19个人工智能(AI)热门应用领域,你知道多少
近年来,机器人的发展突飞猛进,在某些特定场景,如工厂流水线、安保、疾病诊断等方面,人工智能通过成千上万次训练,在大数据计算的赋能下,正逐渐超越人类,替代人类完成大部分重复性、机械性的繁琐工作。
处在人工智能大变革的前夕,虽然现阶段人工智能在逻辑尝试、创新能力、人文关怀等方面还远远无法替代人类,但不可避免的,AI也会带来更多难题和挑战。俗话说,知己知彼,方能立于不败之地。今天,就让小编给大家普及一下人工智能(AI)的19个热门应用领域吧。
(一)自然语言生成(NaturalLanguageGeneration)
自然语言生成是人工智能的分支,研究如何将数据转化为文本,用于客户服务、报告生成以及市场概述。
(二)语音识别(SpeechRecognition)
语音识别Siri就是一个典型的例子。目前,通过语音应答交互系统和移动应用程序对人类语言进行转录的系统已多达数十万。
(三)虚拟助理(VirtualAgents)
虚拟助理是一种能与人类进行交互的计算机代理或程序,其中以聊天机器人最为著名。虚拟助理多用于客户服务和支持,并可以作为智能家居的管理者。
(四)机器学习平台(MachineLearningPlatforms)
机器学习平台机器学习是计算机科学和人工智能技术的分支,它能提升计算机的学习能力。通过提供算法、API(应用程序接口)、开发和训练工具包、数据、以及计算能力来设计、培训和部署模型到应用程序、流程和其他机器,广受企业青睐,用以解决预测和分类任务。Adext是世界上第一个也是唯一的观众管理工具,它将人工智能和机器学习应用于数字广告,以期将广告精准的投放给最符合产品定位的受众。
(五)人工智能硬件优化(AI-optimizedHardware)
人工智能硬件优化用于运行面向人工智能的计算任务,是经过专门设计和架构的GPU(图形处理单元)和CPU(中央处理单元)。即将推出的基于人工智能优化的硅芯片,将直接嵌入到你的便携设备以及生活各处。
(六)决策管理(DecisionManagement)
决策管理智能机器能够向AI系统引入规则及逻辑,因此你可以利用它们进行初始化设置/训练,以及持续的维护和优化。决策管理在多类企业应用中得以实现,它能协助或者进行自动决策,实现企业收益最大化。
(七)深度学习平台(DeepLearningPlatforms)
深度学习平台是机器学习的一种特殊形式,它包含多层的人工神经网络,能够模拟人类大脑,处理数据并创建决策模式。目前主要被用于基于大数据集的模式识别和分类。
(八)生物信息(Biometrics)
生物信息这项技术能够识别、测量、分析人类行为以及身体的物理结构和形态。它能赋予人类和机器之间更多的自然交互能力,包括但不仅限于图像、触控识别和身体语言识别,目前被广泛用于市场研究领域。
(九)机器处理自动化(RoboticProcessesAutomation)
机器处理自动化使用脚本和其它方法实现人类操作的自动化,以支持更高效的商业流程。目前被用于人力成本高昂或效率较低的任务和流程。机器处理自动化能将人类的才能最大化的展示出来,并且让职工更加具有创造性和战略性,对公司的发展至关重要。
(十)文本分析和自然语言处理(TextAnalyticsandNaturalLanguageProcessing)
文本分析和自然语言处理利用统计和机器学习方法理解句子的结构、含义、情绪和意图,广泛应用于欺诈探测和信息安全等领域,同时还可用于非结构化数据的挖掘。
(十一)数字孪生/AI建模(DigitalTwin/AIModeling)
数字孪生/AI建模是一种软件架构,搭建起物理系统和数字世界的桥梁。通用电气公司(GeneralElectric,GE)宣布将成立一家人工智能公司,用于对飞机引擎、机车、燃气轮机的监控、以及故障预测。该公司的数字孪生仅几行代码,即便是最复杂的版本看上去也就像三维计算机辅助设计图纸,充满了交互式图表和数据点。
(十二)网络防御(CyberDefense)
网络防御是一种计算机网络防御机制,专注于预防、检测以及在基础设施和信息在受到攻击和威胁时进行及时响应。人工智能和机器学习将网络防御带入了新的发展阶段:在2017年,共检测出20亿次的入侵记录,其中76%的入侵是意外发生的,69%是身份丢失造成的。
递归神经网络(Recurrentneuralnetworks,RNN)能够处理输入序列,与机器学习技术相结合创建出监督学习技术,能够发现可疑目标,并检测出高达85%的网络攻击。
Darktrace和Cylance等初创公司高度重视人工智能结合网络防御领域的工作。Darktrace将行为分析与高等数学相结合,自动检测组织内部的异常行为,Cylance应用人工智能算法来阻止恶意软件的入侵并减轻攻击造成的损害。另一家致力于网络防御的公司,DeepInstinct,被看作是“最具破坏性的初创公司”,该公司旨在保护企业的端点、服务器和移动设备。
(十三)合规(Compliance)
合规是指一个人或者一家公司的经营活动与公认管理、法规、规章、标准或合同条款相一致。将人工智能应用于合规工作中已屡见不鲜,自然语言处理技术能够扫描文本并且将其模式与关键字相匹配,以识别与公司有关的变动。具有预测分析功能和场景构建器的资本压力测试技术能够帮助公司遵守监管资本要求。此外,深度学习的使用,能有效减少被标记为潜在洗钱活动的交易数量。
(十四)知识工作辅助(KnowledgeWorkerAid)
知识工作辅助虽然许多人都很担心AI是否会完全取代人类工作,但别忘了,AI科技能够在很大程度上帮助人们出色的完成自己的工作,特别是在知识工作领域。知识工作的自动化已被列为第二大最具破坏性的新兴技术。在大量依靠知识工作者的医疗和法律领域,从业者们将逐渐使用AI技术作为诊断工具。
(十五)内容创作(ContentCreation)
内容创作包括人们对网络世界输入的任何材料,如视频、广告、博客、白皮书、信息图表以及其它视觉或者书面材料。哥伦比亚广播公司等团队已使用了AI技术进行内容生成;Wibbitz的SaaS平台可以通过人工智能视频产品把文字内容转化为视频内容;自动透视公司研发的Wordsmith,在获取数据后利用自然语言处理技术进行新闻写作。
(十六)P2P网络(Peer-to-PeerNetworks)
P2P网络是指网络的参与者共享他们所拥有的一部分硬件资源,这些共享资源通过网络提供服务和内容,能被其它P2P节点直接访问而无需经过中间实体。BetCapitalLLC的首席执行长本哈特曼在接受《创业者》杂志采访时表示,P2P网络也被用于货币加密,甚至能够通过收集和分析大量数据来解决一些世界上最具挑战性的问题。普瑞斯是一家旨在利用P2P网络和人工智能让搜索引擎更加通俗易懂的公司,以加密货币为奖励,让参与者们借出他们电脑的计算能力。相应地,该公司许诺会建立一个更加透明的搜索引擎平台。
(十七)情绪识别(EmotionRecognition)
情绪识别情绪识别可以通过高级图像处理或音频数据处理来“读取”人类脸上的表情。目前,我们已经能够捕捉“微表情”,识别肢体语言暗示,以及分析含有情绪的语音语调。执法人员在审讯过程中使用这项技术能够获取更多的信息,这项技术也被广泛运用于市场营销。
(十八)图像识别(ImageRecognition)
图像识别是指在数字图像或者视频中识别和检测出物体或特征的过程,人工智能技术在该领域具有独特的优势。人工智能可以在社交媒体平台上搜索照片,并将其与大量数据集进行比较,从而找出与之最为相关的内容。图像识别技术能用于车牌识别、疾病检测、客户意见分析以及身份验证等。
(十九)智能营销(MarketingAutomation)
智能营销到目前为止,市场部门已经从人工智能中获益良多,业界对人工智能的信任是有充分理由的。55%的营销人员确信人工智能在他们的领域会比社交媒体有更大的影响力。智能营销能够提升公司的参与度和效率,对客户进行细分、集成客户数据和管理活动,并简化重复任务,让决策者们有更多的时间专注战略制定。
人工智能应用领域的研究与展望
引言
20世纪的科技成就中,人工智能占据着重要的位置,它的研发使用是将智能机器人的技术、信息化技术、自动化技术和关于人类自身智能探索与研究融为一体的必然结果。随着人工智能的系列化研究与发展,如今,人工智能已经被广泛地应用于很多领域。但是关于人工智能的应用领域的综述并不多,本文就人工智能在不同领域应用发展趋势进行展望。
1人工智能的由来
人工智能是研究、开发模拟应用、延伸和拓展人的智能领域的理论、方法、技术以及应用系统的一门新的学科。相比于其他学科,人工智能的研究和发展历史是很短暂的,但是它的研究发展与应用却为人类生活带来了翻天覆地的变化,是人类发展历史的一个里程碑,将人类从繁重的体力劳动和脑力劳动中解放出来,同时帮助人类探索拓展了更多的未知领域。
1956年,麦卡赛和明斯基等科学家就提出了“人工智能”的理念,认为在未来机器将会以其独有的人工智能特点更好地服务于人类,代替人类来完成许多高难度、高强度和高危险系数类的工作。这一理念的提出引来了许多优秀科学家的青睐,随即对此展开了更深入的研究、探索、发展和应用[1]。
在计算机的应用普及之前,几乎没有什么机器设备可以分担人类的脑力劳动,特别是依据人脑的思维去对数据进行收集、处理、运算、判定、存储、积累、分析和选择决断。当计算机有了一定程度的发展和应用之后,能够代替人脑工作的软件才逐步被开发并应用到研究和生活中。由早期的各种复杂数据分析运算,一维、二维、三维和立体的测绘,继而发明并应用二维码的识别、无人机作业、月球车等各种模拟人类思维模式的应用,到后来人工智能云处理、对比、处理和建议等人脑无法准确、无误且快速处理大数据的运用。如今,人工智能的应用已经遍布人类生活的许多领域。
2人工智能的应用领域
现在人工智能在计算机领域的应用比较广泛,在其他领域的发展应用也是频见报道。随着人工智能“深、广、精”的研究、发展与应用,不久,必将迎来在更多领域的应用,未来的人工智能将更加智能,更加的人性化,更像个“人”一样进入人类生活,为人类社会的发展服务。
2.1人工智能在工业领域的应用
人工智能的应用在工业发展方面起着举足轻重的作用,它具有效率高、稳定可靠、重复精度好,可承担劳动强度大、危险系数高的作业等优势,已被广泛应用到了工业生产领域,如机器人焊接、机器人搬运、机器人装配、机器热打磨抛光和机器人喷涂电镀等。2018年,林远长等人研究得到焊接机器人在每米长度方向上焊接轨迹跟踪仿真误差为0.18mm,而实际跟踪误差为0.2mm,由此验证利用人工智能仿真误差与实际误差基本一致,完全满足工业生产需求[2]。赵猛研发发动机挠性飞轮盘螺纹装配工业机器人项目[3],提高装配的自动化和柔性化程度,保证装配质量和生产效率。用人工智能的机器人来代替普通工人去完成许多对人体有不良影响及人体生理条件限制而不能承受的工作,是20世纪工业发展的一个质的飞跃,是工业发展史的一个标志性的里程碑。
2.2人工智能在金融领域的应用
近来,随着人工智能的开发及应用,互联网金融更是取得了极其辉煌迅猛的发展。二维码支付、手机银行、网络借贷、P2P平台、淘宝、京东等逐渐成为人们茶余饭后议论的热点词汇。通过大数据库、云计算、计算机网络应用、区块数据链等最新IT技术,即可获取大量、精确的信息,更加个性化、定向化的风险定位模型,更科学、严谨的投资决策过程,更透明、公正的信用中介角色等,从而能大大地提高金融业务效率和服务水平,特别是一些技术应用,如大数据征信、供需信息、供应链金融等[4]。
2.3人工智能在信息安全领域的应用
数字密码安保模式伴随着互联网技术的不断发展,其弊端也逐步显露,一方面容易被破解,导致信息泄露,另一方面,对于越来越多的信息安保需求,对人脑的记忆力要求也越来越高。由此产生的各种困扰也越来越多,如忘记密码后,自动取款机无法取现、打不开文件、登录不了系统等问题层出不穷,因此信息安全问题越来越被人们所关注。但当人工智能和生物识别技术结合并深入发展之后,信息安全领域得到了一个全新的发展和提高。指纹解锁速度可达0.2s,支持多个指纹同时录入,且被广泛应用;iPhoneX的人脸识别解锁,支付宝的刷脸登录和考勤机器上的刷脸打卡等正渐渐步入人们的日常生活之中;人的虹膜具有惟一性,为实现信息认证、保障信息安全提供了理论基础。现实中也已经有电子厂商将这一技术运用到了实际产品当中,比如三星S系列的手机,就配备了虹膜识别技术,但是虹膜识别目前对环境的要求比较高,尤其是在暗光环境下识别效果还有待提升。相比于指纹识别,虹膜识别在完成产业化的道路上还有很长的路要走[5]。
2.4人工智能在医疗领域的应用
医疗领域的人工智能应用更加普遍,它正在成为改善人们身心健康的主力军,可为病人提供就诊前健康状况初步分析和评估、协同医师处理病人信息和改善服务质量、在医院精准地指导病人就医、节约医疗资源、缓解就医难的紧张局面等。医学领域,精准是非常重要的,因为任何偏差或者误判都会危及人体的健康乃至生命。2015年,杨宇面对心脏手术医疗机器人的异构式主从控制研究,充分运用人工智能[6],简化了手术操作,降低了操作风险。人工智能芯片能够存入大量的信息,并对这些信息进行高速地运算处理和判断,做出最准确的决策,这是目前人脑没有办法做到的[7]。人工智
能还可以根据患者的实际情况,收集所需要的数据,结合过去的数据进行计算和决策,从而得出最有效的治疗方案,以此减少医务人员的脑力劳动强度,合理利用医疗资源[8]。
3人工智能应用领域的展望
随着人工智能在数字理论技术、自动化控制、机器人应用等方面不断地研究发展,将来,机器必定会无限地接近人的各种行为,通过智能“视觉”“听觉”“触觉”“味觉”“嗅觉”来接收信息,传递信息;通过“电脑”来处理信息,选择和决策;通过智能输出端的“说”和“做”来传递信息发布需求和指令;通过智能肢体“行为”来响应与实施。在人类的日常工作、学习、医疗、安全和可持续发展等领域,人工智能都将尽最大的可能去为人类提供服务。然而无论人工智能发展到哪一步,依然无法在思维、精神、感触和情绪方面全盘取代人脑,仍旧不够人性化和智能化,只能跟随人类对自身智能的开发和研究而尽量接近人类[9]。与此同时,随着大数据类的人工智能的研究与开发,信息安全问题将会凸显,并且成为科学家以后很长一段时间的困扰和研究热点[10]。
4结语
总之,人工智能技术的发展是日新月异的,为将来在更多领域、更广泛的应用人工智能技术提供了更多的可能,但是,这一切都是基于人类对自身智能的充分了解和掌握。为此,还需要很多的知识和技术积累,针对人工智能更大量的应用,科研人员还需要做更多的工作。一方面是开发更多的未知智能,另一方面是完美地将人的智能转化成机器人的智能来为人类生存与发展服务。