科技学习人工智能。

然而,AI人才供给依然跟不上AI产业化进程,新十年AI人才依然供不应求。

高端AI人才依然稀缺,根据美国保森基金会旗下智库的统计显示,截至2019年底,全球顶尖AI人才中的近60%定居美国,在中国接受本科教育的顶尖AI人才占比最高,达到29%,就是说,很多中国AI人才出国深造后留在了美国工作,导致中国本土高端AI人才匮乏。中国是AI大国,但领英大数据却显示,中国顶级人工智能人才仅排第六名。

细分领域AI人才同样短缺,比如服务机器人领域,AI人才荒更严峻,因为这是一个复杂系统,牵涉到多学科,厂商需求大量复合型技术人才、市场人才以及产品人才;应用场景则需要懂服务机器人和人工智能的人才。然而,复合型研发人才和应用人才太少,直接制约了产品研发和行业应用。

2020年国内人工智能人才缺口达500多万,供需比例严重失衡。2021年加强人工智能人才,特别是高端人工智能人才、细分AI领域人才的培养,已迫在眉睫。

第三个则是AI伦理问题变成燃眉之急。

类似于AI换脸、“基于人脸识别的教室监控”这样的AI应用出现,让人们意识到,AI技术爆发,人类并未完全准备好。

任何技术都是双刃剑,AI也不例外。AI技术会给网络欺诈提供便利,让“造假”变得更加容易,且难以辨别;AI技术会让很多人失业,尤其是重复性强的工作,比如收银、客服、监测、软件测试工程师;AI算法是被人训练出来的,人的偏见会被AI继承,比如性别歧视、种族歧视、地域歧视;AI技术被黑客掌握,黑客的攻击手段会全面升级。

随着服务机器人、无人车等看得见、摸得着的AI应用爆发,AI伦理变得更重要。服务机器人在服务人类时,可能会跟人或者环境发生冲突/冲撞,责任该如何划分?无人车在马路上出现事故,责任又该如何划分?很多问题都有待解决。我们不能因噎废食限制AI发展,唯有AI伦理与法规双管齐下。

AI伦理是人与机器以及AI时代人与人相处的道德准则,“阿莫西夫机器人三原则”就属于机器人伦理。除了道德准则外,法律法规也亟待完善,比如针对自动驾驶的法律法规正在形成。

亚马逊、微软、谷歌、IBM、Facebook、苹果等公司已联合成立非营利性人工智能合作组织以解决AI伦理问题;2017年微软在内部成立人工智能伦理委员会(AETHER);2018年Facebook宣布已成立专门伦理团队防止人工智能的偏见。

国内,百度李彦宏多次提交关于AI伦理的提案,2019年马化腾就指出“AI治理的紧迫性越来越高”,应以“科技向善”引领AI全方位治理,确保AI“可知”、“可控”、“可用”、“可靠”。我国监管部门则从顶层设计上决定了AI伦理的规范和执行。2019年6月国家新一代人工智能治理专业委员会发布报告,提出发展“负责任的人工智能”,这是我国首次发布人工智能治理原则,当年7月24日,《国家科技伦理委员会组建方案》被通过,根据《国家科技伦理委员会组建方案》要求,组建国家科技伦理委员会,会议指出:科技伦理是科技活动必须遵守的价值准则。

AI新十年来临,我们有理由相信,智慧的人类既可以发展利用AI,让AI给国家、社会、企业与人民创造更多价值,也一定可以驾驭AI,与AI和平共处。

本文为专栏作者授权创业邦发表,版权归原作者所有。文章系作者个人观点,不代表创业邦立场,转载请联系原作者。如有任何疑问,请联系editor@cyzone.cn。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇