博舍

19个人工智能(AI)热门应用领域,你知道多少 人工智能七大应用领域是什么意思

19个人工智能(AI)热门应用领域,你知道多少

近年来,机器人的发展突飞猛进,在某些特定场景,如工厂流水线、安保、疾病诊断等方面,人工智能通过成千上万次训练,在大数据计算的赋能下,正逐渐超越人类,替代人类完成大部分重复性、机械性的繁琐工作。

处在人工智能大变革的前夕,虽然现阶段人工智能在逻辑尝试、创新能力、人文关怀等方面还远远无法替代人类,但不可避免的,AI也会带来更多难题和挑战。俗话说,知己知彼,方能立于不败之地。今天,就让小编给大家普及一下人工智能(AI)的19个热门应用领域吧。

(一)自然语言生成(NaturalLanguageGeneration)

自然语言生成是人工智能的分支,研究如何将数据转化为文本,用于客户服务、报告生成以及市场概述。

(二)语音识别(SpeechRecognition)

语音识别Siri就是一个典型的例子。目前,通过语音应答交互系统和移动应用程序对人类语言进行转录的系统已多达数十万。

(三)虚拟助理(VirtualAgents)

虚拟助理是一种能与人类进行交互的计算机代理或程序,其中以聊天机器人最为著名。虚拟助理多用于客户服务和支持,并可以作为智能家居的管理者。

(四)机器学习平台(MachineLearningPlatforms)

机器学习平台机器学习是计算机科学和人工智能技术的分支,它能提升计算机的学习能力。通过提供算法、API(应用程序接口)、开发和训练工具包、数据、以及计算能力来设计、培训和部署模型到应用程序、流程和其他机器,广受企业青睐,用以解决预测和分类任务。Adext是世界上第一个也是唯一的观众管理工具,它将人工智能和机器学习应用于数字广告,以期将广告精准的投放给最符合产品定位的受众。

(五)人工智能硬件优化(AI-optimizedHardware)

人工智能硬件优化用于运行面向人工智能的计算任务,是经过专门设计和架构的GPU(图形处理单元)和CPU(中央处理单元)。即将推出的基于人工智能优化的硅芯片,将直接嵌入到你的便携设备以及生活各处。

(六)决策管理(DecisionManagement)

决策管理智能机器能够向AI系统引入规则及逻辑,因此你可以利用它们进行初始化设置/训练,以及持续的维护和优化。决策管理在多类企业应用中得以实现,它能协助或者进行自动决策,实现企业收益最大化。

(七)深度学习平台(DeepLearningPlatforms)

深度学习平台是机器学习的一种特殊形式,它包含多层的人工神经网络,能够模拟人类大脑,处理数据并创建决策模式。目前主要被用于基于大数据集的模式识别和分类。

(八)生物信息(Biometrics)

生物信息这项技术能够识别、测量、分析人类行为以及身体的物理结构和形态。它能赋予人类和机器之间更多的自然交互能力,包括但不仅限于图像、触控识别和身体语言识别,目前被广泛用于市场研究领域。

(九)机器处理自动化(RoboticProcessesAutomation)

机器处理自动化使用脚本和其它方法实现人类操作的自动化,以支持更高效的商业流程。目前被用于人力成本高昂或效率较低的任务和流程。机器处理自动化能将人类的才能最大化的展示出来,并且让职工更加具有创造性和战略性,对公司的发展至关重要。

(十)文本分析和自然语言处理(TextAnalyticsandNaturalLanguageProcessing)

文本分析和自然语言处理利用统计和机器学习方法理解句子的结构、含义、情绪和意图,广泛应用于欺诈探测和信息安全等领域,同时还可用于非结构化数据的挖掘。

(十一)数字孪生/AI建模(DigitalTwin/AIModeling)

数字孪生/AI建模是一种软件架构,搭建起物理系统和数字世界的桥梁。通用电气公司(GeneralElectric,GE)宣布将成立一家人工智能公司,用于对飞机引擎、机车、燃气轮机的监控、以及故障预测。该公司的数字孪生仅几行代码,即便是最复杂的版本看上去也就像三维计算机辅助设计图纸,充满了交互式图表和数据点。

(十二)网络防御(CyberDefense)

网络防御是一种计算机网络防御机制,专注于预防、检测以及在基础设施和信息在受到攻击和威胁时进行及时响应。人工智能和机器学习将网络防御带入了新的发展阶段:在2017年,共检测出20亿次的入侵记录,其中76%的入侵是意外发生的,69%是身份丢失造成的。

递归神经网络(Recurrentneuralnetworks,RNN)能够处理输入序列,与机器学习技术相结合创建出监督学习技术,能够发现可疑目标,并检测出高达85%的网络攻击。

   Darktrace和Cylance等初创公司高度重视人工智能结合网络防御领域的工作。Darktrace将行为分析与高等数学相结合,自动检测组织内部的异常行为,Cylance应用人工智能算法来阻止恶意软件的入侵并减轻攻击造成的损害。另一家致力于网络防御的公司,DeepInstinct,被看作是“最具破坏性的初创公司”,该公司旨在保护企业的端点、服务器和移动设备。

(十三)合规(Compliance)

合规是指一个人或者一家公司的经营活动与公认管理、法规、规章、标准或合同条款相一致。将人工智能应用于合规工作中已屡见不鲜,自然语言处理技术能够扫描文本并且将其模式与关键字相匹配,以识别与公司有关的变动。具有预测分析功能和场景构建器的资本压力测试技术能够帮助公司遵守监管资本要求。此外,深度学习的使用,能有效减少被标记为潜在洗钱活动的交易数量。

(十四)知识工作辅助(KnowledgeWorkerAid) 

知识工作辅助虽然许多人都很担心AI是否会完全取代人类工作,但别忘了,AI科技能够在很大程度上帮助人们出色的完成自己的工作,特别是在知识工作领域。知识工作的自动化已被列为第二大最具破坏性的新兴技术。在大量依靠知识工作者的医疗和法律领域,从业者们将逐渐使用AI技术作为诊断工具。

(十五)内容创作(ContentCreation)

内容创作包括人们对网络世界输入的任何材料,如视频、广告、博客、白皮书、信息图表以及其它视觉或者书面材料。哥伦比亚广播公司等团队已使用了AI技术进行内容生成;Wibbitz的SaaS平台可以通过人工智能视频产品把文字内容转化为视频内容;自动透视公司研发的Wordsmith,在获取数据后利用自然语言处理技术进行新闻写作。

(十六)P2P网络(Peer-to-PeerNetworks)

P2P网络是指网络的参与者共享他们所拥有的一部分硬件资源,这些共享资源通过网络提供服务和内容,能被其它P2P节点直接访问而无需经过中间实体。BetCapitalLLC的首席执行长本哈特曼在接受《创业者》杂志采访时表示,P2P网络也被用于货币加密,甚至能够通过收集和分析大量数据来解决一些世界上最具挑战性的问题。普瑞斯是一家旨在利用P2P网络和人工智能让搜索引擎更加通俗易懂的公司,以加密货币为奖励,让参与者们借出他们电脑的计算能力。相应地,该公司许诺会建立一个更加透明的搜索引擎平台。

(十七)情绪识别(EmotionRecognition)

情绪识别情绪识别可以通过高级图像处理或音频数据处理来“读取”人类脸上的表情。目前,我们已经能够捕捉“微表情”,识别肢体语言暗示,以及分析含有情绪的语音语调。执法人员在审讯过程中使用这项技术能够获取更多的信息,这项技术也被广泛运用于市场营销。

(十八)图像识别(ImageRecognition)

图像识别是指在数字图像或者视频中识别和检测出物体或特征的过程,人工智能技术在该领域具有独特的优势。人工智能可以在社交媒体平台上搜索照片,并将其与大量数据集进行比较,从而找出与之最为相关的内容。图像识别技术能用于车牌识别、疾病检测、客户意见分析以及身份验证等。

(十九)智能营销(MarketingAutomation)

智能营销到目前为止,市场部门已经从人工智能中获益良多,业界对人工智能的信任是有充分理由的。55%的营销人员确信人工智能在他们的领域会比社交媒体有更大的影响力。智能营销能够提升公司的参与度和效率,对客户进行细分、集成客户数据和管理活动,并简化重复任务,让决策者们有更多的时间专注战略制定。

人工智能与商业应用

商业机构中的领导者对人工智能的商业影响力感到既担忧又兴奋。全球各地的公司正逐渐意识到这一新技术的力量,并开始探索如何应用人工智能提升企业竞争力。

本文基于Efma和德勤联合进行的EMEA(欧洲、中东、非洲三地区)FSI(金融服务业)调查结果,并引用了业内多家公司的见解和案例研究,分析了人工智能的逻辑建模、行业现状以及理解和利用人工智能技术所需要采取的行动。

 

1. 人工智能应用领域

人工智能有三大主要应用领域:认知自动化,认知参与和认知洞察力。

认知自动化

在这一领域,人工智能的主要领域是机器学习,机器人流程自动化(RPA),和其他能够自动化深层领域知识开发的认知工具。我们已经看到人工智能设备自动化了那些传统上需要训练有素的工人才能完成的任务。

手写和字符识别是认知自动化应用的最佳范例,它可以支持高强度、复杂繁琐的办公业务,以帮助企业降低风险和成本。例如,可以使用自然语言处理和OCR技术从文档中提取关键信息。

认知参与

人工智能的下一阶段是认知技术“代理”:系统通过认知技术与人类建立密切关系。

认知系统开启了文本/图像/视频等“非结构化”数据的力量,为银行和客户提供定制化的产品和服务并创造新的收益流。

最常见的例子是语音识别接口,它可以执行语音指令,降低温控器或打开电视频道。同时,也出现了一些使用认知参与的新型应用领域,这些领域需要人工智能接触到更复杂的信息并执行数字化任务。比如接收病人入院,或者推荐产品和服务。

认知洞察力

认知洞察力是指从各种数据流中提取概念和关系,用来生成隐藏在大量“结构化”和“非结构化”数据中的相关答案。

总的来说,认知洞察力可以检测来自多个数据源数据的关键内容和相关联系,从而获得更深入和可操作的洞见。

随着处理数据量的增加,观察和预测的准确性得到了提高。人工智能不仅可以深入了解已经发生的事情,而且还能分析正在发生的事情,以及预测接下来可能发生的事情。这可以帮助商业领袖制定计划,帮助员工提高他们的业绩。例如,在全球呼叫中心,客服人员使用多功能客户支持程序来回答产品提问,接受订单,调查账单问题,并解决客户的其他困扰。

根据斯坦福大学主题为“2030年的人工智能与生活”的调查研究,专家预测人工智能将在以下八大领域发挥重要作用:交通,服务型机器人,医疗,教育,低资源社区,公众安全,就业与工作以及娱乐产业。另一方面,美国劳动部在2016年发布的报告中提到“65%的在校学生未来将被雇佣于现在尚未存在的工作岗位”。这些预测告诉我们,在不久的将来,人工智能技术将与我们的生活产生紧密联系,对工作和生活等多方面造成深远影响。

 

2. 人工智能中的监管问题

接下来的问题是:经济发展和社会各界需要做出哪些准备来迎接人工智能光明的未来?

在2017年初,欧洲议会提出一系列管理人工智能的法规,用来规定相关道德准则,以及人工智能犯错的责任归属问题。

议会调查员MadyDelvax强调了建立一个欧洲机器人监管机构的重要性,该机构将通过提供技术支持来协助政府部门。他还建议起草一份道德行为准则,用以指导机器人工程项目并确定他们的行为责任。

事实上,问责权或法律责任是人工智能争议中的关键问题。自动驾驶汽车的兴起就是最明显的例子,相关各方有必要去定义具体的保险计划,并确定损害赔偿的责任。在未来,智能自动化机器人将被赋予某种“法律人格”。最后Delvaux的报告强调,机器人可能会对社会产生长期影响,政府部门需要密切关注这些趋势,创造新的就业岗位和税收模式。

 

3. 人工智能发展现状

为了了解金融服务行业在人工智能应用方面的现状和前景,Efma和德勤联合进行了一项大型调查,调查范围涉及超过3000人,受访者主要为金融服务公司技术和业务方面的高管,大多受访者表示,新认知技术的应用将增强工作的可控性,并减轻员工的工作负担,而不是将人们的劳动力完全替代。

对于“贵公司在人工智能应用领域处于什么阶段”这一问题,约90%的公司表示已经开始在他们的工作中使用人工智能技术,或正处于对这一新技术的学习中。 

人工智能的十大应用

导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。

作者:王健宗何安珣李泽远

来源:大数据DT(ID:hzdashuju)

01 无人驾驶汽车

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。

美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。

2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。

Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。

2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。

近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。

但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。

02 人脸识别

人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。

有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。

2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;

2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。

03机器翻译

机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。

随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。

04声纹识别

生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。

声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。

相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。

同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。

目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。

05智能客服机器人

智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。

当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。

智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。

随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。

而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。

06智能外呼机器人

智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。

在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。

从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。

基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。

07智能音箱

智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。

支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。

在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。

08个性化推荐

个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。

个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。

09医学图像处理

医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。

传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。

该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。

10 图像搜索

图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。

该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。

关于作者:王健宗,博士,某大型金融集团科技公司资深人工智能总监、高级工程师,中国计算机学会大数据专家委员会委员、高级会员,美国佛罗里达大学人工智能博士后,曾任美国莱斯大学电子与计算机工程系研究员、美国惠普公司高级云计算解决方案专家。

何安珣,某大型金融集团科技公司高级算法工程师,中国计算机学会会员,中国计算机学会青年计算机科技论坛(YOCSEF深圳)委员。拥有丰富的金融智能从业经验,主要研究金融智能系统框架搭建、算法研究和模型融合技术等,致力于推动金融智能的落地应用与价值创造。

李泽远,某大型金融集团科技公司高级人工智能产品经理,中国计算机学会会员,长期致力于金融智能的产品化工作,负责技术服务类的产品生态搭建与实施推进。

本文摘编自《金融智能:AI如何为银行、保险、证券业赋能》,经出版方授权发布。

延伸阅读《金融智能》

点击上图了解及购买

转载请联系微信:DoctorData

推荐语:这是一部讲解如何用AI技术解决银行、保险、证券行业的核心痛点并帮助它们实现数智化转型的著作。作者从金融智能一线从业者的视角,深入剖析了传统金融行业的痛点与局限,以及金融智能的特点与优势,阐明了人工智能等技术在金融业的必要性,并针对金融智能在银行、保险和证券业的诸多应用场景,给出了具体解决方案。

划重点????

干货直达????

有了中台,那后台还剩下什么?(图解中台架构)

关于读书,我发现每一个技术大牛都有这个怪癖

2020福布斯中国富豪榜发布!10年来谁是中国最有钱的人?

34秒看完200余年美国总统大战:民主党vs共和党谁是赢家?

更多精彩????

在公众号对话框输入以下关键词

查看更多优质内容!

PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作

大数据 | 云计算 | 数据库 | Python | 可视化

AI | 人工智能 | 机器学习 | 深度学习 | NLP

5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生

据统计,99%的大咖都完成了这个神操作

????

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇