新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
人工智能时代需培养学生怎样能力
“未来人工智能环境下的课堂,可能是‘双师型’的课堂,人机交互、人机结合将成为主要形态。一堂课可能由一名教师和一个机器人共同来上,布置和批改作业、知识点训练、监督学习、学习情况的分析等工作可能由机器人来完成。”在日前召开的第四次全国数据驱动教育改进专题研讨会上,北京师范大学中国教育创新研究院院长刘坚这样描述人工智能时代的课堂。
人工智能不能代替学习
面对席卷而来、被称为人类“第二次零点革命”的人工智能浪潮,互联网时代的教育界,也不那么淡定了。“因为人工智能不是信息化的延续,技术对教育的影响,正在由‘革新’发展为‘革命’。”中关村学院学术委员会原负责人吕文清说,“高级阶段的人工智能具有类人脑的学习力和思考力,将来还能进化到自适应学习,在这个意义上,人工智能拓展了人的思维。人工智能改变的,不仅是教育的边界和方式,整个教育样态也将面临重塑。”
不过,科大讯飞教育研究院院长孙曙辉认为,人工智能不能代替人的思维,不能代替学习,技术也改变不了教育的本质。因此,在当前热炒人工智能概念的大背景下,一定要认清技术与教育的关系,搞清楚哪些是教育本身的问题,哪些是技术可以解决的问题。
高阶认知能力的重要性将更加凸显
在人工智能时代,学生应该具备怎样的能力,才能适应社会需求,在竞争中立于不败之地?
教育部副部长杜占元在去年12月召开的2017未来教育大会上提出,在机器能够思考的时代,教育应着重培养学生的5种能力,即自主学习能力、提出问题的能力、人际交往的能力、创新思维的能力及筹划未来的能力。
教育部科技发展中心原主任李志民说,今天我们说知识就是力量,讲的是如何学习、记忆和掌握更多的知识,讲究知识的系统性,而在人工智能时代,知识是开放的,随时随地可查找、可检索,因此,记忆知识以及知识的系统性不再像今天这样重要了,学生更需要学习如何从已有的知识中挖掘出新应用、新知识,通过已有知识学习新知识,与之对应的知识结构或学习过程就是思维的训练。
“低阶认知技能的重要性会下降,如记忆、复述、再现等初级信息加工任务将更多地被机器代替,而高阶认知能力的重要性会更加凸显,如识别问题、逻辑推理、意义建构、精致思考、自我指导能力等。”吕文清认为,人工智能时代应重点培养学生的终身学习素养、计算思维素养、设计思维素养和交互思维素养,培养学生5种能力——高阶认知能力、创新能力、联结能力、意义建构能力和元认知能力。终身学习素养,主要基于人工智能时代需要更强大和持续的学习力,强调学会学习和建构不断演进的知识框架;计算思维素养,主要基于学习和理解人工智能,强化思考的逻辑和精致。现在很火的编程课程,主要是培养计算思维;设计思维素养,主要基于人工智能时代学生执行困难任务,需要关注项目设计、任务设计和路径设计等高层次管理,重点引导学生学会选择、学会决策、学会判断;交互思维素养,主要基于人工智能时代学生交往方式的变化,需要高级信息素养、媒体素养、沟通交流和技术伦理,重点引导学生学会开源共享、参与协商、组建社区等,理解复杂的相互关系。高阶认知能力,强调独立思考、逻辑推理、信息加工等;创新能力,强调好奇心、想象力和创新思维、创新人格等;联结能力,强调学会统筹、组织资源、建立联系,特别是包括人工智能在内的多个空间的联结;意义建构能力,强调社会情感、责任意识和高感性、高概念等要素;元认知能力,强调学习自我认知、自我监控和自我指导。
“我认为,没有什么能力是贴有人工智能时代专属标签的。随着时代的发展,人类已有的知识和经验变得不重要,而培养学生的综合素质、高阶思维、创新能力等,这些要求无论在哪个时代都是需要的、共通的、不会过时的。”孙曙辉说。
未来的学习将更加个性化
未来的学习,在哪儿学、跟谁学、怎么学?原有的概念可能都会被颠覆。教育又该如何作出调整,以适应新的时代要求?吕文清认为,人工智能时代对学生的学习目标、学习内容、能力层级甚至心智模式,都提出了新的需求。在教学上,人工智能时代要以“思维教学”为主线,既强调基于认知能力的信息加工、分析综合、逻辑推理等高阶思维的培养,还要增加和突出计算思维、设计思维和交互思维的培养。具体落点上,要强调概念性知识、方法性知识和价值性知识的教学,要注重教原理、教统筹、教大观点、教元认知等不可替代的知识,也就是高阶认知和高阶学习。
人工智能对于当前的教育,不只是颠覆和冲击,也会带来促进和改良。李志民说,人工智能时代的教育管理,无论是宏观层面还是微观层面,都更容易做到精细化,对教师的评价会更加全面而科学;可以根据每个学生的智力程度和思维习惯以及学习方式进行教学,实现真正的个性化学习和因材施教。
据了解,目前许多中小学已开设编程、3D打印技术等与人工智能相关的课程,学生学习兴趣特别浓厚。一些学校还以社团和选修课的形式推进机器人、智能汽车、计算机编程等课程的开设与完善,提升学生信息化素养,促进学科知识融合。
人工智能时代,学生获得知识及能力、素养的提升途径无疑会更多元,其中互联网发挥的作用会更大。而人工智能的应用,会让教师从机械重复的工作中解放出来,去做更有价值的工作。孙曙辉认为,在中小学开设编程等人工智能相关课程,有助于训练学生的思维方式,但主要意义在于普及相关科学知识,并不能帮助学生“赢在起跑线”。目前,很多所谓人工智能的应用,包括一些针对职业人群的人工智能培训,都是炒作概念的“伪人工智能”,人工智能在短期内尚难发展到较为高级的阶段。当前市场上已经出现针对中小学生的打着“人工智能”旗号的相关培训班,家长完全没必要怕“掉队”,在现阶段,保持清醒的头脑,不盲目跟风至关重要。(本报记者汪瑞林)
人工智能应用素养
[1]人工智能通识课,皮埃罗·斯加鲁菲,人民邮电出版社,ISBN编号:9787115536808;[2]人工智能与电气应用,胡维昊等,科学出版社,ISBN编号:9787030682260;
[3]人工智能(AI)应用从入门到精通,苏秉华、吴红辉、滕悦然,,化学工业出版社,ISBN编号:9787122362360
[4]人工智能技术及应用,程显毅、任越美、孙丽丽等,机械工业出版社,ISBN编号:9787111660835
[5]人工智能应用基础,肖正兴,聂哲,高等教育出版社,ISBN编号:9787040527599
[6]人工智能应用概论,莫少林、宫斐,中国人民大学出版社,ISBN编号:9787300285856
[7]智能制造AI落地制造业之道,蒋明炜,机械工业出版社,ISBN编号:9787111699316
[8]探路智慧社会(人工智能赋能社会治理),之江实验室,中国科学技术出版社,ISBN编号:9787504690081
人工智能的几个概念
人工智能
人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
简介
“人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
实际应用机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。
学科范畴人工智能是一门边沿学科,属于自然科学和社会科学的交叉。
涉及学科哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,
研究范畴自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式
应用领域智能控制,机器人学,语言和图像理解,遗传编程机器人工厂
安全问题
目前人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。这种隐患也在多部电影中发生过。
机器学习
机器学习(MachineLearning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
学习能力是智能行为的一个非常重要的特征,但至今对学习的机理尚不清楚。人们曾对机器学习给出各种定义。H.A.Simon认为,学习是系统所作的适应性变化,使得系统在下一次完成同样或类似的任务时更为有效。R.s.Michalski认为,学习是构造或修改对于所经历事物的表示。从事专家系统研制的人们则认为学习是知识的获取。这些观点各有侧重,第一种观点强调学习的外部行为效果,第二种则强调学习的内部过程,而第三种主要是从知识工程的实用性角度出发的。
机器学习在人工智能的研究中具有十分重要的地位。一个不具有学习能力的智能系统难以称得上是一个真正的智能系统,但是以往的智能系统都普遍缺少学习的能力。例如,它们遇到错误时不能自我校正;不会通过经验改善自身的性能;不会自动获取和发现所需要的知识。它们的推理仅限于演绎而缺少归纳,因此至多只能够证明已存在事实、定理,而不能发现新的定理、定律和规则等。随着人工智能的深入发展,这些局限性表现得愈加突出。正是在这种情形下,机器学习逐渐成为人工智能研究的核心之一。它的应用已遍及人工智能的各个分支,如专家系统、自动推理、自然语言理解、模式识别、计算机视觉、智能机器人等领域。其中尤其典型的是专家系统中的知识获取瓶颈问题,人们一直在努力试图采用机器学习的方法加以克服。
机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。
自从1980年在卡内基-梅隆大学召开第一届机器学术研讨会以来,机器学习的研究工作发展很快,已成为中心课题之一。
模式识别
模式识别(PatternRecognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机
的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。
模式识别(PatternRecognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(SupervisedClassification)和无监督的分类(UnsupervisedClassification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。
模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。
模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。
模式识别所分类的类别数目由特定的识别问题决定。有时,开始时无法得知实际的类别数,需要识别系统反复观测被识别对象以后确定。
模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。
人工神经网络
人工神经网络(ArtificialNeuralNetworks,ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。(引自《环球科学》2007年第一期《神经语言:老鼠胡须下的秘密》)
概念
由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
人工神经网络具有四个基本特征:
(1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
(2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
(3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。
(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。
人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。
知识工程(KBE)knowledgebasedengineering
在计算机上建立专家系统的技术。知识工程这个术语最早由美国人工智能专家E.A.费根鲍姆提出。由于在建立专家系统时所要处理的主要是专家的或书本上的知识,正像在数据处理中数据是处理对象一样,所以它又称知识处理学。其研究内容主要包括知识的获取、知识的表示以及知识的运用和处理等三大方面。
费根鲍姆及其研究小组在20世纪70年代中期研究了人类专家们(而不是万能博士们)解决其专门领域问题时的方式和方法,注意到专家解题的4个特点:①为了解决特定领域的一个具体问题,除了需要一些公共的知识,例如哲学思想、思维方法和一般的数学知识等之外,更需要应用大量与所解问题领域密切相关的知识,即所谓领域知识。②采用启发式的解题方法或称试探性的解题方法。为了解一个问题,特别是一些问题本身就很难用严格的数学方法描述的问题,往往不可能借助一种预先设计好的固定程式或算法来解决它们,而必须采用一种不确定的试探性解题方法。③解题中除了运用演绎方法外,必须求助于归纳的方法和抽象的方法。因为只有运用归纳和抽象才能创立新概念,推出新知识,并使知识逐步深化。④必须处理问题的模糊性、不确定性和不完全性。因为现实世界就是充满模糊性、不确定性和不完全性的,所以决定解决这些问题的方式和方法也必须是模糊的和不确定的,并应能处理不完全的知识。总之,人们在解题的过程中,首先运用已有的知识开始进行启发式的解题,并在解题中不断修正旧知识,获取新知识,从而丰富和深化已有的知识,然后再在一个更高的层次上运用这些知识求解问题,如此循环往复,螺旋式上升,直到把问题解决为止。由上面的分析可见,在这种解题的过程中,人们所运用和操作的对象主要是各种知识(当然也包括各种有关的数据),因此也就是一个知识处理的过程。
专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
专家系统
专家系统(expertsystem)是人工智能应用研究最活跃和最广泛的课题之一。
运用特定领域的专门知识,通过推理来模拟通常由人类专家才能解决的各种复杂的、具体的问题,达到与专家具有同等解决问题能力的计算机智能程序系统。它能对决策的过程作出解释,并有学习功能,即能自动增长解决问题所需的知识。
发展简况专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。20世纪60年代初,出现了运用逻辑学和模拟心理活动的一些通用问题求解程序,它们可以证明定理和进行逻辑推理。但是这些通用方法无法解决大的实际问题,很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大的搜索空间也难于处理。1965年,f.a.费根鲍姆等人在总结通用问题求解系统的成功与失败经验的基础上,结合化学领域的专门知识,研制了世界上第一个专家系统dendral,可以推断化学分子结构。20多年来,知识工程的研究,专家系统的理论和技术不断发展,应用渗透到几乎各个领域,包括化学、数学、物理、生物、医学、农业、气象、地质勘探、军事、工程技术、法律、商业、空间技术、自动控制、计算机设计和制造等众多领域,开发了几千个的专家系统,其中不少在功能上已达到,甚至超过同领域中人类专家的水平,并在实际应用中产生了巨大的经济效益。
专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和环境来研制大型综合专家系统。在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。
类型对专家系统可以按不同的方法分类。通常,可以按应用领域、知识表示方法、控制策略、任务类型等分类。如按任务类型来划分,常见的有解释型、预测型、诊断型、调试型、维护型、规划型、设计型、监督型、控制型、教育型等。
体系结构专家系统与传统的计算机程序系统有着完全不同的体系结构,通常它由知识库、推理机、综合数据库、知识获取机制、解释机制和人机接口等几个基本的、独立的部分所组成,其中尤以知识库与推理机相互分离而别具特色。专家系统的体系结构随专家系统的类型、功能和规模的不同,而有所差异。
为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。产生式系统由综合数据库、知识库和推理机3个主要部分组成,综合数据库包含求解问题的世界范围内的事实和断言。知识库包含所有用“如果:〈前提〉,于是:〈结果〉”形式表达的知识规则。推理机(又称规则解释器)的任务是运用控制策略找到可以应用的规则。正向链的策略是寻找出前提可以同数据库中的事实或断言相匹配的那些规则,并运用冲突的消除策略,从这些都可满足的规则中挑选出一个执行,从而改变原来数据库的内容。这样反复地进行寻找,直到数据库的事实与目标一致即找到解答,或者到没有规则可以与之匹配时才停止。逆向链的策略是从选定的目标出发,寻找执行后果可以达到目标的规则;如果这条规则的前提与数据库中的事实相匹配,问题就得到解决;否则把这条规则的前提作为新的子目标,并对新的子目标寻找可以运用的规则,执行逆向序列的前提,直到最后运用的规则的前提可以与数据库中的事实相匹配,或者直到没有规则再可以应用时,系统便以对话形式请求用户回答并输入必需的事实。
早期的专家系统采用通用的程序设计语言(如fortran、pascal、basic等)和人工智能语言(如lisp、prolog、smalltalk等),通过人工智能专家与领域专家的合作,直接编程来实现的。其研制周期长,难度大,但灵活实用,至今尚为人工智能专家所使用。大部分专家系统研制工作已采用专家系统开发环境或专家系统开发工具来实现,领域专家可以选用合适的工具开发自己的专家系统,大大缩短了专家系统的研制周期,从而为专家系统在各领域的广泛应用提供条件。
图灵测试
【简介】
图灵测试(又称“图灵判断”)是图灵提出的一个关于机器人的著名判断原则。一种测试机器是不是具备人类智能的方法。如果说现在有一台电脑,其运算速度非常快、记亿容量和逻揖单元的数目也超过了人脑,而且还为这台电脑编写了许多智能化的程序,并提供了合适种类的大量数据,使这台电脑能够做一些人性化的事情,如简单地听或说。回答某些问题等。那么,我们是否就能说这台机器具有思维能力了呢?或者说,我们怎样才能判断一台机器是否具存了思维能力呢?
为了检验一台机器是否能合情理地被说成在思想,人工智能的始祖艾伦•图灵提出了一种称作图灵试验的方法。此原则说:被测试的有一个人,另一个是声称自己有人类智力的机器。测试时,测试人与被测试人是分开的,测试人只有通过一些装置(如键盘)向被测试人问一些问题,这些问题随便是什么问题都可以。问过一些问题后,如果测试人能够正确地分出谁是人谁是机器,那机器就没有通过图灵测试,如果测试人没有分出谁是机器谁是人,那这个机器就是有人类智能的。目前还没有一台机器能够通过图灵测试,也就是说,计算机的智力与人类相比还差得远呢。比如自动聊天机器人。同时图灵试验还存在一个问题,如果一个机器具备了“类智能”运算能力,那么通过图灵试验的时间会延长,那么多长时间合适呢,这也是后继科研人员正在研究的问题。
【图灵测试的提出】
1950年,图灵来到曼彻斯特大学任教,同时还担任该大学自动计算机项目的负责人。就在这一年的十月,他又发表了另一篇题为《机器能思考吗?》的论文,成为划时代之作。也正是这篇文章,为图灵赢得了一顶桂冠——“人工智能之父”。在这篇论文里,图灵第一次提出“机器思维”的概念。他逐条反驳了机器不能思维的论调,做出了肯定的回答。他还对智能问题从行为主义的角度给出了定义,由此提出一假想:即一个人在不接触对方的情况下,通过一种特殊的方式,和对方进行一系列的问答,如果在相当长时间内,他无法根据这些问题判断对方是人还是计算机,那么,就可以认为这个计算机具有同人相当的智力,即这台计算机是能思维的。这就是著名的“图灵测试”(TuringTesting)。当时全世界只有几台电脑,其他几乎所有计算机根本无法通过这一测试。但图灵预言,在20世纪末,一定会有电脑通过“图灵测试”。目前为止还没有电脑通过图灵测试。美国科学家兼慈善家休·勒布纳20世纪90年代初设立人工智能年度比赛,把图灵的设想付诸实践.比赛分为金、银、铜三等奖.
【示范性问题】
图灵采用“问”与“答”模式,即观察者通过控制打字机向两个测试对象通话,其中一个是人,另一个是机器。要求观察者不断提出各种问题,从而辨别回答者是人还是机器。图灵还为这项测试亲自拟定了几个示范性问题:
问:请给我写出有关“第四号桥”主题的十四行诗。
答:不要问我这道题,我从来不会写诗。
问:34957加70764等于多少?
答:(停30秒后)105721
问:你会下国际象棋吗?
答:是的。
问:我在我的K1处有棋子K;你仅在K6处有棋子K,在R1处有棋子R。现在轮到你走,你应该下那步棋?
答:(停15秒钟后)棋子R走到R8处,将军!
图灵指出:“如果机器在某些现实的条件下,能够非常好地模仿人回答问题,以至提问者在相当长时间里误认它不是机器,那么机器就可以被认为是能够思维的。”
从表面上看,要使机器回答按一定范围提出的问题似乎没有什么困难,可以通过编制特殊的程序来实现。然而,如果提问者并不遵循常规标准,编制回答的程序是极其困难的事情。例如,提问与回答呈现出下列状况:
问:你会下国际象棋吗?
答:是的。
问:你会下国际象棋吗?
答:是的。
问:请再次回答,你会下国际象棋吗?
答:是的。
你多半会想到,面前的这位是一部笨机器。如果提问与回答呈现出另一种状态:
问:你会下国际象棋吗?
答:是的。
问:你会下国际象棋吗?
答:是的,我不是已经说过了吗?
问:请再次回答,你会下国际象棋吗?
答:你烦不烦,干嘛老提同样的问题。
那么,你面前的这位,大概是人而不是机器。上述两种对话的区别在于,第一种可明显地感到回答者是从知识库里提取简单的答案,第二种则具有分析综合的能力,回答者知道观察者在反复提出同样的问题。“图灵测试”没有规定问题的范围和提问的标准,如果想要制造出能通过试验的机器,以我们现在的技术水平,必须在电脑中储存人类所有可以想到的问题,储存对这些问题的所有合乎常理的回答,并且还需要理智地作出选择。
科多大数据感谢您的阅读
人工智能基础知识:介绍人工智能的历史,基本概念和应用领域
引言:人工智能的定义和重要性随着科技的飞速发展,人工智能(ArtificialIntelligence,简称AI)已经成为一个炙手可热的领域。从自动驾驶汽车到智能语音助手,从智能制造到医疗诊断,人工智能的应用已经渗透到我们生活的方方面面。那么,什么是人工智能?它为什么如此重要?
人工智能是一门研究如何让计算机模拟、扩展和辅助人类智能的学科。它旨在使计算机能够理解、推理、学习、计划和感知等,以实现类似人类的智能行为。简单来说,人工智能就是让计算机具有类人的智能,以解决各种复杂问题。
人工智能之所以重要,原因有以下几点:
提高生产效率:通过使用人工智能技术,企业可以大幅提高生产效率,降低成本。例如,在智能制造中,工业机器人可以在繁重、危险或需要精确操作的环境中替代人工,保证生产的稳定和安全。改善生活质量:人工智能可以帮助人们更好地解决日常生活中的问题,例如通过语音助手进行智能家居控制、使用智能推荐系统为用户推荐合适的商品等。驱动创新与研究:人工智能为各个领域的研究和创新提供了强大的支持。在医学领域,通过深度学习技术,计算机可以在医学影像中自动识别病灶,辅助医生进行诊断。在天文学领域,人工智能可以帮助科学家自动检测并识别遥远星系中的恒星、行星等天体。应对全球性挑战:人工智能在应对气候变化、环境保护、疾病控制等全球性挑战方面发挥着重要作用。例如,通过分析大量的气象数据,人工智能可以帮助预测天气变化,为防灾减灾提供支持。综上所述,人工智能对于现代社会的发展具有巨大的推动力。在本篇文章中,我们将从人工智能的历史、基本概念和应用领域等方面,为读者呈现人工智能的全貌。希望通过了解人工智能的内涵和影响,能够激发读者对这一领域的兴趣,进一步学习和实践。
在后续的文章中,我们将更深入地探讨人工智能的各个子领域,如机器学习、深度学习、自然语言处理等,并结合实际案例与代码示例,帮助读者更好地理解和应用人工智能技术。通过学习人工智能,我们将能够更好地应对未来的挑战,共同推动科技进步,为人类社会的发展做出贡献。
欢迎各位的订阅本专栏,后续将会将本专栏设置成付费专栏(现在订阅后续将不需要付费)
一人工智能的历史:1.早期尝试:图灵机、人工神经网络人工智能的起源可以追溯到20世纪40年代。当时,英国计算机科学家艾伦·图灵提出了著名的“图灵机”概念,为计算机科学和人工智能的发展奠定了基础。同时,神经网络模型的雏形也诞生了。1943年,沃伦·麦卡洛克和沃尔特·皮茨提出了人工神经网络的基本模型,即“麦卡洛克-皮茨神经元”。
2.专家系统时代20世纪60年代至80年代,人工智能领域出现了“专家系统”的概念。专家系统是一种基于知识库和推理机制的计算机程序,能够模拟人类专家的推理过程,解决特定领域的问题。这一时期,许多领域的专家系统应用相继出现,如医学诊断、化学分析等。
3.机器学习的崛起20世纪80年代至90年代,随着计算机技术的发展和大量数据的积累,机器学习成为人工智能领域的研究热点。机器学习是一种让计算机通过数据学习知识和技能的方法,而无需进行显式编程。这一时期,许多经典的机器学习算法被提出,如决策树、支持向量机等。
4.深度学习的革命21世纪初,深度学习技术逐渐崛起。深度学习是机器学习的一个分支,主要依赖神经网络模型,特别是深层神经网络进行学习。随着硬件计算能力的提升和大数据的普及,深度学习在计算机视觉、自然语言处理等领域取得了突破性的成果。2012年,AlexNet在ImageNet图像识别竞赛中取得了冠军,成为深度学习领域的里程碑。
5.当代人工智能的挑战和未来展望虽然人工智能取得了显著的进展,但仍然面临着许多挑战。例如,当前的人工智能系统很难实现多领域知识的整合,大部分仍然局
限于特定任务和领域。此外,人工智能的可解释性、安全性和隐私保护等问题也需要进一步研究和解决。
未来,人工智能将朝着以下方向发展:
通用人工智能:目前的人工智能大多专注于特定任务,未来的发展方向将是通用人工智能(AGI),即具有广泛认知能力、能够在多个领域和任务中表现出类人智能的系统。可解释性和可信赖的人工智能:为了让人工智能更好地服务于人类,我们需要构建可解释和可信赖的人工智能系统。这意味着需要研究新的算法和方法,使人工智能系统的决策过程更加透明,便于人类理解和监管。人工智能与人类协作:人工智能不仅要取代人类的某些工作,更重要的是与人类密切协作,共同解决复杂问题。未来的人工智能系统将更加强调与人类的交互,以及对人类需求的理解和满足。数据安全和隐私保护:随着大数据和人工智能的广泛应用,数据安全和隐私保护成为越来越重要的议题。未来的人工智能系统需要在保证性能的同时,更加注重用户隐私的保护,遵守相关法律法规。人工智能伦理:随着人工智能在各个领域的广泛应用,人工智能伦理问题日益凸显。如何确保人工智能系统的公平、透明和可控,防止滥用和歧视等问题,将成为未来人工智能研究的重要方向。总之,人工智能作为一个不断发展的领域,将继续引领科技创新的浪潮。在探索未来的道路上,我们需要不断学习、实践和创新,共同推动人工智能领域的繁荣发展,为人类社会的进步贡献力量。
二人工智能的基本概念:1.弱人工智能与强人工智能弱人工智能(WeakAI)指的是专注于解决特定任务的人工智能系统。这类系统通常在某一特定领域表现出色,但缺乏广泛的认知能力。许多目前的人工智能应用,如语音识别、图像识别等,都属于弱人工智能。
强人工智能(StrongAI)是指具有类似于人类的广泛认知能力的人工智能系统。这类系统能够在多个领域和任务中表现出类人智能,甚至超越人类。目前,强人工智能仍然是研究的目标,尚未实现。
2.人工智能的子领域:机器学习、深度学习、自然语言处理等机器学习(MachineLearning):机器学习是人工智能的一个子领域,通过让计算机从数据中学习知识和技能,而无需进行显式编程。常见的机器学习算法包括决策树、支持向量机、贝叶斯分类器等。深度学习(DeepLearning):深度学习是机器学习的一个分支,主要依赖神经网络模型,特别是深层神经网络进行学习。深度学习技术在计算机视觉、自然语言处理等领域取得了突破性的成果,如卷积神经网络(CNN)、循环神经网络(RNN)等。自然语言处理(NaturalLanguageProcessing,简称NLP):自然语言处理是研究如何让计算机理解、生成和处理人类自然语言的领域。NLP技术广泛应用于语音识别、机器翻译、情感分析等任务。3.主要的学习范式:监督学习、无监督学习、半监督学习、强化学习监督学习(SupervisedLearning):监督学习是指从带有标签的训练数据中学习模型的过程。在这种情况下,计算机通过拟合输入特征与输出标签之间的映射关系,进行预测和分类。无监督学习(UnsupervisedLearning):无监督学习是指在没有标签的训练数据中寻找模式和结构的过程。常见的无监督学习任务包括聚类(Clustering)和降维(DimensionalityReduction)。这种学习方法试图通过挖掘数据中的潜在规律,为数据赋予意义。半监督学习(Semi-supervisedLearning):半监督学习介于监督学习和无监督学习之间,利用少量带有标签的数据和大量无标签的数据进行学习。这种方法通过结合监督和无监督学习的优点,提高了学习效果,尤其是在标签数据稀缺的情况下。强化学习(ReinforcementLearning):强化学习是一种基于奖励信号进行学习的方法。在这个过程中,智能体(Agent)通过与环境互动,采取一系列的行动,并从环境中获得奖励或惩罚信号。通过不断地试错和优化,智能体学会在给定的环境中采取最佳行动以实现目标。通过掌握这些基本概念,我们可以更好地理解人工智能的内涵和技术方法。在后续的文章中,我们将更深入地探讨各个子领域的技术和应用,并结合实际案例与代码示例,帮助读者更好地理解和应用人工智能技术。
三人工智能应用领域:计算机视觉:计算机视觉是一门研究如何让计算机理解和处理图像信息的学科。通过人工智能技术,尤其是深度学习技术,计算机视觉在以下领域取得了显著的成果:
图像识别:如将图片分类为不同的类别,例如识别动物、植物等;目标检测:如识别图片中的特定物体并给出它们的边界框;图像分割:如将图片中的每个像素分配到特定的类别,进行更细致的图像理解。自然语言处理:自然语言处理(NLP)是研究如何让计算机理解、生成和处理人类自然语言的领域。NLP技术广泛应用于以下任务:
机器翻译:如将一种自然语言翻译成另一种自然语言;文本分类:如根据内容将文本分为不同的类别;情感分析:如分析文本中表达的情感,如正面、负面或中性。语音识别和合成:语音识别是将人类的语音转换为可理解的文本信息,而语音合成则是将文本信息转换为人类可理解的语音。这些技术已广泛应用于智能助手、语音搜索等场景。
无人驾驶汽车与机器人:人工智能技术在无人驾驶汽车和机器人领域的应用日益成熟,如自动驾驶汽车的路径规划、障碍物检测和避障等;机器人的视觉识别、自主导航和人机交互等。
推荐系统:推荐系统是通过分析用户的行为和喜好,为用户提供个性化的信息和产品推荐。人工智能技术在推荐系统中的应用包括协同过滤、基于内容的推荐等。
游戏智能:人工智能在游戏领域的应用包括智能游戏角色、游戏策略生成和优化、自动生成游戏内容等。
医疗诊断与药物研究:人工智能在医疗领域的应用包括辅助诊断、基因组学研究、药物发现等。通过深度学习等技术,人工智能可以帮助医生更准确地分析病症、识别疾病的发展趋势以及发现潜在的治疗方法。同时,在药物研究领域,人工智能可以加速新药的发现过程,节省研发成本,提高药物研究的成功率。
金融风控与交易:人工智能在金融领域的应用主要包括风险控制、交易策略生成和优化等。通过对海量的金融数据进行深入分析,人工智能技术可以帮助金融机构更准确地识别潜在的风险,制定合适的风险管理策略。此外,人工智能在高频交易、量化投资等领域的应用也日益成熟,为交易者提供了更高效、更智能的交易工具。
总之,人工智能技术已经在各个领域取得了显著的突破和应用。随着技术的不断发展,人工智能将在未来继续为我们的生活、工作和社会带来更多的变革和价值。在后续文章中,我们将更深入地探讨各个应用领域的技术和案例,帮助读者更好地理解和应用人工智能技术。
四人工智能技术的社会影响:1.经济发展与产业变革人工智能技术已经深刻改变了许多行业的生产和经营方式,提高了生产效率,降低了成本,带来了新的经济增长点。从制造业到服务业,从农业到医疗,人工智能技术的应用正在推动各行业的创新和变革。然而,随着技术的广泛应用,一些传统行业和职业也将面临重大的挑战和改变。
2.职业市场与教育改革人工智能技术的发展对职业市场产生了深远影响。一方面,人工智能将替代部分重复性劳动和低技能工作,从而降低对人力资源的需求;另一方面,对高技能人才,特别是人工智能领域的专业人才的需求将不断增加。因此,教育改革成为了应对这一变化的关键。教育体系需要适应时代的发展,培养具备创新能力、跨学科知识和技能的人才。
3.伦理挑战与隐私保护:随着人工智能技术在各个领域的广泛应用,伦理和隐私问题逐渐显现。例如,在人脸识别、个性化推荐等应用中,如何保护用户的隐私和避免滥用技术成为了一个亟待解决的问题。此外,当人工智能技术涉及到决策和道德判断时,如自动驾驶汽车在紧急情况下如何作出决策,如何确保算法的公平性和透明度等,都需要全社会共同面对和解决的伦理挑战。
总之,人工智能技术的发展对社会产生了深远的影响。在享受技术带来的便利和发展机遇的同时,我们也需要关注和应对技术带来的挑战和问题。只有在全社会共同努力下,我们才能充分发挥人工智能技术的潜力,为人类的进步和福祉做出更大的贡献。
五结论:1.人工智能的发展趋势与前景随着计算能力的提升、数据量的增长以及算法的优化,人工智能技术将继续取得重大突破和进展。未来,人工智能将更加深入地融入各个领域和场景,推动产业升级、创新和变革。同时,跨学科的研究和合作将促进人工智能技术与其他科学领域的融合发展,如生物学、神经科学、认知科学等,以期解决更多复杂的问题。此外,人工智能技术的伦理、安全和隐私问题将在未来得到更多的关注和探讨,以确保技术的可持续发展。
2.为什么学习人工智能及其相关领域学习人工智能及其相关领域具有以下几个方面的意义:
技术需求:随着人工智能技术在各行业的广泛应用,对相关技术人才的需求将持续增长。具备人工智能技术背景的专业人才将具有更高的就业前景和竞争力。解决实际问题:人工智能技术具有强大的问题解决能力,可以帮助我们解决许多实际问题,如疾病诊断、环境保护、城市规划等。学习人工智能技术将有助于为社会创造更大的价值。推动创新:掌握人工智能技术有助于发掘新的应用场景和商业模式,促进产业创新和发展。全球竞争力:在全球范围内,人工智能技术已成为各国竞相发展的重要战略领域。学习和掌握人工智能技术将有助于提升个人和国家的全球竞争力。个人兴趣与成长:对于对科技和创新感兴趣的人来说,学习人工智能技术可以满足个人的求知欲望,培养创新能力和解决问题的能力。综上所述,学习人工智能及其相关领域具有重要的现实意义和长远价值。希望通过本专栏的深入探讨,能够帮助大家更好地理解和
掌握人工智能技术,为未来的职业发展和社会进步作出贡献。
在本专栏的后续文章中,我们将深入探讨人工智能的各个子领域,包括机器学习、深度学习、自然语言处理等,以及它们在各个应用领域的实际案例。我们还将关注人工智能技术的最新研究成果和发展动态,帮助读者跟上技术发展的步伐。
同时,我们也会分享一些实用的编程教程和项目案例,帮助读者在实践中掌握人工智能技术。通过理论与实践相结合的方式,我们期望能够激发读者对人工智能技术的兴趣和热情,培养更多具备创新能力和实践经验的专业人才。
总之,人工智能技术正在改变我们的生活和世界。作为一个不断发展和变革的领域,人工智能为我们提供了无限的可能性和机遇。我们期待在未来的探索过程中与您共同成长,共同推动人工智能技术的发展和应用,为人类社会的进步作出贡献。
人工智能的工作原理是什么
原标题:人工智能的工作原理是什么?人工智能的工作原理是:计算机会通过传感器(或人工输入的方式)来收集关于某个情景的事实。计算机将此信息与已存储的信息进行比较,以确定它的含义。计算机会根据收集来的信息计算各种可能的动作,然后预测哪种动作的效果最好。计算机只能解决程序允许解决的问题,不具备一般意义上的分析能力。
简介:
人工智能(ArtificialIntelligence),英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。
科学介绍:
展开全文1、实际应用
机器视觉:机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
2、学科范畴
人工智能是一门边沿学科,属于自然科学和社会科学的交叉。
3、涉及学科
哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论。
4、研究范畴
自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法。
5、意识和人工智能
人工智能就其本质而言,是对人的思维的信息过程的模拟。返回搜狐,查看更多
责任编辑: