人工智能技术重构传播生态
引言:近年来随着算法推荐、语音交互、计算机视觉等技术不断发展,国外传媒领域对人工智能的探索运用和重视程度越来越高,物联网、大数据、虚拟现实、区块链等技术的发展和应用推动传媒业进入智能时代,媒体智能化正在重塑国际传播领域的原有生态。
1.人工智能初遇传媒业
“人工智能”的概念自提出以来,经过了60多年的演变。1950年,“人工智能之父”艾伦·图灵预言了创造出具有真正智能的机器的可能性。1956年夏天,美国达特茅斯学院举行了历史上第一次人工智能研讨会,会上首次提出了“人工智能”这个概念,被认为是人工智能诞生的标志。
第一阶段:萌芽及初步发展阶段(20世纪50年代中期到80年代初期)1966年,美国麻省理工学院(MIT)的计算机科学家魏泽鲍姆发布了世界上第一个能通过脚本理解简单的自然语言,并能产生类似人类互动行为的聊天机器人ELIZA。1966年至1972年期间,美国斯坦福国际研究所研制出首台采用人工智能的移动机器人Shakey。
第二阶段:商用阶段(20世纪80年代初期至21世纪初期)1981年,日本经济产业省拨款8.5亿美元用以研发第五代计算机项目即人工智能计算机。随后,英国、美国纷纷响应,开始向信息技术领域的研究提供大量资金。从媒介变迁的角度而言,科学技术的进步始终推动着国外传媒行业的发展。伴随着著名的图灵测试诞生,人工智能技术的深度学习(ML)和编程语言技术的发展,人工智能技术与传媒业融合亦成为可能。尤其进入21世纪以来,人工智能技术新的浪潮与传媒业的融合更具内生动力。
第三阶段:规模化应用阶段(21世纪初期迄今)2008年11月谷歌借助人工智能对社交媒体数据进行抓取、分析,成功预测了流感暴发;2009年,美国西北大学开发的“StatsMonkey”是首个写出简讯的人工智能机器;2011年,Watson(沃森)作为IBM公司开发的使用自然语言回答问题的人工智能程序参加美国智力问答节目,打败两位人类冠军,赢得了100万美元的奖金;2012年,加拿大神经学家团队创造了一个具备简单认知能力、有250万个模拟“神经元”的虚拟大脑,命名为“Spaun”,并通过了最基本的智商测试;2013年,Facebook人工智能实验室成立,探索深度学习领域,借此为Facebook用户提供更智能化的产品体验;谷歌收购了语音和图像识别公司DNN Research,推广深度学习平台,自此深度学习算法被广泛运用在产品开发中;2016年,谷歌人工智能AlphaGo战胜围棋世界冠军李世石,此次人机对弈让人工智能正式被世人所熟知,整个人工智能市场也像是被引燃了导火线,开始了新一轮爆发。
2017年至2018年,自动化技术的迅速发展为定制或个性化方式创建内容提供了机会,人工智能技术开始运用于整理、分析、创建、编辑或可视化,数据新闻、自动化新闻、大数据技术推动了人工智能技术在新闻制作和发行中的应用,关于人工智能技术在传媒行业的应用研究也迅速成为传媒学术研究领域的热点。美联社是最早把一些工作交付给机器人的新闻机构之一,其与人工智能领域的新兴初创企业合作,自动制作某些新闻内容。例如与自动洞察公司(Automated Insights)达成协议,借助该公司的自然语言生成平台“语言大师”(Wordsmith),首次使用人工智能制作新闻内容,目前已经在应用智能技术简化工作流程、完成繁重工作、处理更多数据、挖掘洞察力等方面取得很大进展。
2019年以来,人工智能等新技术在传媒行业的应用,在一定程度上为专业生产新闻的记者减负,另一方面专业记者也不得不面对新兴技术带来的考验,技术引入对传媒行业的双重影响进一步显现。机器人记者高效的处理能力使得传统新闻媒体纷纷启用机器人,而传统新闻记者和编辑首当其冲面临变革,甚至存在失业风险。《纽约时报》曾撰文称,记者和编辑发现自己成为数字出版商和传统报业裁员的受害者,由机器人记者主导的新闻行业正在迅速崛起。除了财报分析、数据维度等文章,由机器参与的媒体环节也越来越多。
2.打破原有传播生态格局
人工智能技术引入新闻行业,打破了原有的传播格局。机器人写作与算法分发的应用,改变了传统新闻内容的生产模式,从信息采集、内容制作、产品分发、呈现形式到用户参与模式等新闻生产的各个环节都产生剧烈变化。人工智能可以帮助写作者对传播效果进行预判,以便更好地决定选题,或协助选择最佳表达形式。自动化新闻创业公司Narrative Science的首席执行官曾经预测,到2030年,超过90%的新闻将由计算机编写。
机器人写稿方面:在新闻生产领域,传统以“人”为主导的新闻编辑室转变成了“人”与“人工智能”(AI)共存的新闻编辑室,利用人工智能技术,媒体可以实现新闻信息来源智能化、新闻内容制作定制化、新闻策划与推广个性化以及用户认知体验场景化等新闻生产方式的转变。例如美联社(AP)自2014年起就开始使用人工智能技术撰写企业盈利的报道,还将该技术用于体育赛事报道中。在2015年法国大选期间,《世界报》采用写作机器人实现了对全国2000多个地区选举的报道。《华盛顿邮报》的“机器人记者”从2016年开始参与奥运会和美国总统选举的报道。里约奥运会上,华盛顿邮报利用人工智能技术平台完成了标准化、公式化的机器人写作,包括体育赛事的实时结果以及自动产生标题、图片,每天生产新闻20多条。彭博社、路透社等媒体也在利用人工智能撰写财经类新闻、气象类新闻以及犯罪类新闻等,而今日美国则利用智能视频软件制作短视频。
新闻内容策划及推广方面:人工智能技术在新闻作品中体现出的价值已经从后台走向前台,从新闻内容设计策划到推广都表明了技术人员和新闻人员同等重要的位置。大多数美国新闻网站或社区,通过捕捉用户的行为习惯、收集用户数据,随时调整新闻报道方式、页面呈现方式和与用户建立社交关系。比如,美国新闻聚合网站BuzzFeed将用户数据分析做到了极致,根据用户点击的频次、停留的时间、喜好的内容做出分析报告,指导新闻内容策划和推广。
机器和算法逐步介入并覆盖了从文字、图片到视频处理的故事创意、生产传播链条,为智能化叙事描绘了新图景。传统信息形态主要是文字、图片、视频等,而在人工智能技术助力下媒介可以实现多模态的信息结构,通过VR或AR场景化、沉浸式的互动体验与传播,例如以虚拟主播、场景体验、不同的语言风格切换等更丰富的多形态信息生产提升媒介产品的吸引力和感染力。2020年,《今日美国》报发布了病毒传播的增强现实互动指南、妇女赢得选举权100周年纪念等一系列VR新闻报道作品,以及《扁平化曲线:社交距离的AR指南》等AR互动体验报道。
人工智能算法驱动被广泛运用在娱乐影视海报设计、影视推广和广告营销等方面。大数据使人们能够快速核实信息来源,确保新闻的真实性,实现对客户的精准定位和信息投放。现今,包括《纽约时报》《华盛顿邮报》等国外媒体依据用户的个人阅读偏好,每天自动给用户推送“定制版”新闻内容。
在新闻传播效果评估方面,传统媒体在客观量化评价新闻传播效果和记者编辑工作表现上存在难度,人工智能技术却能精准实现数据考核。在华盛顿邮报的“中央厨房”编辑室,电视屏幕上实时显示一张张可视化的数据图表,同步显示网站的登录人数、每篇文章的阅读数排名、用户喜欢作者排名以及读者喜欢阅读的文章类型百分比等数据。其他媒体还利用机器人来评估人类记者的新闻报道。例如,英国《金融时报》会用机器人检查报道中引用的信源是否过多地来自特定人群;国际调查记者联盟使用AI来筛选金融和法律文件中值得探究的细节。
在新闻传播主体方面,随着人工智能技术在传播领域的应用,传播主体不再局限于人类,虚拟主播、社交机器人、智能语音助手等智能技术开始以传播主体的身份参与国际间信息生产和传播过程,形成“人+机器”的共同传播主体生态。例如2020年,韩国MBN电视台推出韩国首位AI主播“金柱夏”。
社交机器人在社交媒体中得到广泛应用,成为了重要的国际传播工具。研究发现国际社交媒体平台推特上的1400万个账号中有15%是机器人账号,在推特关于叙利亚的议题中,与真人用户相比,社交机器人账号发布了33.5%的内容,在新闻内容方面占比达到52.6%。在英国脱欧公投阶段,据统计在推特中讨论该议题的用户有34%为机器人账号,且其言论带有一定的政治倾向,社交机器人在国际传播中不断影响着舆论导向。
3.风险与挑战并存的未来
人工智能在给传媒业带来内容生产的智能化与传播精准化变革的同时,也带来了很多的矛盾与困扰。一是尽管智能媒体算法推荐在很大程度上减轻了人工筛选新消息的工作量,但在新闻生产过程中,人们无法预测人工智能算法所带来的诸多问题,甚至对最终产品也难以在编审环节进行审核,这增加了虚假新闻出现的概率。从内容来看,AI技术生成的新闻难免出现事实性差错。比如美国CNET的报道就在利息计算、偿还车贷等方面出现过低级错误。另外,《华盛顿邮报》指出,虽然人工智能可以快速准确地处理大量数据,或者通过检阅海量公开信息来组装文章,但其本质只是剪辑,AI生成文章的素材很可能源自他人作品,其中牵涉到剽窃、洗稿等法律和伦理问题。其次,深度伪造技术的滥用很可能在国际传播领域带来极大危害,例如通过社交机器人或虚拟主播产生的一些虚假信息与报道充斥网络。通过换脸、重新投射、口型同步、动作传递、图像生成、音频生成、文字生成等方式伪造照片、音频或视频、篡改新闻事实,这让虚假信息更加难以识别,导致谣言迅速扩散,影响网络安全、数据安全和信息安全。同时,受众长期被智能媒体推荐算法支配,更容易造成信息茧房、知识结构单一和信息偏见等现象。机器人新闻本身存在人性关怀缺失,过分依赖人工智能技术生产新闻内容,冰冷数据与人性关怀、新闻同质与独家报道、自动生成与议题设置、精准推送与信息茧房等之间的矛盾和纠葛也会愈加明显。最后,存在数据采集的侵权风险。机器人新闻内容生产的首要环节是机器人从海量数据中抓取符合主题的数据信息,但这一过程是否存在受众个人信息被随意采集、挖掘的情形,一直是学界讨论的焦点。针对这一问题,2018年欧盟出台《通用数据保护条例》,其中明确划分受众权利和互联网权利,规定互联网公司在收集受众数据时,必须告知受众数据的使用目的,受众也可以通过相应的访问权限进入互联网公司获取相关数据,甚至可以对算法进行干预。
(作者:赵玉宏,系北京市习近平新时代中国特色社会主义思想研究中心特约研究员、北京市社科院传媒与舆情研究所副研究员)
人工智能技术在文化产业中的应用与影响研究
摘要:人工智能技术的发展为文化产业提供了诸多应用性机遇;其中一些关键性技术点与文化产业相结合,可以实现文化内容产生、创意资讯传播以及文化市场管理方面的创新。本文拟从几种主要的人工智能技术出发,介绍在技术与产业相结合过程中形成的代表性应用,同时探讨分析目前的人工智能应用带来的“信息茧房”“机器歧视”等社会问题,从而为我国文化产业发展提供相应的经验。
关键词:人工智能;文化产业;算法公平;信息茧房
人工智能(ArtificialIntelligence,AI)本质上是对人的意识与思维的信息过程的模拟,是指使用机器代替人类完成认知、识别、分析和决策等功能。在《人工智能:一个现代路径》[STUARTJ.RUSSELL&PETERNORVIG,ARTIFICIALINTELLIGENCE:AMODERNAPPROACH1034(3ded.2010),supranote7,at4.]一书中,“人工智能”被定义为:行为是为了获得最好的结果,或者在不确定的情况下,获得期待的最好结果,这是一种“理性行为”选择。在过去的十余年中,人工智能技术在以深度学习为代表的机器学习、语音识别、自然语言生成与处理、计算机视觉等领域取得不少成果,引得全球广泛关注。
世界各国都在积极部署关于人工智能的战略规划,2016年10月,美国和英国双双出台国家人工智能战略。就我国而言,2017年,国务院印发《新一代人工智能发展规划》,其中提出到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元[国务院:新一代人工智能发展规划[J].重庆与世界,2018(02):5-17.]。
基于此,本文重点关注人工智能技术在文化产业――即新闻出版、发行、广播电视、电影、文化艺术、文化信息传输、广告服务和文化休闲娱乐等领域中的应用现状、存在的问题及对策,从而为我国文化产业发展提供可借鉴思路。
一、人工智能的主要技术类型与文化产业中的典型性应用
在美联社于2017年发布的《人工智能工作手册》中,人工智能在新闻业应用最频繁的技术主要有5类,包括机器学习、自然语言技处理术、语音识别技术、机器视觉和机器人技术[余婷,陈实.人工智能在美国新闻业的应用及影响[J].新闻记者,2018(04):33-42.]。在整个文化产业当中,目前应用最为广泛的技术类型是以深度学习为代表的机器学习,其他4类技术类型也均有不少应用落地。
通过上表可知,人工智能中的虚拟代理、机器人自动化、机器学习、深度学习、生物与语音识别、自然语言生成与处理(NLP)、硬件优化与决策管理等技术可以与文化产业中的信息采集、内容生产、信息传播和受众管理等有效结合,提供诸如内容个性化算法、受众目标与偏好识别、自动新闻内容生产等方面的服务,也可以提供在客户管理与市场调研方面的有力手段。
目前,国外一些先进的文化媒体机构对于上述技术的应用已经形成一定的有益经验与有效做法。
首先,在内容生产中,人工智能可以实现自动写作与自动摘要、抽取式新闻写作,并试图使机器像人类一样阅读与思考。
美联社是最早运用AI技术进行自动化写作的媒体之一。2014年,美联社与美国AutomatedInsights公司合作,使用该公司开发的自动化写稿程序Wordsmith来自动编发企业财报新闻。该程序几分钟内可写出150-300字的快讯,每季度能生产4000篇财报新闻,是过去数量的10倍。2015年之后,国内腾讯新闻、新华社和今日头条等也陆续推出了写稿机器人。
其次,在信源数据收集中,人工智能可以基于传根器应用生成内容,实现信息传播的可视化追踪。
NewsTracer是路透社使用的新闻追踪系统,这一系统每天可以对5亿条Twitter信息进行分析,从假新闻、广告和杂音,以及众多的人名、机构和地点中找到真的新闻事件与线索,这让记者能够从社交媒体的众多信息中脱身,把更重要的时间用来挖掘故事。
第三,在文化创意视频类服务中,人工智能可以实现文本和视频之间的转换、高效寻找视频片段与资源以及优化视频内容搜索等。
Zorroa是美国的一家视觉资产管理公司,2017年,公司推出企业可视化智能平台(EVI),帮助用户对大型数据库中的可视资产进行搜索和运行分析。在与索尼影业的合作中,EVI通过面部识别、图像分类、机器学习等方式整理、分析了索尼多年来积累的数百万小时的视觉资产。使用该平台后,平时需要27小时才能搜索到的特定视频资源,仅需3分钟即可检索到,为索尼影业的视频资源开发带来极大的便利[https://zorroa.com/case-studies/]。
第四,在文化信息传播中,人工智能可以通过受众的好奇点与文化传媒内容进行匹配、通过信号源获取受众的兴趣点,并且精准分析受众,预测其内容消费需求,实现精准投放。
Netflix是在用户个性化分发业务上较为成熟的视频网站。2016年年报显示,Netflix拥有9300万全球会员,每天流媒体播放超过1.25亿小时的电视节目和电影。预测用户想要观看的内容是其公司业务模式的关键部分。2016年,Netflix开发名为Meson的应用程序,构建、培训和验证个性化算法,提供视频推荐建议。类似的企业还有IRIS.TV等,该公司曾在三个月的时间内运用个性化分发,将其客户所在公司的观众存留率提高了50%[https://www.techemergence.com/ai-in-movies-entertainment-visual-media/]。
最后,在市场调研与客户管理方面,人工智能可以获知受众对内容消费的使用特点、通过深度神经网络技术来感知受众对文化内容的情感参与和变化,从而进行有效的客户管理与市场营销。
2016年,日本广告公司MaCannEricksonJapan聘用了全球第一个使用人工智能开发的机器人创意总监AI-CD?。当年9月,机器人创意总监与人类创意总监以同一个广告主题各自开发了10分钟的广告片,并交由全国民意调查评判。尽管人类创意总监以8%的微弱优势险胜,AI在受众分析与市场营销方面的潜力不容小觑。
可见,人工智能已经显著改变了媒体格局――包括观众发现和参与内容的方式,以及内容创建和分发给观众的方式。目前,算法不仅会影响受众在不同平台上看到的内容,还会首先影响平台生产和创建的内容。人工智能从根本上改变了受众行为和创作过程。
二、人工智能应用对文化产业发展的影响与启示
尽管统计显示,就目前的全球文化产业而言,仅有8%的文化企业已经部署并使用了人工智能技术应用[https://www.ibc.org/tech-advances/the-future-is-artificial-ai-adoption-in-broadcast-and-media/2549.article],但人工智能技术对文化产业乃至整个社会的影响已经有所显露。
就其积极意义而言,人工智能技术在提高内容生产效率、提升用户留存率以及优化文化产业资产管理等方面存在重要意义、毋庸置疑的高效率和部分的不可替代性。而就其消极影响而言,内容分发的局限性开始受到社会关注;人工智能算法的公平化、透明化一度遭受质疑;算法带来的偏见与歧视又引发社会伦理问题;人工智能应用背后的商业力量或许是造成这一系列问题的原因之一……
不少科技界声名显赫的人物也因此表达了对人工智能未来发展的担忧,如特斯拉创始人埃隆・马斯克曾说:“我们应该十分小心地看待人工智能。我越来越倾向于认为,在国际或者国家层面上应当有相应的人工智能监管措施,以防人类做出不可挽回的事情来。”微软创始人比尔・盖茨、物理学家史蒂芬・霍金等也表达了类似的看法。未来人工智能应用将在何种程度上造福于人类,部分取决于今天我们在何种程度上理解并解决人工智能可能产生的问题与自有弊端。
具体而言,本文将从如下三方面阐述人工智能应用的问题、影响与对策:
(一)内容分发的局限性:“信息茧房”
如今的网络文化空间,从某种意义上说,是一个算法帮助公众做决定的环境。如果说曾经的传统媒体为公众搭建了一个“拟态环境”,不同的编辑部依托各自的编辑方针、新闻判断原则,以“议程设置”的方式决定着每日媒体内容的生产加工,那如今,在网络媒体中这一权力部分地转交给了算法。算法可以决定人们阅读哪些新闻,观看哪些视频,收到哪些广告,人们的数字存在(DigitalExistence)日益受到算法左右。
文化传媒企业使用算法决定内容推荐的初衷是在于解决信息过载的问题,提高用户获取信息的效率,更希望借此增加用户的沉浸时长,提高应用的用户忠诚度和留存率。因此,企业利用大数据主动搜集用户信息,根据用户自身兴趣,为用户定制个性化内容,形成一整套精确的内容分发模式。Facebook信息流产品Newsfeed、对话式新闻产品微软小冰和Quartz、今日头条以及Netflix、IRIS.TV等一系列人工智能应用均属于此类型。
这一初衷是好的,但问题出在“精确”上。信息越精确,代表着信息涉及的范围越狭窄。人工智能研究者已经发现,仅仅关注推荐系统的精确度远远不够,这会导致用户难以获取足够的信息增量,视野越来越狭隘。美国学者桑斯坦在其著作《信息乌托邦》[凯斯・R・桑斯坦.信息乌托邦:众人如何生产知识[M].法律出版社,2008:206-208.]中指出,人们借助网络平台和技术工具,在海量的信息中,完全根据自己的喜好定制报纸和杂志,进行一种完全个人化的阅读。在信息传播中,因公众自身的信息需求并非全方位的,公众只注意自己选择的东西和使自己愉悦的通讯领域,久而久之,会将自身桎梏于像蚕茧一般的“信息茧房”中。
学术界不少学者指出“信息茧房”问题的危害,将“信息茧房”与群体极化、证实性偏见等议题关联起来。学者陈昌凤认为,信息的个人化偏向容易产生詹姆斯・斯托纳(JamesStoner)1961年提出的群体极化现象,即团体成员从开始只是有某些偏向,通过协商、讨论,逐渐朝偏向的方向继续移动、形成极端的观点,甚至引发社会波动,如散播错误信息、形成极端性社会团体、公共理性批判缺失等[陈昌凤,张心蔚.信息个人化、信息偏向与技术性纠偏――新技术时代我们如何获取信息[J].新闻与写作,2017(08):42-45.]。与此同时,人们总是倾向于寻找、阅读自己认同的信息来佐证自己的认知,加深了信息的个人化偏向。对垂直细分领域内容的追逐,弱化了公共事务领域内容的传播,网络社会中传统媒体讲求的“社会公器”意义式微,一个对公共事务冷漠、毫无参与感与同理心的社会将会是“信息茧房”之下最极端也最为悲剧性的结局。
对此,文化传媒企业和公众这两个主体都需要采取一定的对策。对于文化企业而言,应当在推荐的精确度指标之外,加入新的算法推荐考量指标,如多样性、覆盖率、新颖性等;另外,有研究表明,基于关联规则的推荐方法要优于基于内容规则的推荐方法,更易为用户发掘新的兴趣点,现有的障碍在于关联规则难以抽取、耗时长[刘辉,郭梦梦,潘伟强.个性化推荐系统综述[J].常州大学学报(自然科学版),2017,29(03):51-59.]。
而对于公众而言,文化传媒企业设置算法推荐的初衷就有迎合用户喜好的意味,用户越是喜欢哪一类内容,平台就越是推荐哪一类内容。因此用户想要逃离“信息茧房”,第一个步骤就是反省自身,提升自身的媒介素养。平台可以帮助用户实现媒介素养提升,如每周发布用户阅读周报,告知用户在阅读中各类型信息的占比情况,提示用户哪一类信息了解匮乏等,起到一定的督促作用。
(二)从算法偏见到机器歧视――算法的公平与透明化困境
当我们在日常生活中的决策权部分地交给算法之后,我们本能地期待着一个更加公平、透明的环境。但是,一个不容忽视的问题是:算法或者机器真的能够做到公平、公正、不偏不倚吗?算法的规则是否本身就带有人类固有的偏见呢?
2015年5月,Google的照片应用加入自动标签功能,应用更新不久,一位黑人程序员发现自己的照片竟然被Google打上“大猩猩”的标签。Flickr类似的自动标签系统也犯过大错,曾把人标记为猿,把集中营标记为健身房。2016年3月,微软公司的人工智能聊天机器人Tay上线。可是上线不到一天,Tay就被网民“教育”成为一个集反犹太人、性别歧视、种族歧视等于一身的“坏孩子”,被强制下线。此外,有研究称谷歌广告服务会默认为女性用户推送比男性用户薪水更低的广告。这些事件一方面反映出现有的人工智能、机器学习技术的不成熟,另一方面,机器歧视(MachineBias)问题开始进入公众视野。
2017年,Pew研究中心曾在研究报告《算法时代》[LeeRainie,JannaAnderson:Code-Dependent:ProsandConsoftheAlgorithmAge,http://www.pewinternet.org/2017/02/08/code-dependent-pros-and-cons-of-the-algorithm-age/]中指出:“算法的客观中立仅仅是理想,创建算法的人即使尽量做到客观中立,也不可避免地受到自身成长环境、教育背景、知识结构和价值观的影响。此外,创建算法所依赖的底层数据的有限性也会导致算法偏见。”
那么,算法偏见的来源在哪里?首先,存在错误、不准确和无关的数据可能导致偏见。输入不完美、甚至有错误的数据,自然会得到错误、有偏见的结果。
其次,机器学习的过程可能是偏见的另一个重要来源。例如,一个用于纠错的机器学习模型在面对大量姓名的时候,如果某姓氏极为少见,那它在全部数据中出现的频率也极低,机器学习模型便有可能将包含这个姓氏的名字标注为错误,这对罕见姓氏拥有者和少数民族(姓氏与非少数民族不同)而言就会造成歧视[曹建峰.人工智能:机器歧视及应对之策[J].信息安全与通信保密,2016(12):15-19.]。这类歧视的来源并非程序人员有意识的选择,具有难以预料、无法估计的特点。
再者,正如Pew报告所指出的,算法可能先入为主地默认了算法创建者或者底层数据中带有的价值判断,从而产生了性别、宗教和种族方面的歧视。这类歧视主要是由于产品设计(DiscriminationbyDesign)的局限性。
种种算法偏见与机器歧视的案例让我们不禁怀疑,“公平”这一社会理念到底是否可以被操作化,成为被准确量化的算法规则。而与此同时,机器自动化决策的不透明性使得准确量化公平难上加难。机器决策是经由算法这一“黑箱”(Blackbox)完成的,也就是说,不论是普通人还是熟悉公平原则的社会学者,均无法了解算法的内在机制、原理,更无法监督机器的决策过程。因此,当算法的编程人员不清楚或者未能统一“公平”的内涵与规则时,他们自身的偏见就会在一定程度上影响算法,同时他们也可能会忽视算法可能产生的偏见,不公平的人工智能应用随之产生。
正如学者DanielleK.Citron在《技术正当程序》中所说,对于关乎个体权益的自动化决策系统、算法和人工智能,考虑到算法和代码,而非规则,日益决定各种决策工作的结果,人们需要提前构建技术公平规则,通过设计保障公平的实现,并且需要技术正当程序,来加强自动化决策系统中的透明性以及被写进代码中的规则的准确性。
日前,美国弗吉尼亚大学学者AhmedAbbasi等在《让“设计公平”成为机器学习的一部分》(Make“FairnessbyDesign”PartofMachineLearning)一文[https://hbr.org/2018/08/make-fairness-by-design-part-of-machine-learning]中指出,可以通过将数据科学家与社会科学家组队、谨慎打标签、将传统的机器学习指标与公平度量相结合、平衡代表性与群聚效应临界点(criticalmassconstraints)以及保持意识等方法减少算法形成歧视的可能性。其中,“平衡代表性与群聚效应临界点”是指在对数据进行采样时,应既考虑数据的整体特征,同时不忽略某个特定少数群体或者极端数据情况。只有这样,机器学习模型在预测一个普通人和一个特殊群体时,才能都给出更为准确的答案。
另外,谷歌也开始倡导“机会平等”,试图将反歧视纳入算法。还有学者引入“歧视指数”的概念,为设计“公平”的算法提供具体方法。我们必须清楚,人工智能总是通过一个快速且脱离人类社会与历史的学习来完成自我构建,因而一个未经完善的机器学习模型必然存在“道德缺陷”。在人工智能应用的构建中,人类与人类长久以来葆有的道德与社会规则不能缺席。
(三)人工智能应用背后的力量
“信息茧房”的形成不是由于信息广度不足,内容生产不够,而是由于信息推荐固定地集中在某一特定领域造成了信息的窄化;算法偏见的形成不是由于机器学习具有天生的弊端,而是由于人类未将公平公正的原则纳入算法考量之中。人工智能应用背后存在着的,是人的力量与符合经济社会的商业逻辑。
为了迎合消费者,信息推荐系统会将消费者的阅读“口味”作为依据。当搜索引擎通过机器学习意识到,搜索八卦新闻的人愿意在日后更多地看到八卦新闻,为了提升用户留存度,搜索引擎会相应地减少其他类型新闻推荐。
为了满足商家,人工智能产品会把更昂贵的产品卖给用户忠诚度高的用户,即“大数据杀熟”现象。同时,为了更加精准地进行广告投放,人工智能偶尔也会忽视公平原则,例如女性用户通常会收到比男性用户薪资低的推荐广告。这样的现象发人深省,未来是否有必要通过一定的法律手段,要求包括文化企业在内的商家作出“不作恶”的商业承诺。
整体而言,我们的社会正被人工智能推向一个新的发展节点。正如[金兼斌.人工智能将给传媒业带来什么?[J].中国传媒科技,2017(05):1.]学者指出,社会和传媒技术的发展,从来都不是线性和匀速的。从工业革命到信息技术革命,每一次社会巨变都伴随着这样一个临界时刻。今天,我们已经能够感受到,我们的日常生活――包括媒介生活中的许多基础性的东西,正在被人工智能应用所搅动。在这样的时刻,只有紧抓机遇、规避风险、解决弊病,才能真正实现行业和社会的跨越式发展。我国的文化产业走到了一个崭新的路口,新的机遇在等待着它。
(责编:尹峥、赵光霞)分享让更多人看到
全球人工智能产业发展现状及发展趋势浅析
人工智能是指使用机器代替人类实现认知、识别、分析、决策等功能,是研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,其本质是对人的意识和思想的信息过程的模拟。人工智能是一种尖端技术,是新一轮科技革命和产业变革的重要驱动力量,它给经济、政治、社会等带来了颠覆性的影响,或将改变未来的发展格局。在21世纪,人工智能已逐渐成为全球各国新一轮科技战和智力战的必争之地,全球围绕人工智能领域的布局抢位日趋激烈。
一、全球人工智能发展现状
2021年7月8日,世界人工智能大会在上海开幕。根据统计数据评分,全球人工智能排名前10的国家依次为:美国、中国、韩国、加拿大、德国、英国、新加坡、以色列、日本和法国。其中,中国的综合得分为50.6分,美国为66.31分。
(一)美国着重国家和经济安全,力争保持全球领导地位
美国人工智能战略和政策的着力点在于保持其全球“领头羊”地位,并期望对人工智能的发展始终具有主动性与预见性。美国自2013年开始就发布了多项人工智能计划,并提及人工智能在智慧城市、自动驾驶和教育等领域的应用和愿景。2016年,美国将人工智能上升至国家战略层面,出台了《国家人工智能研究与发展计划》,从政策、技术、资金等方面给予一定的支持和保障。特朗普政府执政后,于2019年2月发布了第13859号总统行政令—《维持美国在人工智能领域领导地位的倡议》,从国家战略层面提出美国未来发展人工智能的指导原则,明确指出要集中联邦政府资源发展人工智能,扩大美国的繁荣,增强国家和经济安全,力图保持其在人工智能时代的全球领导地位。2021年6月,拜登政府宣布成立了由12名学术界、政界和产业界人士组成的国家人工智能研究资源工作组(NAIRR),他们将制定一项计划,让人工智能研究人员获得更多政府数据、计算资源和其他工具。该项计划基本继承了《2020年美国人工智能倡议法》的战略诉求。NAIRR的创建是美国政府加速美国国内技术进步的更广泛努力的一部分,美国参议院批准了2500亿美元的投资,用于从人工智能到量子通信等科学研究,这意味着,人工智能战略是拜登政府战略重心之一。
(二)韩国加快构建可持续的人工智能技术能力
韩国拥有雄厚的ICT产业发展根基,这为其发展人工智能奠定了良好的研发与应用生态基础。2018年5月15日,韩国第四次工业革命委员会审议并通过《人工智能研发战略》(以下简称《战略》),旨在重点推广人工智能技术进步,并加快AI在各领域的创新发展,打造世界领先的人工智能研发生态,构建可持续的人工智能技术能力。韩国认为人工智能是经济与社会大变革的核心动力之一,但其AI技术能力与中国和美国相比仍有较大差距,因此提升人工智能技术能力迫在眉睫,事关其能否在第四次工业革命中占得技术主导权。为了加快经济和社会的创新发展,为产业注入新的活力,韩国于2019年12月17日公布了《国家人工智能战略》,旨在凝聚国家力量、发挥自身优势,实现从“IT强国”到“人工智能强国”的转变。根据预算,相关措施若得以实施,到2030年,韩国将在人工智能领域创造455万亿韩元(约合2.7万亿元人民币)的经济效益。
(三)加拿大大力发展人工智能产学研用聚集中心
2017年3月,加拿大政府发布了全球首个人工智能国家战略计划——《泛加拿大人工智能战略(PanCanadianArtificialIntelligenceStrategy)》,计划拨款1.25亿加元支持AI研究及人才培养。该计划还提出了“增加加拿大优秀人工智能研究人员和熟练毕业生的数量”“在加拿大埃德蒙顿、蒙特利尔和多伦多3个主要人工智能中心建立互联的科学卓越节点”“在人工智能发展的经济、伦理、政策和法律意义上发展全球思想领导”以及“支持国家人工智能研究团体”等目标。此外,加拿大在全国范围内形成了数个有代表性城市的人工智能产学研用聚集中心,正是这些中心支撑起了加拿大人工智能发展的基本格局。这些聚集中心包括蒙特利尔、多伦多、埃德蒙顿、滑铁卢、温哥华和魁北克等城市,它们构成了加拿大人工智能研究的中坚力量。如果将加拿大人工智能领域看作一个生态系统,风险投资机构、加速器或孵化器以及公共非盈利机构构成了这个生态系统的土壤,为加拿大人工智能的研发和应用提供基础;各个人工智能产学研用聚集中心有其不同的偏重方向,就像不同种类的作物;各个聚集中心培育出来的初创企业,是人工智能服务人类生活的直接载体,就如作物结出的花朵与果实;国家和地方的政策支持、各领域方向的人才团队构成了人工智能生态的空气和养分;同时,加拿大社会开放,具备吸引外国投资机构、企业实体和人才的良好环境,为整个人工智能生态系统提供了有益补充。
(四)欧盟构建可信人工智能框架,抢占全球伦理规则主导权
欧盟很早就把发展以智能化为基础的经济模式作为其主要战略目标,注重在研发和人才上的投入,但由于缺乏风险资本和私募股权投资,以及民众过多顾虑隐私保护等问题,其在人工智能上的发展落后于中国和美国。为改变这一现状,欧盟采取多种措施大力发展人工智能,发力构建可信人工智能,力争取得全球主导权。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。2018年12月,欧盟发布了《人工智能协调计划》,提出要进一步增加资金投入、深化人工智能技术创新与应用、完善人才培养和技能培训、构建欧洲数据空间、建立人工智能伦理道德框架、促进公共部门人工智能技术使用、加强国际合作等行动,推进欧洲人工智能的开发与应用,实现欧盟和各国人工智能投资收益最大化,推动发展符合欧中价值观和伦理观念的人工智能,力争在伦理与治理领域占据全球领先地位。欧盟于2020年2月发布的《人工智能白皮书—欧洲追求卓越和信任的策略》,透露了欧盟人工智能将由“强监管”转向“发展和监管并重”,在促进人工智能广泛应用的同时,解决新技术使用所产生的风险问题。
二、我国人工智能发展现状
我国人工智能产业在政策、资本、市场需求的共同推动和引领下快速发展。产业上,我国人工智能企业“质、量”兼顾,同步发展,集聚发展效应明显,产业规模不断扩大,产业链布局不断完善。技术上,论文数量不断攀升,在复杂的国际环境下我国迎难而上,芯片产业突破明显,在国际竞赛中我国企业成果颇丰。为进一步推动技术创新,诸多高校设置人工智能相关专业、成立人工智能学院。融合上,我国人工智能与实体经济融合在广度和深度上都进一步深化,全国人工智能产业形成了特色化的发展格局。
2015年7月,国务院印发《关于积极推进“互联网+”行动的指导意见》。《指导意见》将人工智能作为其主要的十一项行动之一,并明确提出,依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用;进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化。2016年3月,国务院发布《国民经济和社会发展第十三个五年规划纲要(草案)》,人工智能概念进入“十三五”重大工程。2017年3月十二届全国人大五次会议上,“人工智能”首次被写入政府工作报告;7月,国务院发布《新一代人工智能发展规划》,明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心;10月,人工智能进入十九大报告,将推动互联网、大数据、人工智能和实体经济深度融合;12月,《促进新一代人工智能产业发展三年行动计划(2018-2020年)》的发布,它作为对7月发布的《新一代人工智能发展规划》的补充,详细规划了人工智能在未来三年的重点发展方向和目标,每个方向的目标都做了非常细致的量化。工信部为加快推动我国新一代人工智能产业创新发展,组织实施了人工智能产业创新任务揭榜挂帅工作,在人工智能项目攻关、选才用才方面效果显著。
相关数据显示,2020年人工智能行业核心产业市场规模将超过1500亿元,预计在2025年将超过4000亿元,中国人工智能产业在各方的共同推动下进入爆发式增长阶段,市场发展潜力巨大,未来中国有望发展为全球最大的人工智能市场。
我国高度重视人工智能技术进步与行业发展,人工智能已上升为国家战略。在此背景下,许多地方出台促进人工智能发展的政策,针对人工智能开展了布局,以广东省为例,广州、深圳、佛山等不少基础雄厚的城市都在积极谋划创建人工智能试验区,其中佛山市提出要“创建国家新一代人工智能创新发展试验区”,这一举措对区域在人工智能发展赛道抢占先机十分有利,对于区域人工智能发展有着显著的带动效果。在产业布局方面,佛山市因地制宜,将人工智能与工业制造进行融合。作为全国制造业的重要基地,佛山拥有2.16万亿的工业产值,对促进人工智能和实体经济融合发展有着大量的需求,可以实现人工智能技术在区域的产业化发展。2021年7月,《佛山市推进制造业数字化智能化转型发展若干措施》提出,“建设数字化智能化示范工厂、示范车间,支持技术改造升级”,加大金融财政支持力度、推动产业链协同、增强产业数字化智能化供给能力多措并举,以加快佛山制造业数字化、网络化、智能化转型升级。8月,佛山市南海区对外释放在人工智能方面的新布局,通过聚焦前沿技术,引进高科技企业和高端人才项目,联合高校科研院所共同攻克人工智能领域关键核心技术,一系列举措阐释着佛山市南海区全力打造国内一流的人工智能创新高地,助力打造佛山市制造业数字化智能化转型发展引领区,赋能佛山制造业升级提速的信心。这是佛山市南海区制造业高质量发展的表现,也是佛山市南海区在人工智能发展到新一阶段的布局升级,同时也反映了地方政府在新的时期发展和布局人工智能的信心与决心。
三、人工智能未来发展趋势
在未来的数十年里,人工智能有可能会极大地改变人类社会结构和生存方式。人工智能技术加速融入经济社会发展各领域全过程已是大势所趋。人工智能在重组全球要素资源、重塑全球经济结构、改变全球竞争格局方面将发挥出重要作用。我国面临中华民族伟大复兴战略全局和世界百年未有之大变局,将以国内国际两个大局、发展安全两件大事为出发点,充分发挥海量数据和丰富应用场景优势,促进人工智能与实体经济深度融合,赋能传统产业转型升级,催生新产业新业态新模式。在加强核心技术攻关、加快新型基础设施建设、推动人工智能和实体经济融合发展、规范行业发展和完善行业治理等方面持续发力,促进人工智能创新发展。
参考资料
1.国家工业信息安全发展研究中心.2019-2020人工智能发展报告.2020-7
2.李月白,江晓原.钱学森与20世纪80年代的人工智能热.2019-11
3.广州日报.2020中国人工智能产业白皮书:五年内市场规模预计超过4000亿元.2021-2
4.李贺南,陈奕彤,宋微.2020年韩国人工智能国家战略.2020-4
5.韩联社.韩国斥巨资大力发展人工智能.2020
6.江丰光,熊博龙,张超.我国人工智能如何实现战略突破——基于中美4份人工智能发展报告的比较与解读.2020-1
来源:中国网
免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。
2017中国技术传播发展现状调查报告
1背景介绍
技术传播(TechnicalCommunication),作为一项职业,从上世纪末开始在国内发展。然而由于职业需求和企业认知的局限性等原因,技术传播一直处于小众领域。
近年来,随着中国经济的转型升级,越来越多的企业正在或是将要走向国际。技术传播作为企业产品或服务的重要组成部分,其价值被越来越多的企业认可。由2016国内企业技术传播重视度调查报告可知,参与调查的企业管理层中,有超过60%认为技术文档在企业产品和服务中非常重要。
本次调查旨在通过了解技术传播从业者的工作现状,进而了解技术传播在国内的发展状况和价值。本次调查从2017年6月8日开始,11月30日截止,共收到有效答卷113份。
由于本次样本有限,因此基于这些样本的某些结论,并不能非常客观的反映出实际情况。望知悉。
2技术传播概况
2.1人员分布
在参与本次调查的人员中,有近65%是技术传播从业者,并且有近20%的问卷来自教师和学生。
2.2行业分布
参与本次调查的人员,有超过38%来自通信/计算机软硬件行业。
2.3组织性质
民营企业以超过42%的数字位居第一。紧跟其后的是外资企业,占总答卷数的近33%。在2016中国国内企业技术文档重视度调查报告中,民营企业也以压倒性的53%占据答卷数第一。另外,来自民营企业和国有企业的答卷数已经占到答卷总数的近二分之一。
2.4公司规模
结果显示,有将近35%的人员来自10000人以上的特大型企业。
2.5工作内容
用户手册以高达86.73%的百分比名列第一。紧随其后的是安装实施指南(62.83%)和在线帮助(61.95%)。由此可见,大部分的技术传播工作仍集中在用户手册。因此,也难怪乎业内人士给圈外人解释技术传播时,常有用“写说明书的”来指代技术传播工作的情况。
2.6重视程度
有超过47%的受调查者认为,技术传播工作非常重要。有超过34%的受调查者认为,技术传播工作相对重要。
2.7面临的问题
现阶段技术传播面临最突出的三个问题依次为:
1.企业缺乏了解(72.48%)
2.缺乏相关教育和培训(70.64%)
3.企业内高层不够重视(60.55%)
2.8技术传播的价值
技术传播最重要的三个价值依次是:
1.提升可用性和改善用户体验(94.5%)
2.作为产品和服务的重要补充,提高产品和服务竞争力(89.91%)
3.为技术支持,市场营销,培训等提供原始内容(82.57%)
2.9.内容管理系统
从调查结果看,仍有近60%的企业未采用内容管理系统。
3从业者概况
注:本章内容仅为从业者填写,因此其他角色的答卷中相关选项会显示“空”。为简化视图,本章中的图表均隐藏答案为“空”的数据项。
3.1从业年限
工作年限5-10年的从业者以超过36%的占比成为技术传播的主力军。而10年以上的资深从业者也占到了超过29%。
3.2部门规模
10人以下的小型文档部门占到了50%,而30人以上的大型文档部门也占到了超过20%。
3.3年薪范围
超过54%的受调查者年薪在10-20万区间。
3.4教育背景
理工科和语言背景各占51%和48%。
3.5从属部门
从调查结果看,大部分文档人员从属于研发部(39.39%)和文档部(34.34%)。
3.6培训形式
近87%的受调查者通过员工自学来掌握技术传播相关知识和技能。
3.7最关键的五个素质
调查结果显示,从业者最关键的五个素质依次为:理解能力(76%),语言表达能力(70%),写作能力(69%),沟通协作能力(67%),和分析设计能力(60%)。
3.8工作中的挑战
有近72%的受调查者认为,需要掌握更多的知识技能是技术传播工作最大的挑战。最严峻的三个挑战依次为:
1.需要掌握更多的知识技能
2.职业发展遭遇瓶颈
3.无法接触并了解客户
3.9曾经的职业
在成为技术传播从业者之前,有超过30%的人员是学生,有超过19%的人员曾经从事翻译工作。可见部分合适的毕业生可以直接从事技术传播工作,翻译和技术传播也有着密切的联系。
3.10工作强度
认为工作强度“中等,生活可以不受影响”的人员占到42.42%,而认为工作强度“较强,别想闲着”的占到39.39%。可见大部分受调查者认为,技术传播工作的强度中等或者较强。仅有2.02%的人员认为,技术传播工作“相当轻松”。
4交叉分析
4.1行业与教育背景
分析结果显示,在通信/计算机软硬件,互联网,机械设备行业,理工科背景的技术传播从业者占到了50%以上。而教育院校,医疗器械,工具/服务提供商行业,语言类背景的占到了50%以上,在工具/服务提供商行业,语言类背景多达71.43%。
4.2行业与从业年限
在通信/计算机软硬件行业,技术传播主力军为5-10年的从业者(55.81%)。而教育院校,工具/服务提供商,机械设备行业,有约40%的从业者是10年以上的资深人员。在互联网行业,各年限的从业者分布较为均匀。
4.3.行业与工作强度
在传统的通信/计算机软硬件、工具/服务提供商、医疗器械、机械设备行业,有超过半数的人员认为技术传播的工作强度是“强”或者“较强”。而在飞速发展的互联网行业,多达64.29%的人员认为工作强度仅“中等”,而且没有人员认为工作强度“强”。这个结果非常有意思。
4.4行业与年薪
在通信/计算机软硬件、互联网和机械设备行业,大部分人员的年薪在10-20万。而30万以上年薪占比最多的行业竟然是医疗器械(20%),而10万以下年薪占比最多的行业依然是医疗器械(30%)。而大部分人认为工作强度“中等”的互联网行业,年薪居然没有超过30万的。这个结果和实际略有出入,可能的原因是样本数有限而导致的偏差。
4.5行业与文档人数
从调查结果看,互联网行业有一半是20-30人的组成的文档部门,并没有30人以上的大型文档部门。而30人以上的大型文档部门在通信/计算机软硬件和工具/服务提供商行业占比较高,分别为30.23%和28.57%。
4.6行业与重视程度
在互联网和工具/服务提供商行业,各有71.43%的人员认为技术传播是非常重要的。而在通信/计算机软硬件和医疗设备行业,有近50%的人员认为技术传播是相对重要的。
4.7组织性质与工作强度
有近43%的国有企业人员和超过20%的民营企业人员认为技术传播工作强度“强,加班是必须的”,该数据在外企和高校仅为5.41%和6.25%。另外,认为工作强度“中等,生活可以不受影响”的,在外企有51.35%,民企有37.5%。认为工作强度“弱,工作相当轻松”的人员来自外企和民企。
4.8组织性质与教育背景
在国有企业和合资企业中,多达80%及以上的人员为理工科背景。而语言类背景的人员在外企中多达62.16%。两类人员在民营企业中分布较为均匀。从调查结果看,并没有设计背景的人员在以上企业从事技术传播工作。
4.9组织性质与从业年限
在外企中,有多达40.54%的从业者有10年以上从业年限。而在民企,仅有14.58%为10年以上人员。在国企和民企中,5-10年从业者为技术传播主力军,占比超过40%。而1-2年的新生军在合资企业占到60%。
4.10组织性质与年薪
30万以上的高薪出现在外企(18.92%)和民企(10.42%)。各类企业薪资大部分集中在10-20万的区间。国有企业的薪资分布比较均匀。
4.11组织性质与重视程度
认为技术传播“非常重要”的在各类企业与高校中均占40%以上。而在国有企业中,有近43%的人员认为技术传播重要性“一般”。而认为技术传播“可有可无”的出现在外企(2.7%)。
4.12组织性质与内容管理系统
结果显示,有近65%的外企使用了内容管理系统,而有近73%的民企尚未采用内容管理系统。
4.13企业规模与年薪
各类规模的企业的薪资均以10-20万为主。30万以上的高薪在5000人以上的大型和超大型企业占比较多。本次接受调查的5000-10000人规模的企业,没有10万以下的薪资。
4.14企业规模与工作强度
在5000-10000人的大型企业,大部分人(36.36%)认为工作强度“强,加班时必须的”。在10000人以上的超大型企业中,大部分人(43.59%)认为工作强度“较强,别想闲着”。在100-1000人的企业中,大部分人(48%)认为工作强度“中等,生活可以不受影响”。在10000人以上的企业中,也有大部分人(41.03%)认为工作强度“中等,生活可以不受影响”。
4.15企业规模与内容管理系统
近60%的超大型企业(10000人以上)使用了内容管理系统。这个结果很好的说明了内容管理系统的价值在超大型企业中得到了发挥。
4.16文档人数与工作强度
是不是文档人数越多,工作强度就越低呢?不见得。在拥有5-10人文档团队的组织中,有28%的人觉得工作强度强,而在拥有30人以上文档团队的组织中,同样有25%的人觉得工作强度强。觉得工作相当轻松的人,也出现在以上两种组织中。
4.17文档人数与年薪
结果显示,各类规模的文档团队,年薪均集中在10-20万区间。30万以上占比较多的,是拥有20人以上文档团队的组织。
4.18角色与重视程度
出乎预料的是,参加调查的技术传播从业者中,认为技术传播“非要重要”的仅占35.62%,而大部分认为技术传播仅是“相对重要”或者“一般”。而其他角色的人员中,绝大部分人员认为技术传播“非常重要”。
5总结
本次调查的样本数仍然有限,导致有些调查结果并不能非常可观的反应实际情况。另外,本次调查参与人员除技术传播从业者之外,也包括了高校教师学生等,而他们对于技术传播从业者概况部分的答卷无法提供相关反馈,也从一定程度上稀释了这部分的样本数据。为了能够更加深入的了解技术传播行业和技术传播从业者的从业状况,我们呼吁更多的从业者在2018年参与到调查中来。
欧莱雅品牌传播现状问卷调查
请您务必认真阅读本数据授权协议,在确认充分了解并同意后进行签署或勾选,如果您/您的监护人不同意本数据授权协议,请您立即停止使用,您同意本协议后,我们将根据本协议按照您的授权处理您的数据。
1、授权的数据:您通过问卷星平台收集的答卷统计数据,非原始详细答卷数据。
2、授权的目的:将您授权使用的数据共享给第三方,通过使用人工智能帮助您做数据分析,进而为您提供特定的服务。
3、第三方:包括但不限于文心一言、通义千问以及微软认知服务等大语言模型。
4、授权期限:您同意本协议后,授权即生效,授权过程中您可随时登录问卷星平台对您已授权数据进行删除,如您删除相关数据,您将无法使用通过人工智能进行数据分析的相关功能,但不影响您使用问卷星平台的基本功能。
5、数据保密:
5.1除法律法规及协议另有约定外,问卷星承诺不会主动将您的数据提供给任何与本协议约定用途无关的其他第三方。
5.2您授权的数据将仅为完成本协议所说明的目的而使用,不将数据用于其他未授权的情形,也不以任何其他方式滥用数据。
6、风险提示:
6.1您在同意本协议授权前,您已经了解并知悉您的数据的重要性,请您认真仔细判断您的数据是否属于可共享至第三方之数据,如您的数据较为重要或敏感,请您谨慎选择。
6.2您授权的数据需真实、合法、有效,不存在侵犯任何第三方的商业秘密、知识产权、隐私权等合法权利的行为。
6.3问卷星及本协议约定授权的第三方均有相应的安全措施来确保相应数据安全(详细内容请访问《问卷星隐私政策》《通义千问隐私政策》等),但您注意在互联网上不存在“完善的安全措施”,不排除存在因不可归咎于问卷星的原因(包括但不限于网络瘫痪、黑客攻击、第三方原因)导致数据泄露的可能性。
6.4使用本协议授权的数据通过人工智能进行数据分析的结果并非总是正确或真实的,问卷星不对上述人工智能数据分析结果承担任何责任。
7、本协议的订立、执行和解释及争议的解决均适用在中华人民共和国大陆地区适用之有效法律。如缔约方就本协议内容或执行发生任何争议,双方应尽力友好协商解决;协商不成时,任何一方均可向问卷星所在地人民法院提起诉讼。
8、如您对于本协议有任何不理解之内容,您可立即联系问卷星客服,以获取让您满意的解释,在您存在疑惑或不确定之前,请您不要勾选“同意”,您勾选“同意”即视为您完全接受本协议,在勾选之前请您再次确认已知悉并完全理解本协议的全部内容。