博舍

人工智能论文范文(5篇) 人工智能与未来社会论文

人工智能论文范文(5篇)

人工智能论文全文(5篇)

时间:2023-04-1322:16:52

第1篇:人工智能论文范文

第一,植物的规格要确定好,要结合植物所适应的地质条件来对各种规格的植物进行协调搭配。一般来说,中型及其以上规格的乔木作为园林的架构之一,会对整个园林所呈现出来的景观效果起着重要作用,应当先进行安放,然后才是小型规格的植物的安放,保证在园林景观的细节处做好处理;第二,要合理组合植物的品种类型,落叶植物和针叶常绿植物之间在园林中所占的比例应当保持一定的平衡关系,对于植物如花卉、叶丛的颜色要协调好,一般以夏东两季的植物色彩为主色调,其他色调为辅,以保证视觉上能起到互相补充的效果。

2园林设计中人工智能应用现状

2.1系统操作方面

由于园林设计既涉及艺术方法也涉及到技术手段,因此,对操作人员的综合能力要求就比较高,也就是说,操作人员应当对建筑理论、园林绿植知识和计算机基础三方面综合掌握,而事实上,很多参与园林设计的人员并没有很强的工程操作能力,要求太高,难以实现。

2.2园林可重复使用性方面

目前来说,园林的重复使用性还是太低,因为每个地方的气候条件和地理环境都不相同,所以,针对一个地方所制作的园林设计并不能简单地复制到另一个地方,如苏州园林的设计不能直接用在辽宁的园林设计,原因在于北方相对南方来说,园林供水相对困难,山石种类不同,绿植花卉种类也不如南方园林的丰富,而且南北审美观不同,北方园林设计多采用浑厚石材,绿植多为松、柏、杨、柳、榆、槐,加上三季更迭的花灌木,呈现刚健雄浑的特点,而南方则因为花木种类丰富,布局特别,注重山石与水的搭配,独具精致淡雅的特点,由此可见,园林的可重复使用性不高。

2.3计算机辅助设计方面

计算机辅助设计即常说的CAD。目前来说,CAD并不能完全对口符合园林设计的需求,因为CAD只能呈现出单一的图形画面,既不利于设计者进行设计,也不利于客户对设计者的设计的理解,导致客户与设计者之间难免信息不对称,造成一定的信息偏差,影响之后园林设计出来的成果。

3加强人工智能在园林设计中应用的办法

3.1园林子系统的设计

作为整个园林系统的组成部分,园林子系统的设定概要应通过计算机实施建模,来对项目实施进行基本设定,在获得项目系统的自动生成规则之后,在对所收集到的园林基本数进行存档,来作为全局的运行参数,在一定程度上影响了计算机的运行结果。一般来说,存档信息有园林的设计规模、投资情况、发展需求以及相关的环境因素等,存档后,可能会对建筑的规模大小、选址、风格特点以及植物的搭配等造成影响。

3.2地形子系统的设计

地形子系统的设计应当是通过计算机对采集到的地质数据进行推理而后才进行的。一般来说,会采用规则引擎最为计算机的推理机,是基于专家系统的模式下进行推理的,工作原理是由机器来仿造人类在对事件进行考虑的思维和方法,通过进行试探性的方法来进行推理,并不断地对推理所得出来的结果进行解释和验证。对地质情况进行实时实地勘查是保证园林设计图纸正常输出的要求,这是不能单纯地依靠计算机来实现的,因为地质勘查涉及到很多复杂地形的勘查,只能依靠人工的方式。地质勘查可以分为前期阶段和后期阶段。前期阶段主要是设定园林工程的初稿,因此,只要对地质情况进行系统的粗略勘察即可。后期阶段主要是完成图纸设计要求,因此,对数据准确性要求更高,并勘查人员对此进行较为细致的处理。这以后才是通过对计算机智能系统软件的使用来将前期阶段和后期阶段所获得的数据进行智能化处理,完成相关数据的细化以及修正,然后通过系统推理得到一个初步的园林模型。

3.3主干道路子系统的设计

对地形子系统进行地形数据的输出即可得到主干道路设计,因为我们首先完成了地形的设计,因此,在接下来对道路进行设计的过程中就可以有效地避免其他的建筑和设施的干扰,这之后的设计才能按部就班地开展。推理的总体规则为:首先,由园林的建设规模、投资情况等来对道路的类型和所需费用等进行计算,得到相关数据;然后,结合之前的输出地形图来生成推荐道路图,并检查道路的密度是否符合园林的设计规范,接着根据道路建设定额表来对工程造价进行计算,看是否符合预期投资情况;最后,对道路图进行人工的调整,并反复验算。

3.4图纸和图表输出子系统的设计

第2篇:人工智能论文范文

“人工智能”一词最早是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能其英文全称为ArtificialIntelligence,缩写为人所共知的AI,它主要是对用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统等进行研究讨论。对于人工智能的定义义众说不一,一般有两种说法:一种是人工智能是关于知识的学科,即怎样对知识进行表示以及怎样获取知识并对知识进行使用的科学;另一种是人工智能研究的是如何实现让计算机做过去只有人才能够做的智能工作。但是不管是哪一种,它都是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能的定义可以分为两部分,即“人工”和“智能”。对于“人工”,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。诞生对于“智能”,则存在着很大的争议。因为这涉及到了诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人类唯一能够了解的智能就是人类本身的智能。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。人工智能的实现方式有2种方法。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(Engineeringapproach),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(Modelingapproach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。

2人工智能的发展

对于人工智能的研究一共可以分为五个阶段。第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP表处理语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入了低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:问题求解的方法过度重视,却忽视知识重要性。第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。同时国际人工智能联合会于1969年成立。第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学但是的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。第五个阶段是20世纪90年代后。网络技术的出现于发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向到基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅只对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。

3对人工智能的思考

3.1人工智能与人的智能

从哲学上的量变引起质变的角度来讲,人工智能在不断的发展过程中一定会产生质的飞跃。在最初,人工智能只具有简单的模拟功能,但是发展到现在已经具备了思考的能力(逻辑推理分析),这已经表明人工智能在不断量变的过程中已经发生了质变。有人认为有人会说人工智能不会超过人类的智能,理由是人工智能是人类创造出来的。但是现实中很多人类创造出来的东西已经在某一些方面超过了人类本身的能力,例如起重机的力气超过人类很多;汽车速度也远超过人类的速度。人类之所以会制造出各种各样的工具,其目的就是希望自身的能力能通过这些工具进行延伸和突破。人类研究人工智能就是希望人工智能帮助人类实现人类某些无法实现的东西。还有人认为人工智能是人类创造出来的,所以它一定存在着致命的弱点,也因此人的智能优于人工智能。但是殊不知人类与机器相比也有着十分明显的弱点,例如人类所需要的生存条件比机器更加的严格,人类思维会受到人的情绪所影响,而机器只是受到程序的影响,它们没有情绪的起伏。就目前的人工智能而言,它们在某一些领域比人类更强。但是目前我们必须正视人工智能的一些还没有办法改变的缺陷,那就是人工智能的学习能力与创新能力。人工智能的知识获取大部门都是人为的进行灌输,而无法像人类自身那样进行主动的学习。同时人工智能只能够利用已有的知识去解决一些问题,但是却还不能够创造性的提出一些新的东西。

3.2对机器人三大定律的困惑

美国最著名的科普作家艾萨克.阿西莫夫提出过比较著名的机器人三大定律:第一定律,机器人不得伤害人,或任人受到伤害而无所作为;第二定律,机器人应服从人的一切命令,但命令与第一定律相抵触时例外;第三定律,机器人必须保护自身的安全,但不得与第一、第二定律相抵触。虽然这只是科幻作家所提出的一家之言,但是也代表了人类对与人工智能发展的一种期望与担心。人们害怕自己所创造出来的人工智能会伤害人类自己。但是阿西莫夫所提出三大定律都是以人类为中心的,而忽视了人工智能本身。或许这是人类的一种天性,世间所有的事物都应该围绕人类自身来定义、发展。就好像人类自以为掌控了能够改变大自然的力量,最终却被大自然反噬一样。同时,随着科学技术的发展,人工智能已经不单单需要逻辑思维与模仿,同时还应该将情感赋予人工智能。因为随着科学家对人类大脑和精神系统的研究的深入,已经愈来愈肯定情感是智能的一部分。如果人工智能具有了情感之后,人类的自我中心又是否会伤害到人类自己创造出来的人工智能。

3.3对人工智能未来的思考

人工智能有着十分巨大的发展潜力,对于人工智能的研究虽然经过了很多年,但是这也仅仅是刚刚开始而已,继续研究下去在很多方面都会有重大的突破。自动推理是人工智能最经典的一个研究分支,它的基本理论是人工智能其它分支的共同基础。一直以来人工智能最热门的研究内容里面就有自动推理,同时在该知识系统中的动态演化特征及可行性推理的研究是一个十分热门的研究内容,很有可能取得大的突破。机器学习一直在致力于研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。在过去的很长的一段时间内都没有取得十分显著的成果。但是许多新的学习方法相继问世,并且已经有了实际的应用,这充分的说明在这方面的研究已经有了很大的进步。自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。在经过人工智能研究人员的艰苦努力之后,在该领域中已取得了大量令人瞩目的理论与实际应用成果,许多产品已经进人了众多领域。智能信息检索技术在Internet技术的影响下,近年来发展势头十分迅猛,而且已经成为了人工智能的一个独立研究分支。

第3篇:人工智能论文范文

关键词:人工智能;新闻生产伦理;道德困境

一、人工智能技术在新闻生产中的现状分析

诞生于1960年的计算机辅助新闻是人工智能在新闻生产领域最早的应用。2000年左右,计算机辅助新闻开始进入数据驱动新闻阶段。2006年,汤普森公司开始将新闻机器人运用于财经数据分析,并生产出新闻,这标志着现代意义上的人工智能新闻真正产生。当前,人工智能主要依靠自然语言处理、预测分析和机器学习三种技术。在新闻报道中,人工智能的运用大致可分为自动化生产、人机交互和智能推荐三种类型。

(一)数据挖掘和机器写作推动新闻的自动化生产数据挖掘和机器写作是一种打破了新闻人工作常规模式的特殊的新闻生产方式,依赖于庞大的数据资源,运用技术的手段化繁为简,省去了传统新闻出稿的步骤。因此,数据的积累和清晰的数据支撑是推动新闻自动化生产的关键。这种将采访、写作、编辑、校对、分发、反馈等新闻生产环节融合在一起的方式,节省了人力、物力和时间,大大简化了新闻生产的过程,进一步优化了新闻生产的流程。这意味着,在一些专业报道中,机器人挖掘的数据会比记者发现、找到的数据更为精确可信,人和机器展现出平等合作、相互理解、辅助的关系,在不同方面各显其能,互相配合,可以让记者从单调重复的工作中逃离,从而更加专注于挖掘数字背后的意义,去做更有创造力的事。

(二)智能音箱和聊天机器改变人机交互的传统模式2017年7月,国务院的《新一代人工智能发展规划》中提到未来我国几十年人工智能的发展蓝图,着重强调发展人机智能共生的行为增强与脑机协同及人机群组协同等关键理论和技术,并指出未来人机协同将成为主流的生产和服务方式。智能语音服务由两部分构成,一部分是硬件,一部分是智能语音助手。硬件为语音助手提供运行环境,从物理上接受声音指令,并进行反馈。因此,智能语音可以通过声音方便地与终端交流,不需要控制手机或者终端界面就能参与数字生活和工作的方方面面。社会学家戈夫曼的场景理论认为,媒介、场景和行为之间存在高度的关联与互动关系。“场景”作为内容、形式、社交之后媒体的又一核心要素,在定制化需求体验和实现用户价值匹配方面得到了极大程度的体现。从这个意义上来说,智能语音扩张了我们进行媒介消费的空间。

(三)基于兴趣的智能推荐助推新闻传播的个性化人工智能视域下的智能推荐是指通过技术手段介入信息内容和信息受众之间,更改内容的传播方式和路径,从而更好地利用用户行为大数据,在“千人千面”的背景下实现用户不同偏好的内容推荐,达到分析并改变信息受众阅读偏好的效果。2019年,尼曼实验室在预测新闻业趋势时选出的一个关键词是“Newsfatigue”(新闻疲劳症)。因此,基于用户兴趣的算法可以督促记者更加全面地考虑用户需求,增加新闻内容曝光量,唤起用户的更多互动,从而更加有目的地进行个性化的推荐,将信息精准地投向用户,节省时间,优化用户在人工智能视域下的新闻阅读体验。

二、新闻生产伦理在人工智能视域下面临的困境

新闻伦理学的研究对象除新闻工作者的职业道德外,还应包括新闻媒体的社会道德功能。无论是从社会和谐还是科技发展的角度,传统媒体一直遵循的生产伦理价值,如真实性、客观性、把关控制等,都在新媒体技术的冲击下不断地受到挑战。

(一)新闻工作者面临的职业道德挑战1.人在技术裹挟下影响对新闻客观性的认识黄旦教授认为“客观性是指意识到新闻报道中的主观”,从而要求事实和价值分开的一种专业信念和道德准则。2019年两会期间,国内多家媒体都采用了时下流行的轻松、生活化的vlog报道形式。在传统新闻人看来,这种在生产过程中模糊新闻和娱乐、事实和意见的边界,无异于“国家和教堂间的界限”。随着技术的不断发展,算法成了大众传播中的“把关人”,控制着人类信息分发的权力,驱动着媒介生态环境的重构。这种信息生产、筛选与分发其实是一种有意识的信息“加工”行为。技术本身无好坏,但技术如何使用,算法按什么逻辑编写,界面如何设计等,都受到政治经济和人类心理的影响。2.科技的发展加剧新闻反转,影响新闻真实性真实是新闻的生命。近年来,“反转新闻”大量进入公众视野。闾丘露薇认为:“所谓的反转,只不过是公共舆论基于错误或者并不足够的信息而做出的价值判断,之后被更多的事实所证明是错误的而已。”“反转新闻”之所以出现,是由于传统媒体面临着互联网科技的冲击而陷入经济运营的困境,调查型记者的数量急剧锐减,越来越少的媒体机构有充足的时间、资源投入深入的调查。同时,在智能化算法的分发下,具有视觉冲击力、语言夸张的报道得到更多的推荐,使得真相或有用的信息隐藏在众多的声音中,用户更加难以把握事件的真实性。因此,信息不再是人们发现真相的帮手,而变成了认识世界的障碍,当用户无法获得优质的信息时,再多的信息也失去了意义。3.人工智能视域下新闻生产权力主体的转移法国思想家布莱兹•帕斯卡曾说,人的“主体性”指的是“与客体相对的主体所具有的特性,包括独立性、个体性、能动性以及占有和改变客体的能力”。但人工智能介入新闻生产与报道后会对部分职业新闻工作者带来冲击,担心一旦新闻生产的权力从人类手中交给机器,人类为了追求幸福快乐会放弃以人为中心的价值观,秉承以数据为中心的世界观,那么新闻生产者所谓的思想,即其引以为豪的创造天性也就逐渐逝去了,成了麻木的人、过时的人。但就目前来看,机器新闻取代的只是程序化、格式化的新闻报道,而这正是人的主体性得到释放的一种方式和渠道。然而需要承认的是,人工智能发展的脚步不会停止,只会被更巧妙地利用起来。在这种情况下,新闻生产者调和好工具理性与价值理性之间的冲突就显得十分必要了。

(二)新闻媒体面临的社会道德挑战1.个性化的推荐导致信息茧房和政治极化现象2006年,美国学者桑斯坦提出了“信息茧房”的概念,指的是人们根据不同的兴趣、价值观、身份、经历形成不同的部落,通过增强部落内部联系获得归属感。但由于每个人只接触属于自己的个人议程设置,就会出现和圈内人交流加剧意见极化的现象,而对外交流则很难进行沟通,从而使社会意见整合变得更加困难,公共生活更加难以协调,整个舆论生态环境不断恶化,有价值、有意义的信息难以得到有效的传递。如果说,过去我们评价一个新闻事件的影响力,看中的是它是否推动了制度变革,那么现在的评价标准或许就变成造就了几篇“10万+”。尤其是社交媒体中的机器人,运用算法,通过点赞、分享和搜索信息,将未经过筛选的假新闻传播力进行数量级扩大,导致受众缺乏社会责任感,难以认知自己所处的大环境,封闭于自我的想象中,使得极化现象在种族、宗教分裂原本就十分剧烈的发展中国家显得更加突出。尤其是对那些基础机构薄弱的国家来说,虚拟世界的愤怒激发的是现实世界中的暴力。而在经济结构稳定的国家,新闻生产的低门槛和低成本也使得假新闻泛滥,选民的自由意志被操纵,政治站位被重新定义。这一切都是技术缺陷在流量驱动商业模式下所带来的结果。2.社会资本的推动加剧了算法歧视和社会偏见技术和社会之间的关系是双向互动的。一种技术如何被使用、产生了怎样的效果,固然和技术本身的特性有关,但也会受到政治经济社会整体环境的影响。萨菲娅•诺布尔提到,Google搜索引擎的返回结果及其排序主要受到PageRank算法的影响,它会根据一个页面的超链接被其他页面引用的数量来决定搜索结果的排序。其背后的逻辑可以称为“引用多的即是好的或重要的”,这是一种价值判断,也是一种利益交换,遵循和延续了社会上的主流看法,但如果主流看法本身是带有偏见的,那么算法将延续这种偏见。这说明了算法并不是中立客观的,歧视就在眼前,但是披着中立的外衣,对社会上的边缘群体产生系统性的压迫。算法既可能复制主流社会对边缘群体的偏见,也可能受到商业资本的影响,将信息和知识商品化,从而加剧社会的不平等。3.人工智能扩大对数据的使用和隐私的侵犯信息社会的发展使得各国对隐私权保护的重心再一次发生了转移,促成这种变化的原因在于政府和商业组织搜集了太多受众自己都不知道的信息。因此,人工智能时代,我们每个人都生活在数据与算法中,无时无刻不在被“记录”和“监控”着。就像福柯所说的“全景监狱”,受众就是其中的一个个“囚犯”,而作为“狱卒”的媒体集团投其所好地向受众推送新闻,受众在享受人工智能带来的便利服务的同时,也会对自我控制权的丧失、个人信息的使用以及隐私的侵犯感到深深的忧虑。2019年1月,腾讯对各年龄层用户特征进行画像分析的大数据报告被网友质疑:微信“监控”了聊天数据。这不是社交媒体第一次遇到类似的质疑。即使腾讯声称所有数据均已进行匿名及脱敏处理,不涉及具体用户的隐私内容,但并不能完全消除公众的疑虑。当忧虑隐私近乎成为生活的一种常态,我们不禁要思考这样一个问题:我们到底是如何被技术力量裹挟着走到今天这一步的?又是在何时,我们开始认为体验了就要记录,记录了就要上传,上传了就要分享的这种行为模式再正常不过?

三、新闻生产伦理在人工智能视域下的发展策略

(一)从个人层面规范新闻生产伦理智能手机的迅速普及使新闻制作的门槛和成本降低,传统的新闻传播模式被打破,我们已来到一个人人均可发声的“去中心化”时代。作为人工智能时代的信息传播者,我们不仅要提高自我的媒介工具使用素养,还应不断加强在海量信息中筛选出有用信息的鉴别能力,从源头上降低新闻受失真、虚假信息误导的可能性。同时,在传受角色功能定位不断消弭的今天,提高传播者的媒介素养,使其拥有多元化的信息获取渠道、独立自主的思想意识和道德水平,给冰冷的算法和数据注入“温度”和人文关怀,不仅可以抵御经济快速发展带来的社会问题,也是净化舆论生态环境的需要。只有这样,人工智能时代的传媒业才能走得更远。此外,在智能信息时代,科学家、工程师不仅人数众多,而且参与社会重大决策和治理,他们的行为会对他人、社会带来比其他人更大的影响。他们在参与新闻生产的过程中通过合理的结构代码决定什么被看见,什么被隐藏,直接影响着新闻生产伦理。利用技术能做好事,也能做坏事,关键是被谁使用,如何使用。那么,要研究媒体技术在新闻生产伦理中的应用就不能忽视对开发应用这一技术的科技工作者的伦理道德规范。

(二)从组织层面规范新闻生产伦理与其他完全市场化的商品不同,媒体机构的公信力一方面承担着自身的发展前景,另一方面也关乎着国家社会的安全稳定。在人工智能背景下,新时代的媒体机构具有大众性和多元性等特征,覆盖的内容更加广泛,大多是靠广告获取收入,部分是通过付费订阅,且不同媒体机构间的竞争愈发激烈。但受众情愿买单的背后是对媒介机构的信任,一旦媒介机构肆无忌惮地利用受众的信任去欺骗受众,不遵守基本的媒介伦理,终会遭到受众的抛弃。因此,媒体机构要保证新闻的真实性、客观性,不断强化媒体机构履行社会责任的方式,推动社会的进步。在本质上,企业的社会责任和商业利益是一致的。当企业成长得足够强大时,“外部性”就会被内化。一个假新闻和低俗信息泛滥、全民娱乐至上、戾气十足的社会,不会为互联网的健康发展提供适合的土壤,所以要追究新闻平台的主体责任。平台在享受着杠杆规模效应的同时,更应该用高于法律和行业的标准来要求自己。另一方面,对于技术导致的部分问题,平台也可以通过技术的发展来解决。目前,“区块链+媒体”肩负着媒体人的夙愿,虽然这种模式对现有媒体生态的改变十分有限。但从“效率”转向“价值”,单一的技术思维转向立体的社会思维、公共思维来看,这是平台型产品发展壮大过程中的必经之路,也是以后互联网产业的重要动向。

(三)从社会层面规范新闻生产伦理在技术迭展的情况下,与新出现的人工智能相关的法律制定,在缺乏有价值的参照系下,很多方面的实施往往落后于新技术、新实践的发展。因此,我国于2017年开始实行的《网络安全法》对网络运营者在搜集用户信息、个人信息方面做出了规定,并对不当运用用户信息的行为给出了明确的处罚条例。人工智能媒体时代条件下,我们必须本着维护和发展的原则来实现人工智能的法律体系,慎重处理人工智能技术给社会带来的贡献,客观地看待它的价值和潜在的风险,尽快完善法律法规,适应新的媒体环境,特别是在人工智能技术无所不能的情况下,更要强调其价值理性,规范其行为,慎用公众数据,保护公众隐私,营造一个良好的新闻生态环境。

四、结语

人工智能与新闻传媒业的融合越来越成为行业人讨论的焦点。人工智能技术在改变着新闻信息生产、传播方式的同时,也要求着原有的新闻生产伦理做出调整,以适应科技的发展。除此之外,人工智能导致的在新闻生产领域产生的伦理问题,不是技术的失败,而是科学发展与我们对自身及他人在新闻生产过程中产生的伦理之间的深层联系。因此,探究人工智能在新闻生产伦理领域的发展及其带来的问题,不仅能够拓展新闻生产伦理与技术的研究视野,更有助于指导人工智能在未来不断变革的新闻实践。

参考文献:

1.张志强.新闻算法推送对“信息茧房”的构建探究[J].新媒体研究,2018(14):24-25.

2.赵瑜.人工智能时代的新闻伦理:行动与治理[J].学术前沿,2018(24):6-15.

3.许向东.关于人工智能时代新闻伦理与法规的思考[J].学术前沿,2018(12):60-66.

第4篇:人工智能论文范文

陈宝鑫等采用蒙特利尔认知量表,制定中医证候观察表,通过采集中医四诊信息,研究血管源性认知功能障碍合并代谢综合征患者的中医证候特点,总结出血管源性MCI合并代谢综合征组痰、瘀最为多见,非代谢综合征组以阴虚、血虚最为多见。血管源性MCI的证候要素主要为阴虚、阳虚、痰湿、火热、血瘀、气虚、血虚等7个证候要素。张允岭等采用因子分析寻找血管源性认知障碍的常见证候要素,统计其证候要素分布特点,最终得出6种证候要素,按比例大小依次为气虚、血瘀、痰、阴虚、阳虚、火。余忠海等在对历代医家以及大量文献研究的基础上,总结出MCI中医证型可以归纳为肾虚证、血瘀证、痰浊证、气血亏虚证、热毒内盛证、腑滞浊留证、阴虚阳亢证、气郁证。赵明星等以中医证素辨证理论为指导,设心、肝、脾、肺、肾五脏为病位要素,以气虚、血虚、阴虚、阳虚、精亏、痰、瘀等为病性要素,初步发现肾精亏虚证、心气虚证、痰浊证、血瘀证是MCI常见证型。以上对于MCI的中医证候的研究,都是基于小样本,被研究对象大都在65岁以上,而近年来,随着生活方式的改变、社会压力的不断增大,年龄在65岁以下非老年人记忆力也有明显下降趋势,其中也不乏有非正常的记忆减退,即MCI患者,因此,对65岁以下MCI患者的研究应引起足够重视。

二、临床治疗研究

1.药物治疗

田军彪等根据MCI浊凝清窍,瘀损脑络的病机确立了化浊解毒活血通络法,方中石菖蒲辟秽化浊,黄连味苦性寒,苦能去浊,寒可清毒,郁金活血兼有清心开窍之功,三药合而为君。川芎为血中气药,地龙性善走窜,两药可通达脑络气血之瘀滞,丹参、赤芍凉血活血,当归养血活血,诸药共担臣药之职。茯苓健脾渗湿,使痰浊无以生成。泽泻渗湿泄热,使浊毒之邪从下而出,为方中之佐。川芎上行头目兼有引经之用,为方中之使。共奏化浊解毒、活血通络之功。区树阳等治疗MCI则以健脾益气、活血化瘀、通窍益脑为原则。选用半夏燥湿化痰,天麻、僵蚕熄风化痰,白术燥湿分健脾,黄芪、党参健脾益气,丹参、赤芍、桃仁、红花活血化瘀通经络;配合川芎理气通滞、黄精、益智仁补肝肾益智。从化痰通窍汤组成看,经现代药理学研究,方中党参、黄芪、益智仁、白术、黄精,能提高老年人体质和免疫功能,同时丹参、红花、川芎、赤芍、桃仁、半夏可降低老年人的血液黏稠度,对MCI患者的微循环有显著改善作用,对改善老年人认知功能障碍有明显疗效。

2.非药物治疗

针灸等非药物治疗在MCI治疗康复中起着重要作用,针灸是中医又一特色,但是目前研究较少。陈仿英等通过观察64名老年MCI患者,在药物治疗同时给予耳穴压豆(耳穴心、肾、额、皮质下、神门),结果表明耳穴压豆辅助治疗MCI简便易行、无创、无明显不良反应,易被老年人接受。推拿具有疏通经络、调和气血的功效,孙莉等通过推拿百会、风池(双)、翳风(双)、四白(双)、印堂对MCI进行干预,通过调和气血、醒脑开窍,改善脑动脉的血液供应和局部血液循环,从而改善下降的认知状况或延缓MCI进程。潘锋丰认为可以针对加重认知功能障碍的因素进行治疗,如睡眠障碍的评估和治疗在改善患者记忆和认知功能过程中是重要的因素;孤独也被看做是加重认知损害的因素,对于那些社交网络缺乏或相对局限的人群,其痴呆风险增加,而随着社会联系的增加,痴呆风险呈现下降趋势。因此认为,使MCI患者身心放松,保持积极畅快的心情对MCI防治也会产生积极作用,但尚需大样本研究以证实。

三、MCI的预防

随着生活方式的改变、社会压力不断增加,各类疾病患病率明显上升,而65岁以下非老年人患MCI的概率也在不断增大,但医务人员对这类人群的关注度普遍较低,这应引起研究人员重视。在舒缓精神压力的同时,更应该注意MCI的预防。目前,还没有合适的药物可以预防MCI发生,但是,从中医辨证角度来看,65岁以下非老年人的中医证候类型大多以痰浊、瘀血为主,早期进行干预可能会减少MCI发生,同时改变不良生活方式、积极干预危险因素,对减少MCI发生肯定会产生积极作用。

四、问题与展望

第5篇:人工智能论文范文

关键词:科技期刊;人工智能;数字化;同行评议

2021年,中共中央宣传部、教育部、科技部印发《关于推动学术期刊繁荣发展的意见》,指出学术期刊要加快融合发展,推动数字化转型,引导学术期刊适应移动化、智能化发展方向,推动融合发展平台建设。人工智能正推动社会从数字化、网络化向智能化转型,科技期刊是率先有效引入人工智能的领域,人工智能与科技期刊出版的融合是发展的必然趋势。人工智能技术正越来越多地被开发、应用来帮助作者和出版人员,如对海量文献进行检索和分析,提取有用的信息;协助组稿审稿、编辑加工、出版发行;检出学术不端、鉴别数据造假等。人工智能可提高期刊出版和学术交流的效率,保证客观公正性和质量控制,减少人为偏倚和编辑职业倦怠,未来甚至可以指导特定领域如何开展新的研究。科技期刊出版平台未来将不仅限于提供学术论文数据库服务,还可以提供更多的信息和服务,人工智能在科技期刊出版中的应用前景值得思考和探索。

一、人工智能在审稿中的应用

Dimensions数据显示,2019年有超过420万篇,与十年前相比翻了一番。辛巴信息(SimbaInformation)统计数据显示,每年有超过250万篇学术在28000余种英文科技期刊上,科技期刊同行评议的论文数量是这个数量的两倍以上。数量的增加意味着高质量同行评议审稿的需求增加,也带来了严格保持审稿高质量和高标准的挑战。数量如此庞大的学术论文交到数量相对较少的固定的学者间进行同行评议,势必造成审稿效率的低下和学术论文的延迟发表。同行评议过程还存在个人偏见,审稿人可能是稿件作者的竞争者或反对者,抑或是朋友、未来的合作者或资助者等,这些可能会影响审稿意见的客观性和公正性。在实际的期刊出版工作中,也缺乏对审稿人审稿质量,以及拖延审稿或无效审稿等不当行为的约束和监督。这种情况亟须人工智能等可用于决策支持的技术来保证海量论文得到严格、一贯且高效的审评。引入人工智能技术可以大大优化审稿流程、提高审稿效率、缩短审稿周期。人工智能可以从网络出版平台的专家数据库中快速匹配符合选题方向的审稿专家,帮助提高审稿的效率和成功率。人工智能可以在数据库中根据研究方向、审稿记录、审稿效率和其他预设条件等,自动筛选最合适的审稿专家,分析排序后生成审稿人列表;并根据审稿人信息自动完成审稿邀请邮件的发送,还可以实时监控审稿状态和审稿人反馈;一旦出现审稿超时,自动向列表中下一位审稿人发出审稿邀请;收到审稿人的审稿意见后,实时通过邮件、APP、短信等及时反馈给期刊编辑进行相应处理。人工智能还可以根据论文标题、摘要、关键词和正文内容等对来稿进行初审,对图文进行快速识别,对论文的真实性、合理性、逻辑性、科学性、创新性和规范性等做出判断,为编辑初审提供详尽精准的参考。人工智能可以对论文的学术价值进行初步判断,对其中的文字和插图等进行深度识别。人工智能可以整句或整段地阅读释义,能识别出传统软件识别不出的同义表达,如此可减少学术不端,保证期刊的学术价值和品质。人工智能或许可以一定程度上遏制掠夺性期刊和掠夺性出版的泛滥。人工智能通过帮助编辑寻找新的审稿人并进行自动审稿等,大大提高学术和科技出版机构编辑出版高质量学术论文的能力,增加学术和科技期刊的论文接纳能力,也就减少了掠夺性期刊侵占学术资源的机会。人工智能还能对已发表的论文进行自动浏览回顾,基于掠夺性期刊的一些特征和标准,帮助筛选出那些不坚持标准的掠夺性期刊和出版商。Elsevier用人工智能软件EVISE取代了其过时的编辑系统,支持其编辑流程,提高了学术论文处理效率。EVISE可将来稿链接学术不端检测软件,从数据库中筛选推荐合适的审稿专家,链接其他项目资源对稿件内容、科学性和审稿人利益冲突等进行检测,自动生成与个人或机构的往来邮件等。开放获取期刊出版商Frontiers推出人工智能软件AIRA,对Frontiers的10万名编辑、审稿人和作者开放,能帮助他们自动评估学术论文的质量。AIRA可以阅读每篇论文,并在几秒钟内给出20条建议,包括对文字质量、图表的完整性、学术不端检测以及可能的利益冲突等。AIRA经过了Frontiers的审稿经验培训和测试,已完全融入Frontiers的内部工作流程,自动筛选和识别潜在的审稿人,加快审稿进程的同时,保证质量控制和客观公正,缩短了发表时滞,提高了出版效率。AIRA通过给出建议及半自动化检查的方式提供决策支持,仍然由相关领域专业人士做出最终决策,这种用户反馈被AIRA捕捉并进行学习和自我完善,这种人机协作有助于保证高准确性和高效率。

二、人工智能在策划选题中的应用

传统的策划选题依靠编委和编辑的经验、知识积累对学科发展方向的判断和预见,这种方式受人为因素限制,容易忽略有价值的选题且费时费力。未来,我们可借助人工智能的帮助,对已发表的海量文献、资源数据库进行检索分析,获取有用的信息进行相应的操作。人工智能可以从网络出版平台的专家数据库中快速匹配符合选题方向的作者,帮助提高组稿的效率和成功率。数据思维就是利用数据来深度挖掘和了解需求,了解存在和需要解决的问题,通过量化的数据来解决问题。人工智能基于大数据可以辅助选题策划选题、收集专家学者信息和研究方向,通过读者阅读信息和反馈来分析其关注点和需求,提供个性化的文献检索和信息传递服务等。人工智能可以通过对大数据的深度挖掘和学习,通过云计算技术,敏锐捕捉专业领域的新热点、新技术、新理论等;基于读者的阅读习惯、倾向及频率等进行量化分析,获取读者的需求信息;对国家自然科学基金等基金组织申报和资助情况、科技奖获奖情况、国际学术会议研讨热点等进行整合分析,对文献数据库等潜在信息进行挖掘和分析,快速推测出哪些内容具有独创性、前瞻性和话题性,生成选题策划资源库,帮助期刊编辑更精准高效的策划选题。基于人工智能的新型搜索工具Iris.AI,可以帮助学者从海量文献中筛选研究论文或专利等,提取关键的数据和要查找的信息。学术搜索平台SemanticScholar也是基于人工智能自主学习的学术搜索引擎,可快速筛选相关有用内容,并在一定程度上理解这些内容,展示相关主题历年文章发表情况及相关推荐内容等,可辅助期刊策划选题。

三、人工智能在编校加工中的应用

传统期刊出版工作中,编辑需要在细致琐碎的编校加工工作中花费大量时间和精力,编辑主观因素影响编校质量和效率,编辑易产生职业倦怠,传统编校模式难以应对现代出版工作快节奏和大体量的挑战。人工智能可以自动对稿件进行编校加工,帮助提高科技期刊的编校效率和规范编校质量。人工智能不仅能对错别字、语法等进行更正处理,还能对专业词汇的表达、参考文献的格式、引用是否合适等进行识别,还能检查出是否遗漏重要的研究部分、统计学分析方法是否有问题、是否为了达到想要的结果而改动过数据,还能理解图像和说明文字的逻辑关系,自动为插图补充描述性文字、为文字配上插图、为文本格式的文字生成曲线图等,还能完成后续的排版和校对。将机械、重复、枯燥的编辑工作交给人工智能完成,这将大大减轻编辑的工作负担,并大大缩短稿件的处理周期。IBM公司的智能机器人“沃森”曾为名为TheDrum的市场营销公司独立编辑出版了一整期杂志,这期杂志大部分内容的编辑、加工、排版和校对等都由人工智能独自完成。科技期刊内容的编校涉及对稿件内容的理解,但人工智能依然能很好地完成内容和格式的编校加工和规范化处理。人工智能还可以帮助编辑高效处理信息、调取和整合分析数据资源,优化期刊出版流程和期刊编辑的工作内容。编辑有望从原来繁琐的工作中解放出来,转到对专业性和方向性的把控上。

四、人工智能在推广发行中的应用

人工智能可以高效完成学术成果的推广和传播。人工智能程序可实时将科技期刊论文向所有大型学术论文数据库上传发送,并能根据读者研究领域、浏览阅读习惯、科研和社交平台动态等大数据进行实时监测分析。基于读者的信息需求,实现向相关领域读者的精准信息推送,大大提高学术成果的传播效率和影响力。人工智能平台还可通过对读者的需求信息进行分析,获取相关领域关注点,反馈给期刊审稿系统,增加对相关学术内容的收录建议。国家新闻出版署武汉重点实验室打造的开放科学计划(OSID计划),体现了利用人工智能实现多元化精准推送的重要性,打破传统出版模式编辑到读者的单向内容服务模式,为读者和作者提供了多维度交流空间,丰富了学术论文的传播交流方式,扩大了学术传播的广度和深度。TrendMD公司的内容推荐引擎,可以将科技期刊的稿件推荐到上千个科研网站。期刊网站安装TrendMD插件后,经过筛选的内容链接便会自动出现在网页的指定位置,通过数据挖掘算法对稿件进行自动推荐,将相关内容推荐给感兴趣的潜在读者,实现科技期刊学术资源的精准传播和高效共享。通过精准推送,科技期刊的论文曝光率和点击率都会增加,一方面为学者开展学术研究提供了新的资源和参考,另一方面实现了科技期刊传播推广的效率和精准度。

五、人工智能在论文写作中的应用

人工智能也被尝试用于论文写作,人工智能软件不仅可以实现识别和记录功能,还能学习掌握不同专业的写作方式和技巧,能高效地协助作者完成论文写作,甚至还能进行内容创新。例如,ManuscriptWriter软件可以从SciNote的ELN和开放获取杂志的相关文献提取数据,通过机器学习和人工智能技术,帮助作者生成一个论文初稿,供作者进一步编辑利用。Trinka是首款专为学术、科技和商业写作设计的人工智能软件,能纠正上万种复杂书写错误,且能纠正其他工具不能检出的复杂语言错误,尤其是学术和科技写作中的专业术语及专用表述等,对论文给出详细建议。但人工智能软件撰写的假论文事件一度引起人们对科技期刊同行评议制度的质疑,SCIgen软件生成的假论文骗过了斯普林格等知名出版机构和期刊。可能在收集相关资料用于背景的撰写方面,人工智能有一定的优势,但撰写后面的讨论部分,就需要研究者的智慧了。讨论部分是最具创造性和创新性的部分,最能体现研究者个性风格、行文习惯和思维方式的部分,每位学者都会将自己的专长和学识等融入讨论部分,这不是人工智能可以轻易取代的。

人工智能论文2000字范文(精选8篇)

   人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。本文精选了8篇最新"人工智能论文范文",以供大家参考和研究。

   

   人工智能论文2000字范文一:浅谈人工智能与机器人的发展

      摘要:随着社会经济的飞速发展,在当今信息时代,人工智能与机器人已经属于前沿研究领域。在大部分人的意识中,对机器人是有一定概念的。但是这种概念,更多的是通过科幻小说的描写和人们的想象得到的。在现实发展过程中,虽然也有机器人的身影,但是版本都太低,仅停留在表面,智能效果并不好,在发展阶段还处于突破阶段,人工智能也同样如此。人工智能与机器人发展这两者是相辅相成的,目前对机器人研究要发展,其突破方向就是培养高智商的机器人。该文从人工智能发展史、人工智能在发展中所遇到的困境以及人工智能在机器人领域中的发展三个方面来做具体阐述,为以后相关行业人员,提供参考订阅。      关键词:人工智能;机器人;自动化;发展趋势      人工智能与机器人都同属于计算机的分支,是从20世纪中叶兴起来的。从定义上来讲,理解起来还算简单,但是对工智能与机器人比较难定义。虽然大家都清楚这两者的意义,然而,如果是比较统一的文字定义,网络上或者是相关书籍上是无法查阅到明确定义的。在对人工智能和机器人的研究过程当中,其涉及学科多,以至于这两者的发展慢慢已经渗透到高中生的学习领域。在很多时候,包括笔者在内的很多人,都会把人工智能和机器人的定义搞混,单纯觉得两者说的是同一个东西。但实际上人工智能比机器人更加复杂。人工智能是通过计算机应用,对人大脑的思维和智能进行模仿;而机器人则是应用某些技术,造出与人的行为较为相似的机器做的人,模仿人类行为。对于高中生而言,不仅需要详细深入了解这两者的定义和区别,更需要从古至今了解这两者的发展以及现状,为将来的研究提供理论合基础,时刻准备着为祖国科技做出贡献。      1人工智能发展史      说起人工智能,发源时间是从20世纪中叶开始。在1956年的达特茅斯学院会议上"人工智能"这个词正式出现在世界上,科学家也是从这个时候开始真正踏上智能研究的道路。通过科学家的研究,10年的时间,人工智能迎来第一次发展高潮,计算机被应用于社会的各个领域。也是通过这个现象,在数学方面、自然语言方面领域的应用给了很多科学家希望,因此,各大项目都逐渐建立起来。      因为内基梅隆大学为数字设备公司设计了一套名为XCON的"专家系统"的系统,处于冰冻期的人工智能迎来第二次发展高潮,这套专家系统主要用于商业模式,通过利用人工智能,建立了具备完善专业知识和经验的计算机智能系统。但是,好景不常在,没过多久又处于冰封状态了。      在1987年,专家系统并没有发展得那么好,在苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机后,专家系统光辉不在,开始走下坡路。尽管如此,人工智能的研究始终在继续。于1997年,IBM公司所生产的深蓝打败了国际象棋世界冠军卡斯帕罗夫;在2009年,螺丝联邦理工学院发起又一计划"蓝脑计划",生产已经成功模拟了部分鼠脑;在今年,大家都关注的谷歌AlphaGO战胜韩国李世乭。这3个案例的成功,都展现出了人工智能方面的研究成果,其研究成果也跟随时间的推移在不断刷新。社会经济在发展,人们在智能科学技术上投入的资金和技术还有精力也越来越多,这一方面的发展只是时间问题。

      2人工智能的发展困境      2.1人工智能的发展现状      目前,人工智能处于飞速发展的阶段,很多人工智能公司如雨后春笋般相继现世。在公司成立之后,相继被国际比较大型的IT企业收购,处在网络行业竞争激烈的时期,谁都在争夺行业的有利地位。在人工智能的发展进程中,当然,随着人工智能也兴起了很多新兴行业,象自然语言处理、智能机器人、虚拟私人助理、手势控制等。根据网络上相关报道以及部门统计,人工智能行业已经成为21世纪世界各国争相投资和创业的重要选择。据统计,在人工智能行业,全世界的投资金额接近50亿美元。虽然我国人工智能方面的研究相对于欧洲发达国家比较晚,但是随着社会经济的发展人工智能的发展速度较快。      2.2人工智能的发展困境      就目前所有研究资料显示,人工智能的研究困境主要体现在2个方面,分别是计算机博弈和机器翻译,而博弈说白了是竞争。计算机博弈分为多种多样,最为简单的博弈应该是只要操作就可以的,象联机作战游戏。但是实际上来说计算机的博弈主要体现在对技术的操作、应对措施以及智能模仿等方面。人与人之间的竞争涉及方方面面,主要都集中在脑力和体力2个方面,而计算机技术,它是无法根据人的思维和智能去演算出机器博弈的,而这个点就是计算机技术研究所面临的困境。而具体要解决这一世界性的难题,就必须加强人们对技术方面知识的研究,熟悉生物神经学科,不断加强对知识性学科的学习。      机器翻译很多人都会使用。如果某段话不会翻译,就打开某个软件,笔者平常会用几个软件综合一下,把你需要翻译的中文打在输入框内,然后在输入结束后按翻译按键,下框就会自动弹出所对应的英文句子,但是这是非常简单的翻译,而且个人觉得非常不准确,很多语法都无法把握,偏重于中式翻译。而在翻译过程中,实际起作用的还是程序,严格来说,并没有实现自动化翻译。笔者认为,最主要的还是要通过计算机对人类思维的了解和使用语言习惯和知识点进行比较深入地分析,才能够真正完成机器的自动化翻译。      目前来看,人工智能在计算机博弈和机器翻译出现障碍,在世界范围内,机器翻译还是比较广泛运用的,且具有良好的发展前景。      3人工智能在机器人领域中的发展      在现实生活当中,人们的认知方式和生活方式因为人工智能发生了改变。科学家们对于人工智能和计算机的完美结合给予高度重视,大家都把人工智能机器人作为研究的重要领域,而所谓的人工智能机器人,就是可以对人类行为和思维进行模仿,并且相似的机器人。但是就目前的研究状况而言,常常可以看见机器人搬运其物块或是移开物块等,机器人所做的只是在模仿人的行为。对于这些简单的行为机器人的制造并不难,但是难就难在无法将机器人赋予人的思维和智能,就像无法制造出能够与国际象棋世界冠军卡斯帕罗夫对赛的智能机器人。人工智能运用在机器人当中主要表现在2个方面,第一是人工智能系统集成,第二则是多元信息采集。这样做的目的是,将计算机和系统综合起来,使利用率更高。需要认识到的是,单一的系统是无法让计算机得到发展和完善的,计算机必须满足同时拥有多个系统,才能对突发情况进行应对和解决,进而具备了"思维".对于机器人来说,多元信息采集是极其重要的。通过对IT系统的使用,将知识进行系统整理,从而得到更加广泛的知识,这样一来,机器人的智能就会得到提高。      结语      综合上述说法,我们可以看出,人工智能的发展还是比较曲折的,从20世纪中叶到现在,经历了3次高潮,也经历多次冰封时期,几经沉浮终于在世界的发展过程中占有极其重要的地位,且在未来的发展中也将会继续受到重视。尽管如此,我国人工智能的发展相对于欧洲发达国家而言,还是比较落后的。人工智能机器人的发展是一个国家技术经济发展的重要标志,对今后社会经济的发展和中国在全球的地位也具有非常重要的意义。      因此,对于智能机器人的发展,我国应该给予高度重视。中国应当明确发展目标、认清国际形势;培养相关技术人才,有效地运用人工智能技术,缩小中国与世界人工智能方面的水平差异。希望通过国家和科学技术人才的支持和努力,能让我国智能机器人的发展进入一个新台阶,发展达到新高度,在未来的发展过程中起到重要的作用。      参考文献   [1]孙静,张帆,王国庆,等。物联网时代人工智能机器人的发展趋势探讨[J].科技经济导刊,2017(31):12-13.

   #p#分页标题#e#

   人工智能论文2000字范文二:人工智能技术在新冠病毒肺炎疫情防控中的应用   

   摘要:归纳了人工智能技术在新型冠状病毒肺炎疫情防控工作中的应用情况,分别从医疗辅助机器人、大数据分析、云平台、远程医疗、智能检测5个方面进行分析,阐明人工智能在疫情防控中的优势,剖析人工智能在医疗领域的发展前景,为今后人工智能在医疗领域的广泛应用提供参考。      关键词:新型冠状病毒肺炎;人工智能;大数据;机器人;云平台;远程医疗;智能检测      2019年12月,新型冠状病毒肺炎病例在武汉出现,2020年1月20日,国家卫生健康委员会将新型冠状病毒肺炎纳入《中华人民共和国传染病防治法》规定的乙类传染病,并采取甲类传染病的预防、控制措施[1,2].截至2020年2月12日24:00,全国新型冠状病毒肺炎确诊病例52526例,死亡1367例[3].面对疫情全面暴发的严峻形势,医疗防护物资紧缺,医护人员高强度负荷,疫苗和新药亟待研发,公众居家恐慌,疫区优质医疗资源匮乏等,人工智能(artificialintelligence,AI)利用虚拟现实技术,在疫情防控的关键作用逐渐显现,如机器人配送物资,5G网络查房问诊,大数据助力新药研发,远程医疗会诊,智能筛查疑似病例,云平台办公和在线学习。本研究对人工智能技术在此次疫情中的实际应用进行综述,旨在凸显人工智能在疫情防控中的优势,为今后人工智能在医学领域的广泛应用提供参考。      1概述      人工智能是计算机科学的一个分支,由计算机科学、信息学、语言学、控制论、心理学、语言学等多学科相互融合发展起来的,旨在对人的思维、学习、知识储存过程进行模拟和系统应用[4].人工智能技术企图通过挖掘智能的实质,生产出新的类似人脑且能做出快速反应的机器,涵盖算法、芯片、软硬件平台和应用[5].人工智能的核心是算法,基础是数据及计算能力,该领域的主要研究包括自然语言、机器学习、图像识别技术、语言识别技术、神经网络学习等[6,7].随着人工智能技术的逐渐成熟,开展智慧医疗成为医疗领域的热点,也是今后发展和优化医疗服务的趋势[8].目前,该技术在我国医疗健康领域的应用才刚刚起步,并未广泛投入使用,此次新型冠状病毒肺炎疫情的防控,给人工智能技术的开拓应用提供了一个实战平台,让我们看到了人工智能技术在医疗领域的巨大潜力和重大价值。      2人工智能技术在新型冠状病毒肺炎疫情防控中的应用      2.1医疗辅助机器人      医疗辅助机器人的开发应用一直是人工智能在医疗领域应用中备受关注的一大领域[9].广东省人民医院在抗击新型冠状病毒肺炎疫情防控工作中引进了2名机器人"新员工",主要承担送药、送餐、回收被服和医疗垃圾、实时影像监控病区动态等工作;它们集成先进的无人驾驶技术,可自主识别地图和工作环境,自主避开障碍物,实现点对点的物资配送,每台机器人相当于3名配送员,减少了医务人员进入隔离区的频次,在提高配送效率的同时降低了临床工作人员交叉感染的风险。火神山医院投入使用了一批医疗服务机器人--"豹小弟",它们分工明确,承担着红外测温、发热问诊、引领病人、初步诊疗、化验单递送、药品运输等工作,代替了医护过程中简单重复且耗力的工作,在减轻医护人员工作量的同时,减少了医护人员在诊疗过程中交叉感染的机会。这次疫情中投入使用的不止是医疗机器人,还有物流机器人,京东物流的智能配送机器人、苏宁的无人智慧物流仓在武汉市医疗物资的打包、分拣、配送中发挥了高效的作用。#p#分页标题#e#

      2.2大数据分析      我国经历了严重急性呼吸综合征(SARS)、甲型H5N1禽流感、甲型H1N1流感疫情等突发公共卫生事件,此次新型冠状病毒肺炎疫情的防控工作虽然挑战艰巨,但比以往任何一次疫情所能调动的科技资源的水平都高,大数据技术的应用为新型冠状病毒肺炎疫情的防控工作提供了数据支撑,利于国家疫情防控工作制定精准、有效的决策,实时识别和监控高危人群,避免了疫情的进一步扩散。另一方面,疫情数据的实时动态更新和公开发布,避免了谣言及公众因不了解实情相互猜疑引起的恐慌。面对节后复工这一节点的来临,各省市政府机构都在积极利用大数据技术,精准掌握各疫区人员的流动动态,定向指导各类人群的风险识别,合理安排居家隔离及至医院就诊。此外,大量的数据分析也为此次新型冠状病毒肺炎新药和疫苗的研发提供了数据支持,利用人工智能的超大计算力,为大规模文献筛选、病毒基因测序、蛋白筛选等研发工作节省了研发时间。医疗卫生及互联网领域专家表示,利用互联网大数据对重大公共卫生突发事件进行群防群控,是未来疫情防控的关键手段和重要支撑。      2.3远程医疗      远程医疗以远程信息(包括影像、图片、文字、音视频)的传送和交流为主,从"互联网+"的概念来看不算新技术,但由于医疗体制和技术本身的限制,在医疗领域并未广泛应用[10].此次疫情下远程医疗系统的应用让我们看到了它不可估量的价值。面对新型冠状病毒肺炎疫情的不断蔓延,被隔离的病人陷入了极度的恐慌和焦虑情绪,将远程医疗系统引入病区,展现出不可估量的应用价值。(1)宽慰病人:隔离病人需要的更多是被安慰和关心,医生通过远程医疗设备进行远程查房,除了了解病人病情,更多的是同病人交流,给予适当人文关怀,减轻病人的恐慌和抵触情绪。(2)缓解物资紧缺:远程诊疗可以减少医务人员同病人的直接接触,减少防护用品的使用,缓解防护物资的紧缺。(3)远程会诊:基于5G网络,疫区的新型冠状病毒肺炎急重症病人通过远程医疗向其他省市临床医疗中心寻求帮助,获取了远程诊疗意见,实现了优质医疗资源的互通。由此可见,远程医疗的有序开展有利于优化隔离病房的病人管理,安抚隔离病人的紧张情绪,促进优质医疗资源下基层,更好地普及医学知识,进行专业的心理疏导,从而缓解公众的紧张情绪。      2.4人工智能检测      此次疫情防控期间,人工智能测温仪也因地制宜,投入使用。它通过温感摄像头、人脸识别、热成像体温检测系统,能够在2m内快速采集体温,并将身份信息和体温匹配形成数据表,一旦识别出疑似发热者,系统便会自动报警,帮助工作人员及时、准确锁定发热人员。人工智能测温仪可以在1min内实现200~300人同时通过单行道进行快速体温检测,同时升级了人脸识别系统,即使被检测者佩戴口罩,也能实现快速筛查。目前已在部分医院、火车站、机场等人群密集场所投入使用,具有高效、安全、可靠等特点,能够节省人力,减少体温监测人员的感染风险,满足了疫情防控的需要。此外,一些辅助诊断的智能评价体系也正式上线,如上海公共卫生临床中心应用的新型冠状病毒肺炎智能评价系统,从新型冠状病毒肺炎病人CT影像中提取智能参数,可对肺炎严重程度进行自动量化评估,为医生评估CT影像提供参考。      2.5云平台      当前疫情形势严峻,减少外出、避免人员聚集是对疫情传播最有效的遏制,在疫情防控的总体部署下,出现了新的办公和学习模式,众多企业在节后复工时采取远程办公模式,单位通过云平台组织网络会议,员工通过云平台进行居家办公;此外,教育部也连续下发通知,要求延期开学并开展网上教学,老师和学生通过线上教学、云课堂实现师生间的在线学习和交流。      3启示      此次新型冠状病毒肺炎的确诊人数已经超过了SARS,而且新型冠状病毒肺炎的潜伏期较长,传播力也较SARS强,但值得庆幸的是,我国现在的科学技术水平已远超SARS时期,可以调动更广阔、更先进的科技资源和技术力量。人工智能技术的应用在抗击新型冠状病毒肺炎疫情中发挥了积极作用,它不再只是停留在人们概念里的高新技术,从医疗辅助机器人、大数据分析、云计算、远程医疗、智能检测的设想到变为一个个切实可行的案例,人工智能彰显了它在医疗领域广阔的应用前景。随着人口老龄化的出现和慢性病病人数量的逐年上升,公众对医疗健康的需求不断增加,人工智能在临床的应用能够解放人力、提高效率,让有限的医疗资源发挥最大的价值。      参考文献   [1]国家卫生健康委员会。中华人民共和国国家卫生健康委员会公告(2020年第1号)[EB/OL].[2020-02-07].   [2]国务院应对新型冠状病毒感染的肺炎疫情联防联控机制。关于印发近期防控新型冠状病毒感染的肺炎工作方案的通知[EB/OL].[2020-02-10].      [3]国家卫生健康委员会。新型冠状病毒肺炎疫情防控工作疫情通报[EB/OL].[2020-02-13].   [4]贺倩。人工智能技术发展研究[J].现代电信科技,2016,46(2):18-21.      [5]孔祥溢,王任直。人工智能及在医疗领域的应用[J].医学信息学杂志,2016,37(11):2-5.      [6]HAMETP,TREMBLAYJ.Artificialintelligenceinmedicine[J].Metabolism,2017,69:36-40.TAGS:人工智能人工智能技术人工智能论文

浅谈人工智能对社会发展的影响

浅谈人工智能对社会发展的影响

  摘要:人工智能作为20世纪以来发展迅速的一门学科,其对社会的影响越来越受到人们的关注。人工智能产品也越来越广泛地应用于人们的生产生活中,对人类社会发展将产生巨大影响。本文从人工智能的定义与发展出发,结合相关热点话题,探讨人工智能对社会发展的影响。

  关键词:人工智能;社会发展;影响

一、什么是人工智能

 我们总说当今时代是人工智能的时代,随处可见的智能设备、智能机器人仿佛都在告诉我们人工智能无处不在。那么何为人工智能?有人认为那些科学家发明的机器人,长得如人类一般,又可以完成特定任务,那么那就是人工智能,还有人认为只要是模拟了人脑思考过程,那便是人工智能。这些都只是片面的人工智能,无法完整地定义人工智能。

 人工智能(ArtificialIntelligence)是研究和发展模拟、扩展和拓展人类智能的理论、方法、技术和应用系统,是一门新兴的技术科学。人工智能是计算机科学的一个分支,它试图理解智能的本质,并产生一种新的智能机器,可以以类似于人类智能的方式做出反应。

二、人工智能技术的发展

 人工智能的发展主要经历以下几个阶段:第一,形成阶段,在二十世纪五十年代首次提出人工智能概念后,以LISP语言、机器定理证明等为代表的经典技术,标志着人工智能的形成;第二,初期发展阶段,专家系统为代表的人工智能实现了人工智能与实践领域的融合,诸如智能医疗系统可以为医生的判断提供可靠的数据支持;第三,发展中期阶段,第五代计算机研制计划的提出以及人工智能发展积累来的较丰富的经验与技术将人工智能研究带入了热潮;如今,神经网络技术的出现标志着人工智能发展的又一高潮,以深度学习、强化学习、视觉处理等为代表的人工智能新技术和算法正加速创新和突破,推动着其在家居、教学、医药等各个领域的普及与发展。

三、人工智能对社会发展的影响

(一)劳动者

 一部分劳动者在获得双手解放的同时势必会有一部分劳动者丢的手中的饭碗,职业市场势必会迎来新的“大洗牌”,劳动者也要面临失业的风险或是转型的痛苦。首先,我们可以看到的积极影响:

 第一,在人工智能快速发展的时代,各个类型机器人层出不穷,劳动者会由行动者变更为监督者,在更少的人为干预下创造出更多的物质财富。同时也就意味着,劳动者拥有更多属于自己的闲暇时间,可用来提升自己的个人能力,提高自己的文化素养,丰富自己的精神生活,这样或许可为社会创造出更大的价值,也有益于提高全社会幸福感。

 第二,繁琐重复的劳动内容得到简化,劳动者无需无时无刻做着枯燥的体力劳动,在智能化的背景下,他们现在只需要决策、负责以及创新。基于人工智能的发展,更多的累、苦、难等工作都由机器人或者是自动化流水线代替完成,现在的劳动者就可以主攻诸如创新的其他问题,可以预测,在人类充分提高自己的创新能力和创新思维之后,人类社会将会得到何其巨大的进步。

 但是,在人工智能为劳动者带来巨大福音的同时,我们也必须看到其所带来的职业变化:

 第一,重复繁琐简单相关的劳动将会被取代。人工智能的优势显而易见,尤其在数据处理方面,极大多数重复且机械的工作,机器做的比人类更好、更快、更多。这也就意味着有一部分劳动者将会被机器替代,他们可能将失去他们赖以生存的工作,但由于自身文化以及能力局限性,如若没有其他工作接替,或许会引发不同程度的社会问题。

 第二,部分职业仍被保留。由于人工智能自身的局限性,其目前仍无法模拟人类情感、不具有自主意识等等,这也就意味着,人类仍然有一部分工作用以发挥价值。诸如法律判案、条规惩罚之类,在我们的社会治理之中,还存在着酌情处理等等,因为人类的道德良知无法用数据相关程序量化模拟,这也就依靠人而存在。

 第三,新兴职业将涌现。在人类社会发展的历程之中,任何技术的创造与应用,都存在一些“饭碗”的消失与一些“饭碗”的出现,诸如工业时期的汽车出现,早期的人力车夫被取代,转而出现的出租车司机缺也填补了职业空缺。又像现在的快递产业链,没有互联网的快速发展与应用,根本不会出现这样的职业。

(二)劳动工具

 人类的劳动工具将获得有限的自主性。我们的人类活动产生的大量数据将会由计算机控制处理,运用人工智能的相关技术,实现生产等自主化、标准化。机器人等将会作为劳动工具将由人类监督,自主完成相关任务。由此,劳动工具将有有限的自主权。人们不再需要直接参与行动,而是只需要提供适当的协助。并且通过人工智能技术,也会使得生产与制造过程更加精简,产量、质量得到提升的同时,节约能源、材料和劳动力。

(三)劳动对象

 基于人工智能技术的发展与应用,人们的实践领域不用受到时间、空间等因素的制约和限制。现在的自然劳动对象已经无法满足生产者的需求,人类对于自然物的需求转变为新的劳动对象,诸如数据、信息、知识等等,这些也已经成为了人类生产实践活动的对象了。人类社会发展的劳动对象得到了充分的发展与扩充。

四、结论

 人工智能对社会发展的影响,不仅有正面影响,也有负面影响。人工智能给我们带来了巨大的便利的同时也给我们带来了诸多社会问题。诸如人工智能会不会攻击人类、奴役人类、取代人类?人工智能取代大量劳动者会不会引发社会问题?等等,笔者认为,人工智能的出现,是对人的智能的功能性模拟,未来社会它仍然是人类技术的应用,人依旧是社会的主体。并且,人工智能的发展,一方面使得人类从繁重的机械劳动中解脱,但另一方面,也对劳动者带来了职业转型的机遇与挑战。

 因此,在不断推动人工智能技术发展的同时,必须确保人工智能技术是造福全人类的科技成果,而不仅仅是个人牟利的工具,必须以人为本,以用户为重。如今,人工智能技术已经普遍促进了人类的自由全面发展,并将继续促进人类自身的解放和发展。因此,要继续推动人工智能技术的发展,积极寻求人机合作,努力营造人机共生的场景,让人工智能成为推动人类社会发展的又一助力。

参考文献

[1]赵秀秀.浅析人工智能对社会发展的影响[C]//.第三十四届中国(天津)2020’IT、网络、信息技术、电子、仪器仪表创新学术会议论文集.,2020:249-251.DOI:10.26914/c.cnkihy.2020.010088.

[2]贾锐.马克思主义视域下人工智能对社会发展影响探微[J].科技智囊,2020(07):47-49.

[3]蒋万胜,李冰洁.论人工智能技术对人类社会发展的影响[J].西安财经大学学报,2020,33(01):23-29.DOI:10.19331/j.cnki.jxufe.2020.01.003.

[4]张未未.论人工智能对人与社会发展的影响[D].华南理工大学,2018.

[5]蒋万胜,李冰洁.论人工智能技术对人类社会发展的影响[J].西安财经大学学报,2020,33(01):23-29.DOI:10.19331/j.cnki.jxufe.2020.01.003.

[6]马晔风,陈煜波,吴邦刚.人工智能对中国经济社会发展的影响[J].信息化建设,2019(11):48-51.

人工智能未来发展论文

人工智能是用人工的方法和技术模仿、延伸和扩展人的智能,实现某些“机器思维”。以下是小编整理分享的人工智能未来发展论文的相关文章,欢迎阅读!

人工智能未来发展论文

人工智能未来发展论文篇一人工智能的应用与发展研究

摘要:人工智能是用人工的方法和技术模仿、延伸和扩展人的智能,实现某些“机器思维”。本文在阐述人工智能定义的基础上,详细分析了人工智能的应用领域和当前的发展状况,深入探讨了人工智能未来的发展。

关键词:人工智能;应用;问题;发展

当前,人工智能这个术语已被用作“研究如何在机器上实现人类智能”这门学科的名称。从这个意义上说,可把它定义为:是一门研究如何构造智能机器或智能系统,使它能模拟、延伸、扩展人类智能的学科。具体来说,人工智能就是研究如何使机器具有能听、会说、能看、会写、能思维、会学习、能适应环境变化、能解决各种实际问题的一门学科。

一、人工智能的应用现状

大部分学科都有各自的研究领域,每个领域都有其独有的研究课题和研究技术。在人工智能中,这样的分支包含自动定理证明、问题求解、自然语言处理、人工智能方法、程序语言和智能数据检索系统及自动程序设计等等。在过去的30年中,已经建立了一些具有人工智能的微机软件系统。

目前,人工智能的应用领域主要有以下几个方面:一是问题求解。到目前为止,人工智能程序能知道如何思考他们解决的问题;二是逻辑推理与定理证明。逻辑推理是人工智能研究中最持久的领域之一。定理寻找一个证明或反证,不仅需要有根据假设进行演绎的能力,而且许多非形式的工作,在人工智能方法的研究中定理证明是一个极其重要的论题。三是自然语言处理。自然语言的处理是人工智能技术应用与实际领域的典范,目前该领域的主要课题是:计算机系统如何以主题和对话情景为基础,注重大量的尝试一一世界知识和期望作用,生

人工智能的历史、现状和未来

2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄

2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄

2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国

2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇