科技部关于支持建设新一代人工智能示范应用场景的通知
标 题:科技部关于支持建设新一代人工智能示范应用场景的通知发文机关:科技部发文字号:国科发规〔2022〕228号来 源:科技部网站主题分类:公文种类:通知成文日期:2022年08月12日标 题:科技部关于支持建设新一代人工智能示范应用场景的通知发文机关:科技部发文字号:国科发规〔2022〕228号来 源:科技部网站主题分类:公文种类:通知成文日期:2022年08月12日科技部关于支持建设新一代人工智能示范应用场景的通知国科发规〔2022〕228号
各省、自治区、直辖市及计划单列市科技厅(委、局),新疆生产建设兵团科技局:
为加快推动人工智能应用,助力稳经济,培育新的经济增长点,根据国务院发布的《新一代人工智能发展规划》,按照科技部等六部门联合印发的《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》,现启动支持建设新一代人工智能示范应用场景工作。有关事项通知如下。
一、工作目标
坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,充分发挥人工智能赋能经济社会发展的作用,围绕构建全链条、全过程的人工智能行业应用生态,支持一批基础较好的人工智能应用场景,加强研发上下游配合与新技术集成,打造形成一批可复制、可推广的标杆型示范应用场景。首批支持建设十个示范应用场景。
二、首批示范应用场景
(一)智慧农场。
针对水稻、玉米、小麦、棉花等农作物生产过程,聚焦“耕、种、管、收”等关键作业环节,运用面向群体智能自主无人作业的农业智能化装备等关键技术,构建农田土壤变化自适应感知、农机行为控制、群体实时协作、智慧农场大脑等规模化作业典型场景,实现农业种植和管理集约化、少人化、精准化。
(二)智能港口。
针对港口大型码头泊位、岸桥管理以及堆场、配载调度等关键业务环节,运用智能化码头机械、数字孪生集成生产时空管控系统等关键技术,开展船舶自动配载、自动作业路径及泊位计划优化、水平运输车辆及新型轨道交通设备的协同调度、智能堆场选位等场景应用,形成覆盖码头运作、运行监测与设备健康管理的智能化解决方案,打造世界一流水平的超大型智能港口。
(三)智能矿山。
针对我国矿山高质量安全发展需求,聚焦井工矿和露天矿,运用人工智能、5G通信、基础软件等新一代自主可控信息技术,建成井工矿“数字网联、无人操作、智能巡视、远程干预”的常态化运行示范采掘工作面,开展露天矿矿车无人驾驶、铲运装协同自主作业示范应用,通过智能化技术减人换人,全面提升我国矿山行业本质安全水平。
(四)智能工厂。
针对流程制造业、离散制造业工厂中生产调度、参数控制、设备健康管理等关键业务环节,综合运用工厂数字孪生、智能控制、优化决策等技术,在生产过程智能决策、柔性化制造、大型设备能耗优化、设备智能诊断与维护等方面形成具有行业特色、可复制推广的智能工厂解决方案,在化工、钢铁、电力、装备制造等重点行业进行示范应用。
(五)智慧家居。
针对未来家庭生活中家电、饮食、陪护、健康管理等个性化、智能化需求,运用云侧智能决策和主动服务、场景引擎和自适应感知等关键技术,加强主动提醒、智能推荐、健康管理、智慧零操作等综合示范应用,推动实现从单品智能到全屋智能、从被动控制到主动学习、各类智慧产品兼容发展的全屋一体化智控覆盖。
(六)智能教育。
针对青少年教育中“备、教、练、测、管”等关键环节,运用学习认知状态感知、无感知异地授课的智慧学习和智慧教室等关键技术,构建虚实融合与跨平台支撑的智能教育基础环境,重点面向欠发达地区中小学,支持开展智能教育示范应用,提升优质教育资源覆盖面,助力乡村振兴和国家教育数字化战略实施。
(七)自动驾驶。
针对自动驾驶从特定道路向常规道路进一步拓展需求,运用车端与路端传感器融合的高准确环境感知与超视距信息共享、车路云一体化的协同决策与控制等关键技术,开展交叉路口、环岛、匝道等复杂行车条件下自动驾驶场景示范应用,推动高速公路无人物流、高级别自动驾驶汽车、智能网联公交车、自主代客泊车等场景发展。
(八)智能诊疗。
针对常见病、慢性病、多发病等诊疗需求,基于医疗领域数据库知识库的规模化构建、大规模医疗人工智能模型训练等智能医疗基础设施,运用人工智能可循证诊疗决策医疗关键技术,建立人工智能赋能医疗服务新模式。重点面向县级医院,提升基层医疗服务水平。
(九)智慧法院。
针对诉讼服务、审判执行、司法管理等法院业务领域,运用非结构化文本语义理解、裁判说理分析推理、风险智能识别等关键技术,加强庭审笔录自动生成、类案智能推送、全案由智能量裁辅助、裁判文书全自动生成、案件卷宗自适应巡查、自动化审判质效评价与监督等智能化场景的应用示范,有效化解案多人少矛盾,促进审判体系和审判能力现代化。
(十)智能供应链。
针对智能仓储、智能配送、冷链运输等关键环节,运用人机交互、物流机械臂控制、反向定制、需求预测与售后追踪等关键技术,优化场景驱动的智能供应链算法,构建智能、高效、协同的供应链体系,推进智能物流与供应链技术规模化落地应用,提升产品库存周转效率,降低物流成本。
三、组织实施
科技部以国家科技计划项目成果为主要基础,以国家新一代人工智能创新发展试验区为主要依托,充分发挥国家新一代人工智能开放创新平台企业作用,遴选一批支持建设的示范应用场景。
各地方科技厅(委、局)、试验区向科技部推荐拟支持建设的示范应用场景,科技部经审核评估后,确定是否支持,并对建设达标的场景进行宣传推广。
联系人及电话:战略规划司 许 谦,010-58881670
常歆识,010-58881615
科技部2022年8月12日
科技部关于支持建设新一代人工智能示范应用场景的通知国科发规〔2022〕228号
各省、自治区、直辖市及计划单列市科技厅(委、局),新疆生产建设兵团科技局:
为加快推动人工智能应用,助力稳经济,培育新的经济增长点,根据国务院发布的《新一代人工智能发展规划》,按照科技部等六部门联合印发的《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》,现启动支持建设新一代人工智能示范应用场景工作。有关事项通知如下。
一、工作目标
坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,充分发挥人工智能赋能经济社会发展的作用,围绕构建全链条、全过程的人工智能行业应用生态,支持一批基础较好的人工智能应用场景,加强研发上下游配合与新技术集成,打造形成一批可复制、可推广的标杆型示范应用场景。首批支持建设十个示范应用场景。
二、首批示范应用场景
(一)智慧农场。
针对水稻、玉米、小麦、棉花等农作物生产过程,聚焦“耕、种、管、收”等关键作业环节,运用面向群体智能自主无人作业的农业智能化装备等关键技术,构建农田土壤变化自适应感知、农机行为控制、群体实时协作、智慧农场大脑等规模化作业典型场景,实现农业种植和管理集约化、少人化、精准化。
(二)智能港口。
针对港口大型码头泊位、岸桥管理以及堆场、配载调度等关键业务环节,运用智能化码头机械、数字孪生集成生产时空管控系统等关键技术,开展船舶自动配载、自动作业路径及泊位计划优化、水平运输车辆及新型轨道交通设备的协同调度、智能堆场选位等场景应用,形成覆盖码头运作、运行监测与设备健康管理的智能化解决方案,打造世界一流水平的超大型智能港口。
(三)智能矿山。
针对我国矿山高质量安全发展需求,聚焦井工矿和露天矿,运用人工智能、5G通信、基础软件等新一代自主可控信息技术,建成井工矿“数字网联、无人操作、智能巡视、远程干预”的常态化运行示范采掘工作面,开展露天矿矿车无人驾驶、铲运装协同自主作业示范应用,通过智能化技术减人换人,全面提升我国矿山行业本质安全水平。
(四)智能工厂。
针对流程制造业、离散制造业工厂中生产调度、参数控制、设备健康管理等关键业务环节,综合运用工厂数字孪生、智能控制、优化决策等技术,在生产过程智能决策、柔性化制造、大型设备能耗优化、设备智能诊断与维护等方面形成具有行业特色、可复制推广的智能工厂解决方案,在化工、钢铁、电力、装备制造等重点行业进行示范应用。
(五)智慧家居。
针对未来家庭生活中家电、饮食、陪护、健康管理等个性化、智能化需求,运用云侧智能决策和主动服务、场景引擎和自适应感知等关键技术,加强主动提醒、智能推荐、健康管理、智慧零操作等综合示范应用,推动实现从单品智能到全屋智能、从被动控制到主动学习、各类智慧产品兼容发展的全屋一体化智控覆盖。
(六)智能教育。
针对青少年教育中“备、教、练、测、管”等关键环节,运用学习认知状态感知、无感知异地授课的智慧学习和智慧教室等关键技术,构建虚实融合与跨平台支撑的智能教育基础环境,重点面向欠发达地区中小学,支持开展智能教育示范应用,提升优质教育资源覆盖面,助力乡村振兴和国家教育数字化战略实施。
(七)自动驾驶。
针对自动驾驶从特定道路向常规道路进一步拓展需求,运用车端与路端传感器融合的高准确环境感知与超视距信息共享、车路云一体化的协同决策与控制等关键技术,开展交叉路口、环岛、匝道等复杂行车条件下自动驾驶场景示范应用,推动高速公路无人物流、高级别自动驾驶汽车、智能网联公交车、自主代客泊车等场景发展。
(八)智能诊疗。
针对常见病、慢性病、多发病等诊疗需求,基于医疗领域数据库知识库的规模化构建、大规模医疗人工智能模型训练等智能医疗基础设施,运用人工智能可循证诊疗决策医疗关键技术,建立人工智能赋能医疗服务新模式。重点面向县级医院,提升基层医疗服务水平。
(九)智慧法院。
针对诉讼服务、审判执行、司法管理等法院业务领域,运用非结构化文本语义理解、裁判说理分析推理、风险智能识别等关键技术,加强庭审笔录自动生成、类案智能推送、全案由智能量裁辅助、裁判文书全自动生成、案件卷宗自适应巡查、自动化审判质效评价与监督等智能化场景的应用示范,有效化解案多人少矛盾,促进审判体系和审判能力现代化。
(十)智能供应链。
针对智能仓储、智能配送、冷链运输等关键环节,运用人机交互、物流机械臂控制、反向定制、需求预测与售后追踪等关键技术,优化场景驱动的智能供应链算法,构建智能、高效、协同的供应链体系,推进智能物流与供应链技术规模化落地应用,提升产品库存周转效率,降低物流成本。
三、组织实施
科技部以国家科技计划项目成果为主要基础,以国家新一代人工智能创新发展试验区为主要依托,充分发挥国家新一代人工智能开放创新平台企业作用,遴选一批支持建设的示范应用场景。
各地方科技厅(委、局)、试验区向科技部推荐拟支持建设的示范应用场景,科技部经审核评估后,确定是否支持,并对建设达标的场景进行宣传推广。
联系人及电话:战略规划司 许 谦,010-58881670
常歆识,010-58881615
科技部2022年8月12日
扫一扫在手机打开当前页生活中 人工智能应用场景有哪些
智能交通系统的应用范围:包括机场、车站客流疏导系统,城市交通智能调度系统,高速公路智能调度系统,运营车辆调度管理系统,机动车自动控制系统等。
无人驾驶汽车:特斯拉。
3、智能停车场
智能车牌识别系统主要是由:摄像头、控制程序、嵌入式硬件和停车栏杆控制系统组成。
港珠澳大桥珠海口岸配套的停车场,采用人工智能识别、导航寻车系统。包括停车场+车牌识别/卡片系统、视频车位引导+反向寻车+线上打折及缴费系统等,三个区域停车场共计18个车道,约2500个车位。由智慧城市公司打造的智慧停车系统,整合了智能硬件、视频识别、车位引导、室内定位、云平台等技术,实现了便捷停车、线上缴费、车位引导、自助寻车、动态导航等功能。
4、快递。
智能快递分捡系统、智能快递柜。
二、安全系统
1、安防监控
智能门禁系统:用人脸识别、指纹识别开门。
2、安检识别
智能安检仪:基于银河水滴自主研发的深度结构表达模型,通过大量的样本学习、训练,自动识别液体、管制刀具、枪支等违禁品并报警,辅助安检人员进行快速准确的违禁品识别,提升安检速度。
对地铁轨道与隧道进行智能巡检。该检测车打破国外技术垄断,拥有完全自主知识产权,集成钢轨及锁扣缺陷检测、钢轨内部缺陷检测、车辆限界检测、隧道环境异常检测、接触网缺陷检测、轨距检测等六大功能。
三、社会交流
1、识别系统:人脸识别、语音识别、指纹识别。
2、人机互动:图灵机器人、棋牌机器人、主持机器人、语音翻译机器人。
3、智能创作:新闻稿件写作、音乐、绘画。
四、服务系统
1、家庭服务早教机器人、儿童乐高机器人、伴侣、早教、家务、马桶、医疗保健、远程监控、盲人导航。
2、共公服务主要运用于银行、餐厅、博览馆、超市、机场等公共场所的迎宾服务,高速公路交警机器人、收费机器人。
3、智能家居
炒菜机器人、扫地僧机器人、家庭背物机器人、室内送物机器人。
五、工业机器人
1、智能检测
人工智能就是神经网络,AI芯片就是神经网络芯片。人工智能整体核心基础能力显著增强,智能传感器技术产品实现突破,设计、代工、封测技术达到国际水平,神经网络芯片实现量产并在重点领域实现规模化应用,开源开发平台初步具备支撑产业快速发展的能力。
智能检测识别信息技术,涉及光电检测、核磁共振、红外紫外、生物识别、基因检测诊断等专业技术,广泛应用于工业、交通、金融、军工、公共事业、医疗、环境监测等领域。
智能识别及分析技术的主要应用方向,包括高速机器视觉、数据智能分析等。机器视觉技术是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。智能分析是人工智能的重要分支。
2、自动化机器人
工程挖掘机器人、水下机器人、航拍无人机、农业喷淋农药无人机,装卸机器人、水下打捞机器人、生命探测机器人、地下钻井机器人。
3、步态识别
步态识别,是指通过身体体型和行走姿态来分析人的身份,其物理基础是每个人不同的生理结构,如头型、腿骨、肌肉特点、步幅等。
目前,银河水滴拥有全球最先进的步态识别技术和最大的步态数据库。
与指纹识别、人脸识别、虹膜识别比较,步态识别最大的好处就是非接触、远距离。
中国现在已经有3000万个摄像机,并且每年增长20%,因此,在安防、安全监控方面大有作为。
当出现远距离、非配合、全视角(只有侧面和背面)、光线弱、有意遮挡面部、多次换服装等情况时,用步态识别技术进行搜检几乎是最优或唯一的选择。
六、智能围棋手
阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发,其主要工作原理是“深度学习”。
2016年3月份,AlphaGo与李世石的那场围棋人机大战,在科技界和围棋界产生了深远的影响,引爆了人工智能的火花。
2017年5月其与排名第一的世界围棋冠军柯洁的对战,又将人工智能技术推到了普通公众视线中。
七、智能教育
机器人保育员、机器人讲课员、机器人教师。
八、智能视觉
航拍、VR头盔,实时识别出街景视频中的人、自行车、公交车、卡车等。
九、智能穿戴
智能手机、智能眼镜、智能背包。
十、仿真机器人
如果采用仿人通用机器人与自动化设备配合的方式,那么实现高度无人化的难度和成本就会大幅度降低。
如果仿真肌肉、仿真手脚、仿真大脑等技术开发出来了,那么高度无人化社会就会到来,所以AI的另一个重要应用方向就是仿人通用机器人。
如果仿人通用机器人学习了驾驶技术,那么现在的汽车不经任何改动就可以实现无人(机器人)驾驶。返回搜狐,查看更多
科技部确定人工智能示范应用十大场景:智慧家居自动驾驶将入快车道
近日,科技部发布《关于支持建设新一代人工智能示范应用场景的通知》(以下简称《通知》),公布了首批人工智能示范应用的十大场景,其中包括智慧家居、自动驾驶、智能诊疗等。《通知》指出要充分发挥人工智能赋能经济社会发展的作用,打造形成一批可复制、可推广的标杆型示范应用场景。
近年来,人工智能技术飞速进步,不断催生出日益广阔的场景应用和产业发展。统计数据显示,我国人工智能核心产业规模超过4000亿元,企业数量超过3000家,初步形成了覆盖基础层、技术层、应用层的完整产业链。人工智能在制造、交通、医疗、教育、金融等领域的融合应用,加速了新产业、新模式的产生,给社会诸多方面带来深刻影响。
首批示范应用场景包括智慧农场、智能港口、智能矿山、智能工厂、智慧家居、智能教育、自动驾驶、智能诊疗、智慧法院、智能供应链10个场景,将以国家科技计划项目成果为主要基础,以国家新一代人工智能创新发展试验区为主要依托,加快人工智能场景应用,推动经济高质量发展。
同策研究院分析师宋雪梅对《中国消费者报》记者表示,此次通知是继8月12日科技部等六部门联合发布《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》后的又一重磅政策,既是落实指导意见的具体举措,也充分释放了相关部门加速人工智能场景创新与产业发展的信号。
十大示范应用场景各有各的智慧。比如智慧家居针对未来家庭生活中家电、饮食、陪护、健康管理等个性化、智能化需求,运用云侧智能决策和主动服务、场景引擎和自适应感知等关键技术,推动实现从单品智能到全屋智能、从被动控制到主动学习、各类智慧产品兼容发展的全屋一体化智控覆盖。
自动驾驶场景将从特定道路向常规道路进一步拓展需求,开展复杂行车条件下自动驾驶场景示范应用,推动高速公路无人物流、高级别自动驾驶汽车、智能网联公交车、自主代客泊车等场景发展。
智能教育场景则重点面向欠发达地区中小学支持开展智能教育示范应用,提升优质教育资源覆盖面,助力乡村振兴和国家教育数字化战略实施。
智能诊疗场景将针对常见病、慢性病、多发病等诊疗需求,运用人工智能可循证诊疗决策医疗关键技术,建立人工智能赋能医疗服务新模式,重点面向县级医院提升基层医疗服务水平。
智能供应链将针对智能仓储、智能配送、冷链运输等关键环节,运用人机交互、物流机械臂控制、反向定制、需求预测与售后追踪等关键技术,优化场景驱动的智能供应链算法,构建智能、高效、协同的供应链体系,推进智能物流与供应链技术规模化落地应用,提升产品库存周转效率,降低物流成本。(记者孙蔚)
人工智能的十大应用场景
前言人工智能的热潮席卷全球,无数的人才涌进了人工智能行业,随着机器翻译、图像、人脸识别等领域的日渐成熟,以及近期教育行业的“双减”政策,又有很多人对人工智能的应用前景表示了担忧。今天这里整理了自己看好的、未来人工智能大有可为的十大应用场景,或许因为各种各样的原因,目前还没能完全实现,但是也正因如此,才给了广大从业者机会。
[[416306]]
智能汽车这里没有说无人车,主要是因为完全意义上的无人驾驶应该还有很长的路要走,但是人工智能辅助驾驶,特定、受限场景下的无人驾驶,比如工业园区、高速公路、灾区等等具有特殊条件的路段,可以实现无人驾驶或者是跟随驾驶,目前在某些园区已经开始投放使用无人车,而各种辅助驾驶的智能汽车也已经不断量产交付。各家厂商纷纷入局智能汽车,特别是今年,无论是所谓的BAT互联网大厂,还是华为小米乃至各种所谓造车新势力,以及很多聚焦于视觉、高精地图、雷达等等单一领域的公司,都在智能汽车这个领域发力深耕,而且大有扩张的势头。
智能机器人能够取代人类,或者像动漫《铁臂阿童木》这种智能机器人估计很难,但是各种工业机器人(搬运机器人、喷涂机器人)、服务业(物流机器人)、家用(清洁机器人、老人看护机器人)甚至是军用机器人(包括无人机)等等,都有着广泛的应用空间,同时会涉及到视觉感知、人机交互、智能定位、路径规划、智能控制等等智能算法。目前智能机器人相关公司也非常多,遍布互联网大、中、小厂、独角兽公司以及一些工业企业。
智能RPA(Roboticprocessautomation)RPA机器人主要是指计算机自动化办公,号称是可以模拟并执行日常企业办公中员工通过计算机进行的任何操作,个人感觉有点夸大了。以目前人工智能的发展水平还做不到,但是并不妨碍人工智能辅助人类办公。目前RPA主要集中在以OCR为核心的信息识别录入、财务识别报销以及以NLP为核心的信息抽取、信息审核等,以及两者结合产生的一些应用。个人感觉这块市场潜力非常大,各家也都以toB为核心打造相关产品。
智慧城市智慧城市概念非常大,甚至可以说涵盖了各行各业,人工智能在智慧城市中自然有其用武之地。个人感觉智慧城市是未来发展的方向,当前可以说有一些公司在落地智慧城市的一些项目,比如智慧社区、智慧交通等等,各地都在或多或少地开始智慧城市建设,可以预见,这将会是一项巨大的工程,而人工智能,也必将占有一席之地。
搜索引擎+智能推荐搜索引擎大家都不会陌生,曾经的互联网巨头百度就是靠搜索引擎发家的,不过随着移动互联网的到来,互联网各厂商都在搞自己的搜索引擎,而且用户也更愿意在各家的垂直领域来搜索。比如查找美食会用大众点评,查看短视频会用抖音快手,像自己在看一些技术贴的时候会选择知乎。智能推荐也是类似,像抖音、快手这样的短视频平台,百度、知乎、头条这样的信息流平台,不论未来的信息形式和载体发生如何的变化,智能推荐永远不会过时。
智能客服、虚拟主播人工客服不会被取代,但是不是所有的问题都需要人工客服,在各个平台上,包括知乎平台,智能客服已经能解决很多问题;虚拟主播感觉是在智能客服的基础上更近一步,能够生成立体人物来模拟说话,当然涉及到的技术也更为复杂,目前市面上有一些demo,但距离应用还有一段距离,不像智能客服已经达到基本可用的状态。
智能创作虚拟图像、漫画人脸等等简单应用大家都不陌生,但是这种应用其实已经是创作了,创造图像,AI写诗,都是属于智能创作。可能现在的技术还有一定的局限性,但在未来,AI作图、AI写诗、AI写文案甚至是写小说做视频,并非不可想象,因为有些小工具已经可以尝试了,我这里也听说不少大厂的团队逐渐开始布局智能创作,而阿里之前也开放了智能创作商品文案的接口。
智能医疗智能医疗已经火了好多年了,大厂、创业公司也都有很多,不过目前来看智能医疗还是不够成熟,市面上还没有标志性的产品,这说明智能还有很长的一段路要走,还需要从业人员持续深耕,但是机会也往往会在这样的场景中。
工业视觉类似缺陷检测的工业视觉已经做了很长时间了,不过大多利用的是传统图像处理相关的方法,目前人工智能+工业视觉才刚刚开始,和智能医疗有些类似,仍然需要深耕,目前已经有不少公司在布局,当然,困难肯定会有,而机会同样会有,并且我相信,在不久的将来,会出现独角兽公司称霸市场。
金融大数据无论在任何时代,金融都是位于行业金字塔的顶端。金融+人工智能很有想象空间。量化投资、风险防控等等领域仅仅才是开始。
结束语人工智能已经高速发展很多年了,经常会看到很多人吐槽人工智能落地难,但在我看来,如果说人工智能的上半场是技术的飞跃,那么人工智能的下半场则是在各个场景落地,而人工智能的下半场才刚刚开始。或许目前人工智能技术的发展遇到了各种各样的困难,但是如果能利用好这个工具,或者说在各个场景下利用好这个工具,也许才刚刚开始。敬畏科技,但也要相信科技,要相信科技能够在一定程度上帮助人类。
人工智能的十大主要应用场景
人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。
1.无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。
美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。
2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。
Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。
2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。
近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。
但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。
2.人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。
2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;
2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。
3.机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。
4.声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。
相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。
同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。
目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。
5.智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。
智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。
随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。
而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。
6.智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。
从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。
基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。
7.智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。
支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。
在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。
8.个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。
个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。
9.医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。
传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。
该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。
10.图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。责任编辑人:CC
人工智能应用场景及未来发展趋势 一 什么是人工智能人工智能是当前比较热门的科学和各国重点发展的前沿技术,但人工智能(Artificial Intell
来源:雪球App,作者:玖点半,(https://xueqiu.com/2857816313/132432573)
一.什么是人工智能
人工智能是当前比较热门的科学和各国重点发展的前沿技术,但人工智能(ArtificialIntelligence,缩写为AI)一词的出现,却是早在1956年由麦卡赛、明斯基、罗切斯特和申农等一批具有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题时提出来的,它也标志着"人工智能"的正式诞生。
人工智能是指通过计算机实现人的头脑思维所产生的效果,是对能够从环境中获取感知并执行行动的智能体的描述和构建。从狭义认知角度来讲,人工智能可分为人工智能产业(包含技术、算法、应用等多方面的价值体系)、人工智能技术(包括凡是使用机器帮助、代替甚至部分超越人类实现认知、识别、分析、决策等功能)两大类。
人工智能得到快速发展的时期,是2008年金融危机之后,美日欧等西方发达国家希望借助机器人实现再工业化。此时的工业机器人比以往任何时候都发展的更快,更加带动了人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。
而企业层面,目前在人工智能领域领先的企业,包括IBM、谷歌、微软、苹果、东芝、三星等大型科技企业,国内人工智能领先的企业,包括百度、科大讯飞,中国国家电网、阿里、腾讯以及一些新兴科技企业,如商汤科技、云从科技、码隆科技、影普科技、Yi+等。
二.国内人工智能应用领域及产值规模2.1.国内人工智能应用领域及产业规模人工智能作为科技创新产物,在促进人类社会进步、经济建设和提升人们生活水平等方面起到越来越重要的作用。国内人工智能经过多年的发展,已经在安防、金融、客服、零售、医疗健康、广告营销、教育、城市交通、制造、农业等领域实现商用及规模效应。
2018年国内人工智能技术为实体经济贡献收益规模达到251.1亿元人民币,而据艾瑞咨询预测数据,2019年人工智能将为实体经济贡献收入超570亿元,到2022年贡献收入将达到1573亿元,年复合增长率达到58.2%。
在2018年人工智能251.1亿元市场规模中,安防领域占比份额最高为53.8%,其次则是金融领域,份额占比为15.8%。
2.2.人工智能在安防领域的应用安防是为数不多的可以将人工智能成熟应用并落地的行业,为此,安防也被认为是人工智能的第一着陆场。这是因为人工智能在安防领域的快速落地,除了不需要过多的基础建设之外,也得益于全国范围内安防设备的普及以及政府部门大力发展雪亮工程、智慧城市、平安城市、智慧交通、天网工程等公共安全领域项目工程的推动。其中,2018年公共安全领域安防贡献的市场份额就超过70%。
人工智能在安防领域的应用主要是利用其视频结构化(视频数据的识别和提取技术)、生物识别技术(如指纹识别、人脸识别等)以及物证特征识别(如目前大力推广的ETC对车牌的识别等)等三大特性。其改变了过去需要通过人工取证、被动监控的安防形态,视频数据的识别和提取分析,使人力查阅监控的时间大大缩短,而生物识别又大大提升了人物识别的精准性,极大提升了公共安全治理的效率。
2018年,我国“AI+安防”软硬件市场规模达到135亿元(不含C端用户),其中视频监控占比达到88.1%,据艾瑞咨询预测2019年将达到350亿元,而到2022年,安防规模将超过700亿元,复合增长率将达到51.45%。
2.3.人工智能在金融领域的应用
人工智能在金融领域的应用仅次于安防,这要得益于移动互联网、区块链、云计算、大数据等新技术的日趋成熟,为金融行业的智能化转型升级奠定重要基础。
从技术层面,人工智能的本质上是机器通过大量的数据训练作出智能决策,人工智能能够赋予机器具有理解力的“大脑”,让机器能够解读文字、数据所包含的“语义”,通过自学的方式获得判断的规则。金融行业作为高度数据化的行业,加之业务规则和目标明晰,是人工智能、大数据处理技术和云计算等数据驱动技术的最好应用场景。以此同时,在互联网时代,金融行业的在线业务将成主流,数据量的激增,超出了人的经验范畴和处理能力,而这些却是人工智能最擅长处理的。人工智能正在对金融产品、服务渠道、服务方式、风险管理、授信融资、投资决策等带来新一轮的变革。
2018年国内金融领域人工智能相关科技投入(包括软件和硬件设备)约为166.8亿元,较2017年增速为42.9%,到2022年人工智能相关投入将超580亿元,年复合增长率超过37%,其中银行是人工智能相关应用的主要投入方,占比超过70%。
目前,人工智能在金融业的应用,主要集中在智能支付、智能理赔、智能投顾、智能客服、智能营销、智能投研、智能风控等场景,这些场景又以银行最具有代表。
2.3.1.智能客服智能客服是人工智能在金融领域应用最广的。智能客服机器人取代了传统菜单式语音和人工客服模式,能够提供7*24小时的客服服务。智能客服在电话场景当中主要表现为机器管理和语音问答分析,智能客服可以通过深度学习文本中的对话、语音对话场景,并加以应用回复。智能客服目前在银行领域应用最广,平安银行的客服服务人工智能替代率超过80%,其服务量也提升了两至三倍,客服的人力降低了40%。
2.3.2.智能投顾智能投顾,即人工智能投资顾问,其是通过人工智能的深度学习和分析能力,为客户提供个人理财产品策略咨询,包括股票配置、基金配置、债权配置、交易执行、投资损失避税等策略。智能投顾的最大特点,是弱化“人性”,在基于大数据分析、AI算法等的前提下,一旦投资者选定了某种方案,资产的进出抛售就会严格按照既定的标准实行。
智能投顾的应用,最早可追溯到2016年年底,“摩羯智投”在招商银行手机APP的上线。目前,智能投顾已成为银行、券商、保险等金融机构的标配型服务。
2.3.3.智能风控金融行业在传统风控环节中,存在信息不对称、成本高、时效性差、效率低等问题。而智能风控因为引入了人工智能科技,使得贷前审核、贷中监控和贷后管理等环节效率和准确度都得到了极大的提升,智能风控还能促进风险管理差异化。另外智能风控在信用反欺诈、骗保反欺诈、异常交易行为等方面也发挥了越来越重要的作用,为金融行业欺诈风险的分析和预警监测提供坚实的技术支持。
2.3.4.智能投研与智能投顾相比,智能投研主要面对B端企业用户,为其提供辅助投研的工具。对于金融机构来说,人工智能技术的介入,使得传统投研的各个环节发生一定的优化和革新,解放大量基础的投研信息搜集类工作,而前期信息搜集的耗时性和不全面性,也是传统投研中较为主要的缺陷。智能投研是在金融数据基础上,通过深度学习、自然语言处理等人工智能方法,对数据、事件、结论等信息进行自动化处理和分析,为金融机构提供投研支持。
2.4.人工智能在客服领域的应用前文金融领域中已经提到了智能客服的应用,当然智能客服不仅仅只限于金融行业,在其他行业也运用得越来越广。客户服务引入人工智能技术后,整体上节省了10%以上的运营成本。另外,通过对语音等非标准化数据的识别,企业能沉淀下一手数据资源,为后续精准营销、产品升级等环节做好铺垫。
据艾瑞咨询数据,2018年,国内智能客服业务规模达到27.2亿元,其中以智能客服机器人为代表的人工智能应用业务规模达到7.9亿元,预计2022年智能客服业务规模将突破160亿元,年复合增长率为56%,人工智能应用业务规模突破70亿元。
2.5.人工智能在零售领域的应用人工智能在零售领域的应用已经十分广泛,包括无人便利店、智慧供应链、客流统计、无人仓储等细分领域。人工智能通过深度学习以及计算机视觉、图像智能识别、大数据应用等技术,使得工业智能机器人可通过自主判断和行为学习,完成各种复杂的任务,包括在商品分拣、运输、出库等环节实现自动化。另外,将人工智能技术应用于客流统计工作中,其通过人脸识别客流统计功能,门店可以从性别、年龄、表情、新老顾客、滞留时长等维度建立到店客流用户画像,为调整运营策略提供数据基础,帮助门店运营从匹配真实到店客流的角度提升转换率。
2018年中国现代渠道主要零售商数字化建设投入为285.1亿元,其中人工智能投入约为9亿元,占比3.15%,据预测,到2022年其数字化建设投入将突破700亿元,人工智能投入将超过178亿元,占比超过25%,这主要得益于阿里巴巴、京东、苏宁等零售巨头的推动,以人工智能应用为代表的新零售概念处于增长的上升通道,未来两年将保持较高增速。
而以计算机视觉技术为核心的人脸识别和商品识别是主要建设方向,相关投入占整体的55%以上。另外,零售领域供应链的优化最为复杂,对人工智能算法的可用性要求最高,但更靠近零售业的核心点,未来可释放的增益价值也将最大。
三.人工智能未来发展趋势目前,人工智能的研究及应用主要集中在基础层、技术层和应用层三个方面,其中基础层以AI芯片、计算机语言、算法架构等研发为主,技术层以计算机视觉、智能语音、自然语言处理等应用算法研发为主;应用层以AI技术集成与应用开发为主。而国内人工智能企业多集中在应用层,占比高达77.7%,技术层和基础层企业占比相对较小,分别只占有17.9%和5.4%。当然,未来随着5G的建设普及以及科技进步,人工智能除了在语音识别、计算机视觉技术的继续拓展和实地运用外,在人工智能芯片、机器学习、神经网络等方面也将引来增强趋势,人工智能也将在越来越多的领域得到应用落地。
另外,人工智能与物联网的结合(即AIoT)也将更紧密,AI的介入让物联网有了连接的大脑,使得万物互联互通成为现实,未来或将颠覆现有的产业模式。经济方面,助力产业价值链延伸,目前产业很难依靠既有技术与业务模式打破产业生命周期,AIoT通过设备感知与数据分析支撑新的产品形态与服务模式落地,开拓新的市场空间,产生新的发展周期。社会发展方面,数据价值得到挖掘,实现大量线下数据线上化,实现自动高效处理。
$海康威视(SZ002415)$$上证指数(SH000001)$$沪深300(SH000300)$