博舍

人工智能世界中的她力量 人工智能领域的工作

人工智能世界中的她力量

当前:女性在人工智能领域的现状如今,各行各业的企业在实现人工智能目标时面临一个共同的挑战--人才。由于缺乏必要的人工智能技能,许多企业正在加强人工智能招聘工作,同时寻求多样化的人才资源。对人工智能的需求只会有增无减。2020年领英的报告发现,人工智能专家被列为美国新兴工作之首,对该职位的招聘在过去的四年里每年增加74%。

尽管企业对人工智能的需求激增,有一个可以帮助实现人工智能战略的人才库在很大程度上仍未得到开发,那就是女性。2020年,女性在美国劳动力市场的占比约为47%。另外,女性在2019年获得了美国机构颁发的大多数研究生证书、硕士学位和博士学位。

然而,2020年世界经济论坛的一份报告显示,女性仅占数据和人工智能岗位的26%,而斯坦福大学人类中心人工智能研究所的2021年人工智能指数报告显示,在全球专注于人工智能的终身教员中,女性仅占16%。

适应人工智能驱动科研新范式

当前,随着新科技革命和产业变革深入发展,人工智能技术不断突破并向科研领域广泛渗透,为科研工作注入了新元素、新动能,对科研效率提升和范式变革形成显著催化作用,现代科研活动由此更加高效、精准,“人工智能驱动的科学研究”已成为全球人工智能新前沿,必将为未来科技发展开启全新局面。

  近年来,我国人工智能技术快速发展,科研数据和算力资源日益丰富,顺应新时代新趋势,利用新技术新优势,推动人工智能赋能科学研究恰逢其时、大有可为。

  应用场景是新范式的孕育土壤和实训基地,人工智能技术与科学研究互动互促需要在诸多应用场景中反复实践、不断完善,随着应用范围不断拓展延伸,科研能力持续实现智慧升级。为此,以需求为牵引谋划人工智能技术应用场景,基于促进科学研究更加紧密拥抱人工智能技术,拓展人工智能技术在数学、化学、地学、材料、生物和空间科学等重大科学领域的应用。充分发挥人工智能技术在文献数据获取、实验预测、结果分析等方面的作用,围绕具有典型代表意义和辐射带动性的基础科学、应用科学领域,创造更多实战式应用场景,融合人工智能模型算法和领域数据知识,不断探索重大科学问题研究突破的新路径、新范式,持续积累可复制可推广的经验做法。

  人工智能技术在科研活动应用中涉及多专业、多环节,离不开不同类型、不同链条主体机构的合理分工和有效协作。为此,要鼓励企业运用人工智能开展关键技术研发、新产品培育等科研活动,支持高校、科研院所、新型研发机构探索人工智能技术用于重大科学研究和技术开发的先进模式,培育壮大一批跨界技术转化和企业孵化机构、科研中介服务机构,探索多元主体合作协作新机制。面向重大科学问题的人工智能模型和算法创新,发展一批针对典型科研领域的“人工智能驱动的科学研究”专用平台,推动国家新一代人工智能公共算力开放创新平台建设,支持高性能计算中心与智算中心异构融合发展,鼓励各类科研主体按照分类分级原则开放科学数据。支持成立“人工智能驱动的科学研究”创新联合体,搭建国际学术交流平台。

  适应性人才是新范式突破和推广的根本源泉。提高人工智能技术在科学研究领域的应用水平,既需要人工智能和相应学科的专业人才,也离不开跨领域复合型人才为跨界沟通协作提供高效支撑,这需要多渠道构筑相关人力资源引育平台和机制。为此,要多渠道培养和汇聚跨越人工智能和专业领域的复合型人才。支持更多数学、物理等科学领域的科学家、研究人员投身相关研究,鼓励普通高校、职业院校在人工智能学科专业教学中设置科技创新类专业课程,提升人工智能专业学生科研专业素养。鼓励开展相关人才培训,通过开设研修班、开展实践交流、组织专题培训等多种形式,培养一批人工智能与专业科研能力兼顾的复合型人才。鼓励地方政府、央企、行业领军企业通过“揭榜挂帅”、联合创新等方式支持相关优秀人才和科研团队开展智慧赋能科研工作。

19个人工智能(AI)热门应用领域,你知道多少

近年来,机器人的发展突飞猛进,在某些特定场景,如工厂流水线、安保、疾病诊断等方面,人工智能通过成千上万次训练,在大数据计算的赋能下,正逐渐超越人类,替代人类完成大部分重复性、机械性的繁琐工作。

处在人工智能大变革的前夕,虽然现阶段人工智能在逻辑尝试、创新能力、人文关怀等方面还远远无法替代人类,但不可避免的,AI也会带来更多难题和挑战。俗话说,知己知彼,方能立于不败之地。今天,就让小编给大家普及一下人工智能(AI)的19个热门应用领域吧。

(一)自然语言生成(NaturalLanguageGeneration)

自然语言生成是人工智能的分支,研究如何将数据转化为文本,用于客户服务、报告生成以及市场概述。

(二)语音识别(SpeechRecognition)

语音识别Siri就是一个典型的例子。目前,通过语音应答交互系统和移动应用程序对人类语言进行转录的系统已多达数十万。

(三)虚拟助理(VirtualAgents)

虚拟助理是一种能与人类进行交互的计算机代理或程序,其中以聊天机器人最为著名。虚拟助理多用于客户服务和支持,并可以作为智能家居的管理者。

(四)机器学习平台(MachineLearningPlatforms)

机器学习平台机器学习是计算机科学和人工智能技术的分支,它能提升计算机的学习能力。通过提供算法、API(应用程序接口)、开发和训练工具包、数据、以及计算能力来设计、培训和部署模型到应用程序、流程和其他机器,广受企业青睐,用以解决预测和分类任务。Adext是世界上第一个也是唯一的观众管理工具,它将人工智能和机器学习应用于数字广告,以期将广告精准的投放给最符合产品定位的受众。

(五)人工智能硬件优化(AI-optimizedHardware)

人工智能硬件优化用于运行面向人工智能的计算任务,是经过专门设计和架构的GPU(图形处理单元)和CPU(中央处理单元)。即将推出的基于人工智能优化的硅芯片,将直接嵌入到你的便携设备以及生活各处。

(六)决策管理(DecisionManagement)

决策管理智能机器能够向AI系统引入规则及逻辑,因此你可以利用它们进行初始化设置/训练,以及持续的维护和优化。决策管理在多类企业应用中得以实现,它能协助或者进行自动决策,实现企业收益最大化。

(七)深度学习平台(DeepLearningPlatforms)

深度学习平台是机器学习的一种特殊形式,它包含多层的人工神经网络,能够模拟人类大脑,处理数据并创建决策模式。目前主要被用于基于大数据集的模式识别和分类。

(八)生物信息(Biometrics)

生物信息这项技术能够识别、测量、分析人类行为以及身体的物理结构和形态。它能赋予人类和机器之间更多的自然交互能力,包括但不仅限于图像、触控识别和身体语言识别,目前被广泛用于市场研究领域。

(九)机器处理自动化(RoboticProcessesAutomation)

机器处理自动化使用脚本和其它方法实现人类操作的自动化,以支持更高效的商业流程。目前被用于人力成本高昂或效率较低的任务和流程。机器处理自动化能将人类的才能最大化的展示出来,并且让职工更加具有创造性和战略性,对公司的发展至关重要。

(十)文本分析和自然语言处理(TextAnalyticsandNaturalLanguageProcessing)

文本分析和自然语言处理利用统计和机器学习方法理解句子的结构、含义、情绪和意图,广泛应用于欺诈探测和信息安全等领域,同时还可用于非结构化数据的挖掘。

(十一)数字孪生/AI建模(DigitalTwin/AIModeling)

数字孪生/AI建模是一种软件架构,搭建起物理系统和数字世界的桥梁。通用电气公司(GeneralElectric,GE)宣布将成立一家人工智能公司,用于对飞机引擎、机车、燃气轮机的监控、以及故障预测。该公司的数字孪生仅几行代码,即便是最复杂的版本看上去也就像三维计算机辅助设计图纸,充满了交互式图表和数据点。

(十二)网络防御(CyberDefense)

网络防御是一种计算机网络防御机制,专注于预防、检测以及在基础设施和信息在受到攻击和威胁时进行及时响应。人工智能和机器学习将网络防御带入了新的发展阶段:在2017年,共检测出20亿次的入侵记录,其中76%的入侵是意外发生的,69%是身份丢失造成的。

递归神经网络(Recurrentneuralnetworks,RNN)能够处理输入序列,与机器学习技术相结合创建出监督学习技术,能够发现可疑目标,并检测出高达85%的网络攻击。

   Darktrace和Cylance等初创公司高度重视人工智能结合网络防御领域的工作。Darktrace将行为分析与高等数学相结合,自动检测组织内部的异常行为,Cylance应用人工智能算法来阻止恶意软件的入侵并减轻攻击造成的损害。另一家致力于网络防御的公司,DeepInstinct,被看作是“最具破坏性的初创公司”,该公司旨在保护企业的端点、服务器和移动设备。

(十三)合规(Compliance)

合规是指一个人或者一家公司的经营活动与公认管理、法规、规章、标准或合同条款相一致。将人工智能应用于合规工作中已屡见不鲜,自然语言处理技术能够扫描文本并且将其模式与关键字相匹配,以识别与公司有关的变动。具有预测分析功能和场景构建器的资本压力测试技术能够帮助公司遵守监管资本要求。此外,深度学习的使用,能有效减少被标记为潜在洗钱活动的交易数量。

(十四)知识工作辅助(KnowledgeWorkerAid) 

知识工作辅助虽然许多人都很担心AI是否会完全取代人类工作,但别忘了,AI科技能够在很大程度上帮助人们出色的完成自己的工作,特别是在知识工作领域。知识工作的自动化已被列为第二大最具破坏性的新兴技术。在大量依靠知识工作者的医疗和法律领域,从业者们将逐渐使用AI技术作为诊断工具。

(十五)内容创作(ContentCreation)

内容创作包括人们对网络世界输入的任何材料,如视频、广告、博客、白皮书、信息图表以及其它视觉或者书面材料。哥伦比亚广播公司等团队已使用了AI技术进行内容生成;Wibbitz的SaaS平台可以通过人工智能视频产品把文字内容转化为视频内容;自动透视公司研发的Wordsmith,在获取数据后利用自然语言处理技术进行新闻写作。

(十六)P2P网络(Peer-to-PeerNetworks)

P2P网络是指网络的参与者共享他们所拥有的一部分硬件资源,这些共享资源通过网络提供服务和内容,能被其它P2P节点直接访问而无需经过中间实体。BetCapitalLLC的首席执行长本哈特曼在接受《创业者》杂志采访时表示,P2P网络也被用于货币加密,甚至能够通过收集和分析大量数据来解决一些世界上最具挑战性的问题。普瑞斯是一家旨在利用P2P网络和人工智能让搜索引擎更加通俗易懂的公司,以加密货币为奖励,让参与者们借出他们电脑的计算能力。相应地,该公司许诺会建立一个更加透明的搜索引擎平台。

(十七)情绪识别(EmotionRecognition)

情绪识别情绪识别可以通过高级图像处理或音频数据处理来“读取”人类脸上的表情。目前,我们已经能够捕捉“微表情”,识别肢体语言暗示,以及分析含有情绪的语音语调。执法人员在审讯过程中使用这项技术能够获取更多的信息,这项技术也被广泛运用于市场营销。

(十八)图像识别(ImageRecognition)

图像识别是指在数字图像或者视频中识别和检测出物体或特征的过程,人工智能技术在该领域具有独特的优势。人工智能可以在社交媒体平台上搜索照片,并将其与大量数据集进行比较,从而找出与之最为相关的内容。图像识别技术能用于车牌识别、疾病检测、客户意见分析以及身份验证等。

(十九)智能营销(MarketingAutomation)

智能营销到目前为止,市场部门已经从人工智能中获益良多,业界对人工智能的信任是有充分理由的。55%的营销人员确信人工智能在他们的领域会比社交媒体有更大的影响力。智能营销能够提升公司的参与度和效率,对客户进行细分、集成客户数据和管理活动,并简化重复任务,让决策者们有更多的时间专注战略制定。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇