博舍

盘点人工智能发展史上的8个历史性事件 人工智能战胜围棋冠军时间

盘点人工智能发展史上的8个历史性事件

原标题:盘点人工智能发展史上的8个历史性事件

人工智能被广大人民群众所熟知大概是从2016年阿尔法围棋(AlphaGo)与围棋世界冠军、职业九段选手李世石进行人机大战那次,并以4:1的总比分获胜。

不少职业围棋手认为,阿尔法围棋的棋力已经达到甚至超过围棋职业九段水平,在世界职业围棋排名中,其等级分曾经超过排名人类第一的棋手柯洁。此次人机大战,引起了全球前所未有的关注,开启了人工智能的新纪元。

实际上,早在上世纪40年代,人工智能的概念就已诞生。在那个时期的一些科幻小说、科幻电影里,就经常有关于人工智能的描述,如超级机器人、超级计算机、光脑等。

在人工智能的发展历程中,还经历了以下七个历史性事件:

一)1943年,WarrenMcCulloch和WalterPitts两位科学家提出了“神经网络”的概念,正式开启了AI的大门。虽然在当时仅是一个数学理论,但是这个理论让人们了解到计算机可以如人类大脑一样进行“深度学习”,描述了如何让人造神经元网络实现逻辑功能。

二)1955年8月31日,JohnMcCarthy、MarvinMinsky、NathanielRochester和ClaudeShannon四位科学家联名提交了一份《人工智能研究》的提案,首次提出了人工智能(AI)的概念,其中的JohnMcCarthy被后人尊称为“人工智能之父”。

三)1969年人类首次提出了反向传播算法(Backpropagation),这是80年代的主流算法,同时也是机器学习历史上最重要的算法之一,奠定了人工智能的基础。

这种算法的独特之处在于映射、非线性化,具有很强的函数复现能力,可以更好地训练人工智能的学习能力。

四)20世纪60年代,麻省理工学院的一名研究人员发明了一个名为ELIZA的计算机心理治疗师,可以帮助用户和机器对话,缓解压力和抑郁,这是语音助手最早的雏形。

语音助手可以识别用户的语言,并进行简单的系统操作,比如苹果的Siri,某种程度上来说,语音助手赋予了人工智能“说话”和“交流”的能力。

展开全文

五)1993年作家兼计算机科学家VernorVinge发表了一篇文章,在这篇文章中首次提到了人工智能的“奇点理论”。他认为未来某一天人工智能会超越人类,并且终结人类社会,主宰人类世界,被其称为“即将到来的技术奇点”。

VernorVinge是最早的人工智能威胁论提出者,后来者还有霍金和特斯拉CEO马斯克。

六)1997年,IBM的超级计算机“深蓝”战胜了当时的国际象棋冠军GarryKasparov,引起了世界的轰动。虽然它还不能证明人工智能可以像人一样思考,但它证明了人工智能在推算及信息处理上要比人类更快。这是AI发展史上,人工智能首次战胜人类。

七)2012年6月,谷歌研究人员JeffDean和吴恩达从YouTube视频中提取了1000万个未标记的图像,训练一个由16,000个电脑处理器组成的庞大神经网络。在没有给出任何识别信息的情况下,人工智能通过深度学习算法准确的从中识别出了猫科动物的照片。

这是人工智能深度学习的首次案例,它意味着人工智能开始有了一定程度的“思考”能力。

人工智能未来的发展:

AI行业的六大发展趋势

·更聪明的机器人

·更快的分析

·更自然的互动

·更微妙的恐惧

·更智能的学习

·知识共享

人工智能的近期研究目标在于建造智能计算机,用以代替人类去从事各种复杂的脑力劳动。正是根据这一近期研究目标,人们才把人工智能理解为计算机科学的一个分支。当然,人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。如今,人工智能已经进入21世纪,其必将为发展国民经济和改善人类生活做出更大的贡献。

来源:人工智能返回搜狐,查看更多

责任编辑:

谷歌人工智能击败围棋冠军为何如此重要

人工智能与围棋

OFweek机器人网讯:最近,你的朋友圈是不是被谷歌的人工智能击败围棋冠军这条消息刷屏了?就在谷歌发表《自然》杂志的封面文章后,Facebook人工智能实验室相关人员随即呛声:恭喜谷歌,但这是我们先做到的。

从两个科技巨头对人工智能击败围棋冠军的重视程度上,可以判断,这是人工智能发展史上了不起的挑战。那么人工智能在人机对战中赢得胜利究竟有多重要,可能得从人工智能的发展说起了。

AlphaGo是如何做到战胜欧洲冠军的?

先来看看谷歌的人工智能是怎么击败围棋冠军的。根据1月28日《自然》杂志的封面文章介绍,谷歌DeepMind公司设计的AlphaGo在没有任何让子的情况下以5:0完胜欧洲冠军、职业围棋二段樊麾。

DeepMind团队表示,AlphaGo的关键在于使用人工智能中的深度神经网络。在AlphaGo中有两种不同的神经网络,第一种叫做政策网络(policynetwork),用来预测下一步;第二种叫做价值网络(valuenetwork),用来预测棋盘上不同的分布会带来什么不同的结果。

“简单来说,DeepMind是通过让机器学习做到的。按照以往的方法,人工智能是外界输入一个信息,计算机通过输入信息与已有的信息联系,得出一个结论,是一种递归的方式。但现在DeepMind的做法是,我不告诉机器哪种算法能得到高分,而是训练它,通过学习和分析结果来判断最优策略。这个过程已经开始类似小孩子学习知识的一种方式了。”复旦大学计算机与工程学院副教授邱锡鹏告诉澎湃新闻。

再通俗一点的说法就是,DeepMind先用已有的围棋技巧来训练AI,称为监督学习(supervisedlearning),然后让AI和自己对弈,通过深度学习让其掌握如何赢得围棋比赛的技巧。

英国围棋协会财务主管,也是樊麾与AlphaGo比赛的裁判托比·曼宁(TobyManning)目睹了整个对弈过程。在接受国外媒体采访时,他表示:“你甚至很难区分哪一方是人类,哪一方是计算机。在之前的很多软件中,计算机下的很多步可能都很理性,但突然就会变得毫无头绪,而在这场比赛中,几乎看不到计算机与人类的区别。一个区别是时间的分配方式:樊麾下每一步所花的时间都要比AlphaGo更久,而AlphaGo的棋路也不像人类棋手那样富有进攻性。它会非常冷静地落子,而非积极地侵略领地或提子。”

地平线机器人公司CEO余凯在自己的朋友圈称,深度学习领域里的各种进步,让其兴奋不已。因为从简单多层神经网络在语音识别的突破(2011),到对空间展开的卷积神经网络在图像识别领域的突破(2012),再到递归神经网络在序列学习领域(OCR,语音,机器翻译,NLP)的进展(2014),再到基于深度神经网络的增强学习在计算机博弈和控制领域的突破性进展(2016),这个过程人类只用了5年时间。

人工智能战胜围棋冠军是一件里程碑式的事件。

为什么这事如此重要?

理解了AlphaGo的人工智能后,再来看看为什么战胜围棋冠军是一件里程碑式的事件。

棋类游戏一直被视为顶级人类智力的试金石。人工智能与人类棋手的对抗一直在上演。1989年开始,IBM的“深蓝”(deepblue)就常常能击败国际象棋大师了,8年后的1997年,深蓝首次打败世界第一的国际象棋棋手加里·卡斯帕罗夫,开始统治国际象棋领域。2006年,成为了人类在国际象棋的绝唱,因为自此之后,人类再没有战胜过最顶尖的人工智能国际象棋选手。

不同于国际象棋,围棋每回合的可能性更多,共有250种可能,一盘棋可以长达150回合。同时,围棋有3^361种局面,而可观测到的宇宙,原子数量才10^80。用人工智能战胜围棋专业选手,按照技术的发展速度,一般认为至少需要10年才能实现。

“为什么我们要致力计算机围棋?因为这是一个需要学习、模式识别、问题解决和规划等技能组合在一起的技能。也是一个测试新的想法,机器学习、推理和规划的好方法。”Facebook人工智能实验室主任YannLeCun在自己的Facebook账号上表示。

Facebook人工智能研究所研究员田渊栋在其知乎账号上指出,围棋难的地方在于它的估值函数非常不平滑,差一个子盘面就可能天翻地覆,同时状态空间大,也没有全局的结构。这两点加起来,迫使目前计算机只能用穷举法并且因此进展缓慢。

目前,田渊栋在Facebook负责黑暗森林(DarkForest)项目,也是一个围棋对弈项目。这个程序已更新到第三个版本,并在KGS服务器上运营了一个多月,并取得了成人组第五的排名。这个排名意味着它已经成为全美国最好的前100名选手之一,也步入了世界最顶尖围棋机器人之列。

赢了欧洲冠军樊麾后,AlphaGo下一步的目标是在3月份挑战围棋世界冠军李世石。

对于这场世纪大对决,DeepMind公司创立者之一德米斯·哈萨比斯(DemisHassabis)表示很有信心。他在接受《自然》杂志采访时称:“AlphaGo很可能在围棋这一领域超越最顶尖的人类,我非常期待看到它在围棋的规则之内创造出新的东西。这是我亲手打造的系统,自然对它怀有很深的感情,尤其考虑到我们打造它的方式——它会不断学习,从某种意义上说我们是在不断‘训练’它,它下棋的方式也很像人类。你在写一段普通的程序时,可能对所有细节都了如指掌,事先安排好了一切,但AlphaGo不一样,它会自己学习提高,这种能力是很了不起的。”

关于AlphaGo的未来应用,哈萨比斯说:“最终,我们想要将这些技术应用到真实世界的重要问题中。因为我们用的方法是通用的,我们希望有一天,它们能延伸得更广,帮助解决最紧迫的社会问题,从医药诊断到环境模型。”

按照哈萨比斯的描述,这项技术在Google的首个用途将是开发更好的个人助理软件。这样的个人助理能够从用户在线行为中学习用户偏好,并对产品和事件作出更符合直觉的建议。利用人工智能来做私人助理,这与Facebook首席执行官马克·扎克伯格之前的想法又不谋而合了。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇