人工智能三大流派
从学术的观点看,人工智能主要分三大学派,分别是符号主义学派、连接主义学派和行为主义学派。在对人工智能进行研究时,可能会按照某一理论或方法展开探讨分析,但在实地落地的项目或产品可能综合应用了多个学派的知识。比如,最近我们为某制造企业提供智能客服系统,其中语音识别、语音合成和语义理解技术等属于连接主义的成果,同时,也使用了知识库等属于符号主义的成果。一、符号主义学派符号主义,又称逻辑主义、心理学派或计算机学派,是一种基于逻辑推理的智能模拟方法,认为人工智能源于数学逻辑,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。该学派认为人类认知和思维的基本单元是符号,智能是符号的表征和运算过程,计算机同样也是一个物理符号系统,因此,符号主义主张(由人)将智能形式化为符号、知识、规则和算法,并用计算机实现符号、知识、规则和算法的表征和计算,从而实现用计算机来模拟人的智能行为。其首个代表性成果是启发式程序LT(逻辑理论家),它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。此后,符号主义走过了一条启发式算法——专家系统——知识工程的发展道路。专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。1980年卡内基梅隆大学为数字设备公司设计了一个名为XCON的专家系统,在1986年之前,它每年为公司省下四千万美元。专家系统的能力来自于它们存储的专业知识,知识库系统和知识工程成为了上世纪80年代AI研究的主要方向。专家系统仅限于一个专业细分的知识领域,从而避免了常识问题,其简单的设计又使它能够较为容易地编程实现或修改。专家系统的成功开发与应用,对人工智能走向实际应用具有特别重要的意义,也是符号主义最辉煌的时候。但凡事有利有弊,专家系统仅仅局限于某些特定情景,且知识采集难度大、费用高、使用难度大,在其它领域如机器翻译、语音识别等领域基本上未取得成果。日本、英国、美国在80年代初都曾制订过雄心勃勃的人工智能研发计划,如日本的第五代计算机项目,其目标是造出能够与人对话、翻译语言、解释图像,并且像人一样推理的机器,但直到1991年,这个目标依然未能实现。20世纪80年代末,符号主义学派开始走向式微,日益衰落,其重要原因是:符号主义追求的是如同数学定理般的算法规则,试图将人的思想、行为活动及其结果,抽象化为简洁深入而又包罗万象的规则定理,就像牛顿将世间万物的运动蕴含于三条定理之中。但是,人的大脑是宇宙中最复杂的东西,人的思想无比复杂而又广阔无垠,人类智能也远非逻辑和推理。所以,用符号主义学派理论解决智能问题难度可想而知;另一个重要原因是:人类抽象出的符号,源头是身体对物理世界的感知,人类能够通过符号进行交流,是因为人类拥有类似的身体。计算机只处理符号,就不可能有类人感知,人类可意会而不能言传的“潜智能”,不必或不能形式化为符号,更是计算机不能触及的。要实现类人乃至超人智能,就不能仅仅依靠计算机。1997年5月,名为“深蓝”的IBM超级计算机打败了国际象棋世界冠军卡斯帕罗夫,这一事件在当时也曾轰动世界,其实本质上,“深蓝”就是符号主义在博弈领域的成果。【网图,符号主义代表作——知识库】二、连接主义学派连接主义,又称仿生学派或生理学派,是一种基于神经网络和网络间的连接机制与学习算法的智能模拟方法。连接主义强调智能活动是由大量简单单元通过复杂连接后,并行运行的结果,基本思想是,既然生物智能是由神经网络产生的,那就通过人工方式构造神经网络,再训练人工神经网络产生智能。1943年形式化神经元模型(M-P模型)被提出,从此开启了连接主义学派起伏不平的发展之路。1957年感知器被发明,之后连接主义学派一度沉寂。1982年霍普菲尔德网络、1985年受限玻尔兹曼机、1986多层感知器被陆续发明,1986年反向传播法解决了多层感知器的训练问题,1987年卷积神经网络开始被用于语音识别。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下基础。1989年反向传播和神经网络被用于识别银行手写支票的数字,首次实现了人工神经网络的商业化应用。与符号主义学派强调对人类逻辑推理的模拟不同,连接主义学派强调对人类大脑的直接模拟。如果说神经网络模型是对大脑结构和机制的模拟,那么连接主义的各种机器学习方法就是对大脑学习和训练机制的模拟。学习和训练是需要有内容的,数据就是机器学习、训练的内容。连接主义学派可谓是生逢其时,在其深度学习理论取得了系列的突破后,人类进入互联网和大数据的时代。互联网产生了大量的数据,包括海量行为数据、图像数据、内容文本数据等。这些数据分别为智能推荐、图像处理、自然语言处理技术发展做出卓著的贡献。当然,仅有数据也不够,2004年后大数据技术框架的行成和图形处理器(GPU)发展使得深度学习所需要的算力得到满足。在人工智能的算法、算力、数据三要素齐备后,连接主义学派就开始大放光彩了。2009年多层神经网络在语音识别方面取得了重大突破,2011年苹果工作将Siri整合到iPhone4中,2012年谷歌研发的无人驾驶汽车开始路测,2016年DeepMind击败围棋冠军李世石,2018年DeepMind的Alphafold破解了出现了50年之久的蛋白质分子折叠问题。近年来,连接主义学派在人工智能领域取得了辉煌成绩,以至于现在业界大佬所谈论的人工智能基本上都是指连接主义学派的技术,相对而言,符号主义被称作传统的人工智能。虽然连接主义在当下如此强势,但可能阻碍它未来发展的隐患已悄然浮现。连接主义以仿生学为基础,但现在的发展严重受到了脑科学的制约。虽然以连接主义为基础的AI应用规模在不断壮大,但其理论基础依旧是上世纪80年代创立的深度神经网络算法,这主要是由于人类对于大脑的认知依旧停留在神经元这一层次。正因如此,目前也不明确什么样的网络能够产生预期的智能水准,因此大量的探索最终失败。【网图,大数据用途之一】三、行为主义学派行为主义,又称进化主义或控制论学派,是一种基于“感知——行动”的行为智能模拟方法,思想来源是进化论和控制论。其原理为控制论以及感知——动作型控制系统。该学派认为:智能取决于感知和行为,取决于对外界复杂环境的适应,而不是表示和推理,不同的行为表现出不同的功能和不同的控制结构。生物智能是自然进化的产物,生物通过与环境及其他生物之间的相互作用,从而发展出越来越强的智能,人工智能也可以沿这个途径发展。行为主义对传统人工智能进行了批评和否定,提出了无须知识表示和无须推理的智能行为观点。相比于智能是什么,行为主义对如何实现智能行为更感兴趣。在行为主义者眼中,只要机器能够具有和智能生物相同的表现,那它就是智能的。这一学派的代表作首推六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。另外,著名的研究成果还有波士顿动力机器人和波士顿大狗。你可以在网上搜到它们各种炫酷的视频,包括完成体操动作,踹都踹不倒,稳定性、移动性、灵活性都极具亮点。他们的智慧并非来源于自上而下的大脑控制中枢,而是来源于自下而上的肢体与环境的互动。行为主义学派在诞生之初就具有很强的目的性,这也导致它的优劣都很明显。其主要优势便在于行为主义重视结果,或者说机器自身的表现,实用性很强。行为主义在攻克一个难点后就能迅速将其投入实际应用。例如机器学会躲避障碍,就可应用于星际无人探险车和扫地机器人等等。不过也许正是因为过于重视表现形式,行为主义侧重于应用技术的发展,无法如同其他两个学派一般,在某个重要理论获得突破后,迎来爆发式增长。这或许也是行为主义无法与连接主义抗衡的主要原因之一。【网图,行为主义的代表作——波士顿大狗】四、总结综上所述,我们可以简略地认为符号主义研究抽象思维,连接主义研究形象思维,而行为主义研究感知思维。符号主义注重数学可解释性;连接主义偏向于仿人脑模型;行为主义偏向于应用和身体模拟。从共同性方面来说,算法、算力和数据是人工智能的三大核心要素,无论哪个学派,这三者都是其创造价值和取得成功的必备条件。行为主义有一个显著不同点是它有一个智能的“载体”,比如上文所说到的“机器狗”的身体,而符号主义和连接主义则无类似“载体”(当然你也可以认为其“载体”就是计算机,只不过计算机不能感知环境)。人类具有智能不仅仅是因为人有大脑,并且能够保持持续学习。机器要想更“智能”,也需要不断学习。符号主义靠人工赋予机器智能,连接主义是靠机器自行习得智能,行为主义在与环境的作用和反馈中获得智能。连接主义和行为主义都使用强化学习方法进行训练。三者之间的长处与短板都很明显,意味着彼此之间可以扬长补短,共同合作创造更强大的强大的人工智能。比如说将连接主义的“大脑”安装在行为主义的“身体”上,使机器人不但能够对环境做出本能的反应,还能够思考和推理。再比如,是否用可以符号主义的方法将人类的智能尽可能地赋予机器,再按连接主义的学习方法进行训练?这也许可以缩短获得更强机器智能的时间。相信随着人工智能研究的不断深入,这三大学派会融合贯通,可共同为人工智能的实际应用发挥作用,也会为人工智能的理论找到最终答案。简述人工智能,及其三大学派:符号主义、连接主义、行为主义
人工智能是什么人工智能是一个很大的圈子,但是基础必然是机器学习
什么是机器学习呢?
说白了就是你告诉机器你想做什么?并且给它一堆数据让它去模仿着做
(比如,咱们上高中,老师会告诉我们一个目标就是考高分,然后给我们一堆练习册和答案,我们的目的就是让我们做的题的解和答案一致)
机器学习需要什么?算法,数据,程序,评估,应用
机器学习能做什么?机器学习在数据挖掘,图像识别,语音和自然语言处理中有着广泛应用
人工智能哪些领域回到本文的正题。全面认识人工智能之所以困难,是有客观原因的。
其一、人工智能是一个非常广泛的领域。当前人工智能涵盖很多大的学科,我把它们归纳为六个:
(1)计算机视觉(暂且把模式识别,图像处理等问题归入其中)、(2)自然语言理解与交流(暂且把语音识别、合成归入其中,包括对话)、(3)认知与推理(包含各种物理和社会常识)、(4)机器人学(机械、控制、设计、运动规划、任务规划等)、(5)博弈与伦理(多代理人agents的交互、对抗与合作,机器人与社会融合等议题)。(6)机器学习(各种统计的建模、分析工具和计算的方法),这些领域目前还比较散,目前它们正在交叉发展,走向统一的过程中。
由于学科比较分散,从事相关研究的大多数博士、教授等专业人员,往往也只是涉及以上某个学科,甚至长期专注于某个学科中的具体问题。比如**,人脸识别**是计算机视觉这个学科里面的一个很小的问题;深度学习属于机器学习这个学科的一个当红的流派。很多人现在把深度学习就等同于人工智能,就相当于把一个地级市说成全国,肯定不合适。
三大学派为更充分认识人工智能,我们从他的派系来了解人工智能的发展
人工智能符号主义早在上个世纪五十年代,人们基于”让机器产生像人类一样的智能“这样的美好愿望,提出了人工智能的概念,所以一切试图做到这一点的都可以看作”人工智能“的技术,比如在人工智能早期曾十分流行的人工智能三大流派之一的符号主义,人们自己总结规则,然后通过if-else的方法堆砌成一个专家系统,这也属于人工智能领域,而且是人工智能领域非常重要的一部分。
正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法>专家系统>知识工程理论与技术,并在20世纪80年代取得很大发展。符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要的意义。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。这个学派的代表人物有纽厄尔(Newell)、西蒙(Simon)和尼尔逊(Nilsson)等。
近些年来符号主义中的知识图谱在很多智能问答应用中还发挥着很重要的作用,但这种符号主义的手段对于人工消耗极大,每一个规则都需要人手工录入,机器无法自主学习,所以为了解决这个问题,人们提出了机器学习的想法,这时候我们不再需要给机器逐个录入规则本身,而是让机器自己在数据中学习到规则,所以一切试图做到这一点的,都可以看作是机器学习的技术。
对于商用QA系统生成的答案,即使并没有很人性化的回答到问题,但表述的准确性和正确性往往比所谓的智能更重要,所以业内普遍还是偏向于使用符号主义中的知识图谱技术,而不是深度学习让机器学习规则。
人工智能连接主义认为人工智能源于仿生学,特别是对人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。
其中最具代表的神经网络,和深层次神经网络(深度学习)。所以在深度学习领域中,就是不断的增加一个神经网络的隐藏层神经元,让输入的数据被这些神经元不断的抽象和理解,最后得到一个具有泛化能力的预测网络模型
而我们一般把隐藏层超过三层的网络,称之为:深度神经网络
至于网络中每个节点到底在理解什么,很难用精确的数学手段去分析。我们唯一能做的就是:收集数据,送入数据,进行训练,然后期待结果
当然也不是说我们对一个深度神经网络完全不可把控,起码我们能在比如学习率,激活函数,神经元层数和数量等等方面调节神经网络的大致工作行为,俗称——调参
深度学习的训练可以来这里进行体验:Tensorflow游乐场:http://playground.tensorflow.org/
近些年来,人工智能,机器学习领域随着算力,数据和从业者的不断增加,正在不断的涌现着一些十分有趣的想法,等待着探索和发现。
人工智能行为主义行为主义认为人工智能源于控制论。除了深度学习以外,目前机器学习领域中还有另外一项振奋人心的技术,强化学习。
强化学习的灵感来自于人工智能三大流派之一的行为主义,让一个智能体(Agent)不断的采取不同的行动(Action),改变自己的状态(State),和环境(Enviroment)进行交互,从而获得不同的奖励(Reward),我们只需要设计出合适的奖励(Reward)规则,智能体就能在不断的试错中习得合适的策略,
强化学习近些年来也得到了很多的应用,从alphago开始,到近期腾讯的”觉悟“,通过强化学习训练的游戏AI,已经让人类选手开始在MOBA游戏中深感绝望,当然像觉悟这样的AI,在强化学习中也加入了深度学习部分,也就是所谓的深度强化学习。
机器学习该怎么学?-机器学习本质包含了数学原理推导与实际应用技巧
机器学习中有很多经典算法,既然要学习,那就需要清楚一个算法是怎么来的(推导)以及该如何应用
数学重要吗?非常重要的,大学的数学基础即可,如果你都忘了,大致的印象还是有的吧,我觉得与其从头过一遍数学,不如边学边查,一个合适的做法就是哪里不会点哪里,我每天也在查很多知识点
一定要学数学,学推导吗?我知道会用不就可以了吗?有句老话,不光要知其然还要知其所以然,这对我们的应用具有很大的帮助
推导肯定是重中之重了,因为对于我们来说学习的目的就是转换成自身的资本让我们更有竞争力,面试与笔试的时候,这些推导全来了
程序员兄弟如果要转行,让你看数学你肯定要疯的,重点应在于如何应用(库的使用,完整项目如何构建,从头到尾的流程)
底层实现和上层应用像很多技术领域一样,往往可以把这个领域的知识体系简单的分为两层:底层实现和上层应用。
而上层应用中往往随着该领域的发展又会出现很多经过验证的行之有效的经典方法
比如编程语言中Java这个体系,jvm虚拟机,字节码技术构成了Java体系的底层实现,并通过Java语言向上提供应用的接口,而像Spring、Mybatis等框架,以及各种常用的库,则是人们在多年实践中总结而成,能高效的用于生产的经典上层实现,那在实现一个经典任务的时候,Java程序员往往会直接使用这些框架和库,而他们往往也能应对绝大多数问题。
同样,在深度学习领域,我们学习过的像梯度下降,反向传播,CNN,RNN,以及未详细说明的其他的一些基本原理,则构成了现代神经网络的底层实现,而像LeNet-5网络,LSTM,GRU以及AlexNet,VGG,ResNet,Yolo等等,则是在神经网络发展的过程中经过检验而行之有效的模型,
同样,这些经典的网络模型在很多常见的场景,比如语音识别,自然语言处理,图像识别等领域中都能有不错的效果,所以想要用神经网络实现一个具体任务,那么应该首先考虑这些已有的经典网络模型,就像我们使用spring开发Java项目一样,是很自然的选择,
而我们为了提高自己Java项目的开发水平,可能需要去熟悉框架的实现,好消息是我们可以阅读他们的源码,只要你想,就能知道所有细节,而坏消息是这些代码往往非常的庞杂,配合文档和资料也需要很长时间的学习和研究。
同样为了提高对神经网络应用水平,我们需要去熟悉这些经典网络模型,最好的方法就是阅读他们的论文,好消息是这些论文一般都不会特别的长,内容也相对单一,很快就可以看一遍,但坏消息是这些论文一般不会附带源码,一般都是数学公式和图表,阅读他们的门槛可能更高,
但另外一个好消息就是,对于这些经典的网络结构,目前网络上已经有很多人写博客做了更通俗易懂的解读,比如一篇关于LSTM的著名博客,《UnderstandingLSTMNetwork》,这要比看LSTM的原论文要轻松许多,有些文章甚至会逐步的贴出相应的代码,比如对于LeNet5和AlexNet,随便一搜就能找到一大批关于他们论文的解读和用keras实现的代码,所以对于这些经典网络的学习并不是一件特别困难事情。
当然,人工智能作为一门正处于高速发展的学科,每段社区都会有新的idea被提出,有些可能是变革性的,有些可能只是一个小的修补,不论怎样,如果你希望了解这些新的想法,那么唯一的方法就是去看原始的论文,这可能会比较艰难,因为很多论文都是对想法进行简单的描述,然后给出一些公式,而且一般不会详细的说明这些公式每一步推导的细节,最后贴出测试效果的图表,而且并不会附赠源代码,所以为了提高阅读的效率,只能是多看,排除那些写的特别晦涩的论文,一般来说一个领域内的论文,看的多了也就能慢慢的培养出一点感觉,
当然这里还有个很重要的问题,那就是要对机器学习神经网络的底层实现有足够的了解,不仅仅是概念上的,还有数学上的。当然,如果你并不是想做机器学习,神经网络相关的研究工作,而只是想把它应用到自己实际的问题上,那倒是不必研究的如此深刻,在理解了大致工作原理之后,去学习使用那些经典的模型就好,正如我们在学习编程语言的时候,即使不是特别深入的了解计算机的底层实现,也可以写出不错的程序,但是如果是从事像操作系统这样的计算机的方面的研究工作,那么深入的学习则是不可避免的。
悉尼科技大学副校长张成奇:人工智能三大学派与智慧物流
9月19-20日,由临沂市人民政府、新一代人工智能产业技术创新战略联盟、中国物流与采购联合会物流装备专业委员会、中国科学院计算技术研究所联合主办,临沂市大数据局、临沂经济技术开发区管委会、临沂人才工作集团有限公司、中科院计算所临沂分所、华为技术有限公司、中关村视听产业技术创新联盟承办的“2019国际人工智能及智慧物流大会”在山东临沂隆重举行。
大会为期两天,设有一个主会议和“人工智能技术及应用专题会议”“智慧物流专题会议”“人工智能产业园区发展专题会议”“人工智能与健康养老专题会议”“计算所技术与产业对接专题会议”共五个专题会议。
此次大会以“人工智能技术赋能新旧动能转换”为主题,旨在促进人工智能等前沿技术与临沂地方产业特色的深入融合,探索出一条智能化的城市转型升级之路。
在19日的主会议中,悉尼科技大学副校长、澳大利亚人工智能协会理事长张成奇教授以《人工智能发展与智能物流》为题发表演讲,介绍了人工智能技术的发展脉络与应用,并重点探讨了人工智能与物流产业的交集。
张成奇教授介绍,人工智能技术在物流领域有几点重要的应用方向,包括流量和流向预测、智能仓储、客户管理、风险管理等等。
作为一名临沂人,张成奇教授也为家乡的物流产业发展献上宝贵的建议。他表示,人工智能与物流产业的结合不是单一,而是全面与综合的。如果临沂能够成立一个人工智能物流研究院,一定会对当地的物流产业升级大有裨益。
他强调,成立物流研究院并不是要找100个人工智能方面的人才来做研究,事实上这样的人才很难找。相反,我们更应该成立一个高级研究顾问组来策划和动员全国乃至世界的精英力量来共同为临沂的物流产业升级添砖加瓦。
以下是张成奇教授的全部演讲内容,雷锋网做了不改变原意的整理与编辑:
谢谢大会的邀请。我的分享主题是《人工智能发展及智能物流》,演讲共分为三部分:第一部分梳理人工智能的大致发展脉络,第二部分介绍它的主要应用方向,第三部分探讨人工智能与物流产业的交集。
人工智能的发展脉络
人工智能如今大家已经耳熟能详了。它提出至今已有63年的历史,但三年前才真正热门起来,直接原因是AlphaGo战胜了围棋世界冠军。此前人工智能经历了三起两落,一直不温不火。
我是从1982年读硕士开始研究人工智能的,至今也有37年了,这37年里人工智能的发展是有一定规律可循的。
人工智能的“热”并不是偶然,而是各方面条件成熟的结果,是一个厚积薄发的过程。算法、算力和数据三者缺少任何一个,人工智能都火不起来。事实上,即便现在火的也只是人工智能中一部分,没有做到全面开花。
图灵测试是人工智能发展历程中的一个重要里程碑。现在计算机界最大的奖项就叫“图灵奖”,相当于计算机界的诺贝尔奖。
图灵测试有几个非常伟大的地方。首先,它提出的时间非常早,1950年的时候计算机还只能做简单算数,图灵就想到了计算智能,非常具有前瞻性。图灵测试的内涵并不复杂,就是提出相同的问题分别让人类和机器来作答,由出题人来判断哪个是机器答的哪个是人答的。比如有100道题,分辨出谁是机器和人的概率小于70%,就代表机器已经具备智能了。里面包含了一个很重要的思想,它不管答案正确与否,也不管答案是怎么得出的,只关心机器与人的答案的相似性。
这个思想主导人工智能发展了至少60年,之后的人工智能研究基本都是沿着这个思路展开的。比如图像识别,人类和机器识别图像的方式几乎没有任何关联,但没关系,只要结果是一样的就行了。那么,究竟该怎样让机器来模仿人类的智能呢,由此诞生了人工智能的三大学派。
三大学派是如何划分的?实际上人的智能分成三大部分,第一部分是认知,它是人类所有独有的,其他生物都不具备。认知智能是机器最早要模拟的人类智能,我们认为人工智能主要就是认知智能。什么是认知智能?学习能力、推理能力、专家能力都属于认知智能。人工智能从1956年开始模拟认知智能,由此衍生出了人工智能的第一个大学派——符号主义人工智能。
人类还有一类智能叫做感知智能,眼、耳、鼻、舌、身对环境的感知能力都属于感知智能,动物也具备这个能力。过去机器的感知智能一直做得不好,准确率低到无法应用,现在随着深度学习、云计算和大数据技术的发展,这一类智能有了很大提高,这正是人工智能突然火起来的原因。现在人工智能的很多应用,比如识别图片、识别语句实际都属于感知智能。
第三类是行为类智能,叫做行为主义人工智能,比如机器人的操控。当然,机器人的操控也涉及到了认知和感知智能。
基于知识的认知类人工智能我们称之为第一代人工智能,而像图像识别、语音识别这类基于数据的感知智能,我们称之为第二代人工智能。机器人则是一种混合智能,既要用到感知和认知,也要用到行为。三者加起来就构成了人工智能发展的脉络。
50年代人工智能也曾红极一时,当时用到了符号推理,但后来发现不大成功,原因在于它没有知识。所以70年代的时候就开始发展基于知识的专家系统。当时大家认为,人的认知智能主要决定于知识而不是推理能力。专家系统在人工智能的发展中起到了很大的作用,现在依然有很多专家系统在使用,包括在保险理赔、法律顾问、医疗辅助、气象辅助等领域。
但专家系统也有它的局限性,就是太专一了,所以后来90年代初又发展出了分布式专家系统。我的博士论文就是专门研究分布式专家系统的,而且发表在了《世界人工智能杂志》上,这在大陆华人里还是第一个,当时是1992年。分布式专家系统的感知能力非常有限,但相比过去的专家系统已经有了很大的提升。其中数据挖掘作出了重要贡献,很多知识专家也不具备,但可以从数据挖掘中获得。可以说,数据挖掘是第二代人工智能的开始。
数据挖掘的应用非常广泛,从社会保障、保险、证券、银行到物流都大有用武之地。应用数据挖掘最成功的例子当属沃尔玛,它可以用数据预测客户需求,然后根据客户需求做仓储预测,希望借此将库存降低到0。但实际它只要把库存降低一个百分点就已经能够节省非常多的钱了。此外,数据挖掘做的比较好的企业还有京东和滴滴。
临沂的物流业也离不开数据挖掘,我建议在这方面加大投入。物流业的本质就是把商品从一个地方运往另一个地方,如果我们能通过数据挖掘预测需求,就不必等需求来了才去调度车辆。滴滴的空车调度就是一个很好的例子,它不但能在来订单的时候把车辆调过去,还能在所有空车都在等客的时候,把车提前调度到未来一小时客流量会大幅增加的地方。物流也是同样的道理,你对需求的预测越准确,物流的效率就越高。
人工智能的第二个学派称之为连接主义学派,主要对应图像和视频,它的成功得益于神经网络的发展。神经网络其实很早就有了,但只能做到三层,层数多了它就不收敛,算着算着就发散了,得不出结果。现在的深度学习是怎么做的呢?假如你有很多的数据,通过算法不断迭代,它就能知道哪一类特征应该识别出什么样的结果。它的本质通过大量数据迭代找到了一个复杂的函数关系,但是它太复杂了,很难去解释。现在整个行业面临的难题就是如何让深度学习算法具有可解释性。
深度学习算法的发展催生了感知智能的成功。目前人工智能领域的独角兽企业基本都可以归类为感知类企业。现在深度学习算法的准确率已经能够让人接受了,比如车牌识别和人脸识别的准确率都非常高了,京东有几万员工,但他们上班都不用刷卡,通过人脸识别比对一下就行了。
大家可以想象,等图像识别的准确度足够高的时候,整个世界会发生怎样的改变。现在我们去高铁站要刷票,去海关要带护照,本质上都是为了证明你是你。等人脸识别足够准确了,这些证件就都不需要了。
语音识别的应用范围就更广了,科大讯飞和云知声在这方面都做得很好。这项技术发展成熟后,我们出去旅游直接说中文就行了,别人说法文、西班牙文都没有关系。我们不用学英文,不用做翻译,可以节省大量的时间。
还是视频解析,现在大家习惯把视频解析理解成寻人或者追逃,实际它的价值远不止于此。
总而言之,连接主义人工智能或者第二波人工智能之所以火起来,主要是因为它的感知能力提高了。
第三个学派是行为主义人工智能。因为机器人不光要认知和感知,还要操作和行动。机器人可以代替我们完成很多工作,减轻工作负担。比如我们学校为日本东京电力集团研发的蜘蛛机器人,可以自动爬到铁塔上去检测维修。我们还和招商集团合作,在海门造船厂用螃蟹机器人除锈喷漆。
机器学习早期是基于符号的,现在是基于数据的。人工智能不仅要解决认知和感知问题,还要解决行为问题,三者融合是人工智能下一步非常重要的发展方向。有人说人工智能这么厉害,未来会不会比人还聪明。我认为至少这一代还做不到,因为它是基于数据的,和人类智能还有很大差别。所以说人工智能的研究接下来还有很多事情要做。
人工智能的应用范围
人工智能的应用范围非常广,比如自然语言处理,很多地方都用得到,包括物流行业。物流实际是一个综合性产业,人工智能的大部分技术都用得到,比如智能仓储、智能配送、客户管理都可以用到很多人工智能技术。
自动驾驶也是综合了人工智能的三大学派,其中图像视频理解属于感知智能,驾驶决策属于认知智能,驾驶控制属于行为智能。
智慧物流
做智慧物流首先要布局物联网,因为现在的人工智能都是基于数据的。数据从哪里来?一种是社交类数据,来自银行信息、社交网络等;还有一类是机器收集的,属于物联网的范畴。所以智慧物流要从物联网着手,增加信息的采集,收集数据后还要处理进和分析预测。
这里面涉及到了人工智能的方方面面,比如自然语言理解是感知智能,推理规划属于认知智能,智能控制是行为智能。人工智能在物流领域的具体应用包括需求预测、库存优化、仓库选址、自动分拣、机器人搬运、车货匹配、物流路线、自动驾驶、风险预测、客户画像、业务拓展、智能客服、订单管理,非常之广泛。
所以物流行业想要再上一个新台阶,在人工智能领域加入投入是非常有必要的。我认为临沂可以成立一个人工智能物流研究院,未来一定可以收到很大回报,但布局一定要趁早。
企业做智慧物流要加大与外界科研机构的合作。前面李院士说了一句话我很认同,就是“科研机构先做研究,有了成果再拿来转化,这种思路是错的”。因为科研院所的研究通常聚焦在核心技术,比如做机器人,我们可以做出样机但不知道市场上有爬铁塔的需求。这种定制化的需求我管它叫“最后一公里”。要迈过这最后一公里,一定是企业提供需求,和科研院所的核心技术结合起来,然后用两到三年的时间来共同开发,大家共同拥有知识产权。而不是我把爬铁塔的机器人造好了直接卖给你,科研院所没有这个能力,这也不是他们的主要目的。
经常有企业问我,你有什么技术我能帮你转化。我回答,“对不起,我开发的都是核心技术原型,还没到应用的阶段。如果你愿意,可以先投一点钱,我们一起来开发,知识产权共有。开发完成后就可以进行产业化了。”
其实市面上有很多的投资机构可以提供资金。那为什么还要产业界的人投一部分钱呢?因为不投钱你就不会专心。所以你可以把你的需求和产能投进来,再加上一部分的钱,我们找第三方投资机构合作,这是最理想的途径。
最后介绍几个智慧物流的具体应用。
首先是流量和流向预测,这对物流业非常重要。现在大多数还是被动型调度,订单来了我才安排,有了预测之后我们就可以进行主动调度,就像滴滴调度空车一样。里面需要用到数据挖掘技术,预测潜在的风险。物流高峰等等。
智能仓储。现在很多仓促都应用了机器自动分拣。其实合理安排库存也很重要,根据不同货物的属性和周期优化库存。做好了这些,物流的效率就能显著提高。
客户管理。物流行业里的所有物都是和人相关的。谁要?往哪运?运多少?什么时间运?这些都涉及到客户管理,包括客户画像、智能客服,知识图谱、个性化管理等。
风险管理也很重要,比如我们派单的时候可以分析司机的疲劳程度。如果他已经连续驾驶了12个小时,就必须进行干预,否则一旦出现交通事故,损失就将非常严重。此外还有包裹和集装箱的损坏检测等。
总而言之,人工智能在物流产业中的应用不是单一而是综合的。
我建议临沂成立一个人工智能物流研究院,这样就可以调动全国乃至全世界的相关人才来共同发挥力量。需要强调的是,成立研究院并不是要招100个人工智能人才来做研究,这很难做到。但我们可以成立一个高级研究顾问组来策划和组织全世界的人才来合作交流。
我今天的分享就到这里,谢谢大家。雷锋网雷锋网
雷峰网原创文章,未经授权禁止转载。详情见转载须知。
人工智能期末复习
什么是蠕虫,木马以及二者跟病毒是什么关系!BKAPY:可不可以通过文字这样理解?蠕虫,会自己动,有主动性,根本目的是繁衍跟破坏,而木马,不能自己动,不管是进攻还是潜伏亦或是传播,都需要人来指使,本质目的是为了获取利益,如同特洛伊木马一般,马是死物,是骗开城门的贺礼,等时机成熟,就杀出来辅助主人享受胜利果实
softmaxlayer简单理解以及实际例子【有白话讲解】GorawenDevent:懂了,但不知道怎么用语言来描述,可不可以这样说,一个SoftMaxLayer是不是可以看做是一次用SoftMax函数对输入类别进行概率转换的过程?
C语言字符串分割函数p=strtok(NULL,"");风萧古道:第一段代码第17行printf("%d",i);是输出不了的。在while循环中如果用printf或cout输出字符串,则在while循环外再输出是输出不了的。。
存储器里面的一个采用直接映射方式的32KB缓存-一个四路组相连的缓存,容量为16KBm0_62412333:我也有这个疑惑,但是按照字节来算和答案能对上,也不知道咋回事
Python网络爬虫之股票数据Scrapy爬虫实例介绍,实现与优化!(未成功生成要爬取的内容!)Bee7788:我也是个空文件请问怎么解决呢