论中国人工智能发展史
说起人工智能的发展史,自其1956年被正式定义以来,已经度过了风风雨雨七十载。的确,长久以来人类对于人工智能的研究尚停留在实验室阶段,人类似乎依然未能摆脱关于人工智能的困惑:它究竟是服务人类未来的帮手,还是取代人类劳动、控制人类行为的凶手?
直至深度学习(DeepMind)的人工智能系统阿尔法狗(AlphaGo)在2016年对战韩国棋王李世乭中获胜,人工智能似乎才开始迎来了其大爆发的时代,或是——疾风之口。
爆发式发展
从2012年大量CV初创公司开始涌入安防市场起,人工智能、深度学习技术运用于安防行业已经成为行业趋势。与此同时,天网工程和雪亮工程等国家政策整体推动了AI在安防行业的发展。如果说资本的注入和政府的扶持只是外在推动力的话,那么安防产业本身对于智能化的强烈需求则是使其成为国内AI企业落地首选的核心内力。
互联网爆发式增长的十年间,除了为大众生活带来了极大的快捷与便利之外,更带来了海量影像信息和安全隐患。传统安防疲于应对,不仅识别准确度、效率不够,其可应用的领域也十分局限。已经不能完全满足人们对于安防准确度、广泛程度和效率的需求。
伴随着AI技术的普及传统安防被彻底的拔高了一筹,人工智能在产品落地上主要体现在视频结构化(对视频数据的识别和提取)、生物识别(指纹识别、人脸识别、声纹识别等)、物体特征识别(车牌识别系统)。足以看出来未来几年,安防行业将向规模化、自动化、智能化转型升级。
智能化技术的不断完善,使得人脸识别、异常行为分析、人数计数、声纹识别、音频检测等智能化应用明显可以有效预防各类事件的发生,并且全面提升了事后处理的效率和质量。而在安防领域中引入和使用AI取得了"肉眼可见"的良好效果,使中国城市的安全属性有了大幅度地提升。根据Numbeo安防安全值来看,中国区域的犯罪指数从2015年的41.75降低到2017年的33.90。与加拿大、德国等发达国家处在同一水平,领先于美国、俄罗斯等同级别国土面积大国。
现在人工智能技术不停地被产业需求推动向前。在AI技术如何落地上,天晟网络科技有限责任公司和其团队已经有了自己的想法。目前大多数AI安防公司仍在人脸识别方向焦灼,而天晟网络科技有限责任公司悠然已具备能为用户提供"多模态识别+数据融合"的更优势的整体解决方案。即融合行为识别、人脸识别、声纹识别、图片识别、视频识别等多种识别方式,天晟网络科技有限责任公司在区块链DAPP主链研发、动态人脸识别、瞳孔识别、大数据采集分析、网站开发等领域都有一番成就。
一文了解人工智能——学科介绍、发展史、三大学派
何为智能在介绍人工智能之前,我们要先了解智能到底是什么?智能,其实就是智力和能力的总称。世界著名教育心理学家霍华德·加德纳提出了著名的“多元智能理论”,他认为人类个体都独立存在着八种智能,分别如下:
视觉—空间智能,指对线条、形状、结构、色彩和空间关系的敏感以及通过平面图形和立体造型将它们表现出来的能力。语言—言语智能,指听说读写能力,利用语言描述事件、表达思想并与人交流的能力。交往—交流智能,指与人相处交往的能力,表现为察觉、体验他人情绪、情感和意图并据此作出适宜反应的能力。自知—自省智能,指认识、洞察和反省自身的能力,表现为正确地意识和评价自身的情绪、动机、欲望、个性、意志,并在正确的自我意识我自我评价的基础上形成自尊、自律和自制的能力。逻辑—数理智能,指运算和推理能力,表现为对事物间各种关系如类比、对比、因果和逻辑等关系的敏感以及通过数理运算和逻辑推理等进行思维的能力。音乐—节奏智能,指感受、辨别、记忆、改变和表达音乐的能力,表现为个人对音乐包括节奏、音调、音色和旋律的敏感以及通过作曲、演奏和歌唱等表达音乐的能力。身体—动觉智能,指运用四肢和躯干的能力,表现为能够较好地控制自己的身体、对事件能够做出恰当的身体反应以及善于利用身体语言来表达自己的思想和情感的能力。自然观察智能,指个体辨别环境的特征并加以分类和利用的能力。何为人工智能人工智能,即是人工的智能,是人造出来的像人类一样思考和行动的机器,使得机器也拥有“多元智能理论”中的八种智能。多数人对人工智能的了解主要是通过科幻片,里面的机器人拥有着人类的思维意识、情感和超凡的能力。
然而现实中的人工智能却与科幻片的相去甚远,甚至让人大失所望,现实中的人工智能只能向我们推荐感兴趣的文章,只能帮我们过滤垃圾邮件,只能幼稚地跟我们聊天,只能生硬地帮我们翻译,也许还能在简单的环境中完成自动驾驶。现实中的人工智能只能完成单一且较简单的任务,而且还不一定能完成地很好,这就是理想与现实的差距。
弱人工智能人工智能的终极目标是要赋予机器思维意识,使其能够像人脑一样工作思考。总体而言,以是否具有自我意识及独立思考能力为界,可将人工智能分为强人工智能和弱人工智能。其中强人工智能指更方面的能力都达到人类的水平,能模仿人类的思维、意识和学习能力。而弱人工智能则只专注于完成某个特定任务,模拟人类的某方面智能,比如人脸识别、语音识别等。
目前我们经常听到的人工智能其实属于弱人工智能范畴,它只能解决某个特定领域的问题,更多的是充当一种工具来使用。弱人工智能建立在大数据和机器学习(包括目前较火的深度学习)的基础上,也就是通过大量的标定的数据和算法来学习事物的模式规律。通过对数据训练得到一个模型参数,然后根据该模型实现决策和预测。
而强人工智能则是指具有人类的各种能力,比如独立思考、自我意识、七情六欲、推理归纳等等。目前来看,强人工智能领域几乎没有实质性进展,完全不具备理论工程基础,更像是一种美好幻想。
人工智能发展史从人工智能正式被提出到如今已经六十多年过去了,在此期间人工智能的发展经历了几度繁荣和衰落。目前虽然已取得不错的进展,然而现实与理想的差距还是很大,前进道路依旧曲折。
在1900年国际数学家大会上,数学家希尔伯特提出《未来的数学问题》,其中就有一些与人工智能相关的问题。人工智能的孕育期其实可以追溯到公元前的哲学界亚里士多德,他提出了著名的三段论,在演绎推理方面甚至影响至今;后来数学家莱布尼茨提出了万能符合和推理计算,为数理逻辑奠定了基础;之后逻辑学家布尔创立了布尔代数,并首次用符号描述了基本的推理法则。
1943年,神经物理学家麦克洛奇与匹兹建成了第一个神经网络模型,M-P模型。此外,数学家艾伦图灵做了一件非常重要的事情,就是设计出了图灵机,这也是现代计算机的理论原型。并在1950年发表了《计算机器与智能》论文,这篇论文给出了机器和思考的定义,并且制定了“图灵测试”标准,如果能通过该测试则认为该机器具有智能。
1956年的达特茅斯会议被称为是人工智能元年,同时也是人工智能诞生的标志。这一年,在美国汉诺斯小镇宁静的达特茅斯学院中,人工智能之父约翰·麦卡锡、人工智能奠基者马文·闵斯基、信息论创始人克劳德·香农、计算机科学家艾伦·纽厄尔、诺贝尔经济学奖得主赫伯特·西蒙等科学家聚到了一起,讨论如何用机器来模仿人类的智能。会议足足开了两个月的时间,虽然没有达成普遍的共识,却起了一个名字:人工智能。
达特茅斯会议过后人工智能开始井喷式发展,1957年罗森布拉特发明了感知机,1959年科学家亚瑟·塞缪尔创造了“机器学习”这个术语,并且给出了机器学习的定义。1966年和1972年分别诞生了第一个聊天机器人和智能机器人,而后随着人们对人工智能的兴趣下降并且资金枯竭,在1974年,人工智能开始进入第一个寒冬。经历过寒冬后,1980年人工智能以专家系统的身份重出江湖,专家系统能在特定领域提供决策能力。但很快,在1987年人工智能在耗尽了政府和投资人的资金后,开始进入第二次寒冬。
1997年,IBM的深蓝击败了国际象棋世界冠军加里·卡斯帕罗夫,成为第一台击败国际象棋世界冠军的电脑。2002年人工智能开始以清洁机器人的身份走进人类家庭,直到2006年,Facebook、Twitter、Netflix等公司开始将人工智能技术引入商业系统中。到2011年时,IBM的沃森系统已经能够在智力竞赛节目中与人类PK并赢得冠军了。
最重要的是在2006年以后,大数据和深度学习爆发并得到了高速的发展,结合两者实现的人工智能在某些方面已经能够与人类相提并论。所以在新一轮技术浪潮的驱动下,人工智能在很多领域不断落地应用,其中包括人脸识别、语音识别、自动驾驶、精准营销、个性化推荐、智能客服、安防系统等等。
三大学派在人工智能的整个发展过程中,不同学科背景的研究人员对人工智能有不同的理解,因此也产生了三大人工智能学派。传统的人工智能被称为符号主义学派,符号主义主要研究的是基于逻辑推理的智能模拟方法;而一些人则认为可通过模拟大脑的神经网络结构来实现,即连接主义学派;此外还有人认为可以从生物体与环境互动的模式中寻找答案,被称为行为行为主义学派。
符号主义学派符号学派认为任何能够将某些模式或符号进行操作并转化成另外一些模式或符号的系统就可能产生智能行为,它致力于用计算机的符号操作来模拟人的认知过程,其实质就是模拟人的大脑的抽象逻辑思维,并通过某种符号来描述人类的认知过程,从而实现人工智能。符号主义主要集中在人类智能的高级行为,比如推理、规划、知识表示等。
连接主义学派每个人的大脑都有万亿个神经元细胞,它们错综复杂的互相连接,也被认为是人类的智慧的来源。所以人们很自然想到能否通过大量神经元来模拟大脑的智力。连接主义学派认为神经网络和神经网络间的连接机制和学习算法能够产生智能。
行为主义学派行为学派出发点与其他两个学派完全不同,它是一种基于感知—行动的行为智能模拟方法。该学派认为行为是个体用于适应环境变化的各种身体反应的组合,它的理论目标在于预见和控制行为。
回顾这篇文章从整体介绍了什么是人工智能、人工智能的发展以及人工智能的三大学派,从整体上了解了人工智能这门学科的情况,并且知道了目前的人工智能并非是科幻片里面的人工智能,现实与理想之间的差距还是很大的。
了解了人工智能的这些情况后,是不是勾起了你对人工智能的兴趣呢?接下来作者会准备《人工智能原理科普》专栏,欢迎关注!
欢迎关注:人工智能、读书与感想、聊聊数学、分布式、机器学习、深度学习、自然语言处理、算法与数据结构、Java深度、Tomcat内核等相关文章