人工智能三大流派
从学术的观点看,人工智能主要分三大学派,分别是符号主义学派、连接主义学派和行为主义学派。在对人工智能进行研究时,可能会按照某一理论或方法展开探讨分析,但在实地落地的项目或产品可能综合应用了多个学派的知识。比如,最近我们为某制造企业提供智能客服系统,其中语音识别、语音合成和语义理解技术等属于连接主义的成果,同时,也使用了知识库等属于符号主义的成果。一、符号主义学派符号主义,又称逻辑主义、心理学派或计算机学派,是一种基于逻辑推理的智能模拟方法,认为人工智能源于数学逻辑,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。该学派认为人类认知和思维的基本单元是符号,智能是符号的表征和运算过程,计算机同样也是一个物理符号系统,因此,符号主义主张(由人)将智能形式化为符号、知识、规则和算法,并用计算机实现符号、知识、规则和算法的表征和计算,从而实现用计算机来模拟人的智能行为。其首个代表性成果是启发式程序LT(逻辑理论家),它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。此后,符号主义走过了一条启发式算法——专家系统——知识工程的发展道路。专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。1980年卡内基梅隆大学为数字设备公司设计了一个名为XCON的专家系统,在1986年之前,它每年为公司省下四千万美元。专家系统的能力来自于它们存储的专业知识,知识库系统和知识工程成为了上世纪80年代AI研究的主要方向。专家系统仅限于一个专业细分的知识领域,从而避免了常识问题,其简单的设计又使它能够较为容易地编程实现或修改。专家系统的成功开发与应用,对人工智能走向实际应用具有特别重要的意义,也是符号主义最辉煌的时候。但凡事有利有弊,专家系统仅仅局限于某些特定情景,且知识采集难度大、费用高、使用难度大,在其它领域如机器翻译、语音识别等领域基本上未取得成果。日本、英国、美国在80年代初都曾制订过雄心勃勃的人工智能研发计划,如日本的第五代计算机项目,其目标是造出能够与人对话、翻译语言、解释图像,并且像人一样推理的机器,但直到1991年,这个目标依然未能实现。20世纪80年代末,符号主义学派开始走向式微,日益衰落,其重要原因是:符号主义追求的是如同数学定理般的算法规则,试图将人的思想、行为活动及其结果,抽象化为简洁深入而又包罗万象的规则定理,就像牛顿将世间万物的运动蕴含于三条定理之中。但是,人的大脑是宇宙中最复杂的东西,人的思想无比复杂而又广阔无垠,人类智能也远非逻辑和推理。所以,用符号主义学派理论解决智能问题难度可想而知;另一个重要原因是:人类抽象出的符号,源头是身体对物理世界的感知,人类能够通过符号进行交流,是因为人类拥有类似的身体。计算机只处理符号,就不可能有类人感知,人类可意会而不能言传的“潜智能”,不必或不能形式化为符号,更是计算机不能触及的。要实现类人乃至超人智能,就不能仅仅依靠计算机。1997年5月,名为“深蓝”的IBM超级计算机打败了国际象棋世界冠军卡斯帕罗夫,这一事件在当时也曾轰动世界,其实本质上,“深蓝”就是符号主义在博弈领域的成果。【网图,符号主义代表作——知识库】二、连接主义学派连接主义,又称仿生学派或生理学派,是一种基于神经网络和网络间的连接机制与学习算法的智能模拟方法。连接主义强调智能活动是由大量简单单元通过复杂连接后,并行运行的结果,基本思想是,既然生物智能是由神经网络产生的,那就通过人工方式构造神经网络,再训练人工神经网络产生智能。1943年形式化神经元模型(M-P模型)被提出,从此开启了连接主义学派起伏不平的发展之路。1957年感知器被发明,之后连接主义学派一度沉寂。1982年霍普菲尔德网络、1985年受限玻尔兹曼机、1986多层感知器被陆续发明,1986年反向传播法解决了多层感知器的训练问题,1987年卷积神经网络开始被用于语音识别。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下基础。1989年反向传播和神经网络被用于识别银行手写支票的数字,首次实现了人工神经网络的商业化应用。与符号主义学派强调对人类逻辑推理的模拟不同,连接主义学派强调对人类大脑的直接模拟。如果说神经网络模型是对大脑结构和机制的模拟,那么连接主义的各种机器学习方法就是对大脑学习和训练机制的模拟。学习和训练是需要有内容的,数据就是机器学习、训练的内容。连接主义学派可谓是生逢其时,在其深度学习理论取得了系列的突破后,人类进入互联网和大数据的时代。互联网产生了大量的数据,包括海量行为数据、图像数据、内容文本数据等。这些数据分别为智能推荐、图像处理、自然语言处理技术发展做出卓著的贡献。当然,仅有数据也不够,2004年后大数据技术框架的行成和图形处理器(GPU)发展使得深度学习所需要的算力得到满足。在人工智能的算法、算力、数据三要素齐备后,连接主义学派就开始大放光彩了。2009年多层神经网络在语音识别方面取得了重大突破,2011年苹果工作将Siri整合到iPhone4中,2012年谷歌研发的无人驾驶汽车开始路测,2016年DeepMind击败围棋冠军李世石,2018年DeepMind的Alphafold破解了出现了50年之久的蛋白质分子折叠问题。近年来,连接主义学派在人工智能领域取得了辉煌成绩,以至于现在业界大佬所谈论的人工智能基本上都是指连接主义学派的技术,相对而言,符号主义被称作传统的人工智能。虽然连接主义在当下如此强势,但可能阻碍它未来发展的隐患已悄然浮现。连接主义以仿生学为基础,但现在的发展严重受到了脑科学的制约。虽然以连接主义为基础的AI应用规模在不断壮大,但其理论基础依旧是上世纪80年代创立的深度神经网络算法,这主要是由于人类对于大脑的认知依旧停留在神经元这一层次。正因如此,目前也不明确什么样的网络能够产生预期的智能水准,因此大量的探索最终失败。【网图,大数据用途之一】三、行为主义学派行为主义,又称进化主义或控制论学派,是一种基于“感知——行动”的行为智能模拟方法,思想来源是进化论和控制论。其原理为控制论以及感知——动作型控制系统。该学派认为:智能取决于感知和行为,取决于对外界复杂环境的适应,而不是表示和推理,不同的行为表现出不同的功能和不同的控制结构。生物智能是自然进化的产物,生物通过与环境及其他生物之间的相互作用,从而发展出越来越强的智能,人工智能也可以沿这个途径发展。行为主义对传统人工智能进行了批评和否定,提出了无须知识表示和无须推理的智能行为观点。相比于智能是什么,行为主义对如何实现智能行为更感兴趣。在行为主义者眼中,只要机器能够具有和智能生物相同的表现,那它就是智能的。这一学派的代表作首推六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。另外,著名的研究成果还有波士顿动力机器人和波士顿大狗。你可以在网上搜到它们各种炫酷的视频,包括完成体操动作,踹都踹不倒,稳定性、移动性、灵活性都极具亮点。他们的智慧并非来源于自上而下的大脑控制中枢,而是来源于自下而上的肢体与环境的互动。行为主义学派在诞生之初就具有很强的目的性,这也导致它的优劣都很明显。其主要优势便在于行为主义重视结果,或者说机器自身的表现,实用性很强。行为主义在攻克一个难点后就能迅速将其投入实际应用。例如机器学会躲避障碍,就可应用于星际无人探险车和扫地机器人等等。不过也许正是因为过于重视表现形式,行为主义侧重于应用技术的发展,无法如同其他两个学派一般,在某个重要理论获得突破后,迎来爆发式增长。这或许也是行为主义无法与连接主义抗衡的主要原因之一。【网图,行为主义的代表作——波士顿大狗】四、总结综上所述,我们可以简略地认为符号主义研究抽象思维,连接主义研究形象思维,而行为主义研究感知思维。符号主义注重数学可解释性;连接主义偏向于仿人脑模型;行为主义偏向于应用和身体模拟。从共同性方面来说,算法、算力和数据是人工智能的三大核心要素,无论哪个学派,这三者都是其创造价值和取得成功的必备条件。行为主义有一个显著不同点是它有一个智能的“载体”,比如上文所说到的“机器狗”的身体,而符号主义和连接主义则无类似“载体”(当然你也可以认为其“载体”就是计算机,只不过计算机不能感知环境)。人类具有智能不仅仅是因为人有大脑,并且能够保持持续学习。机器要想更“智能”,也需要不断学习。符号主义靠人工赋予机器智能,连接主义是靠机器自行习得智能,行为主义在与环境的作用和反馈中获得智能。连接主义和行为主义都使用强化学习方法进行训练。三者之间的长处与短板都很明显,意味着彼此之间可以扬长补短,共同合作创造更强大的强大的人工智能。比如说将连接主义的“大脑”安装在行为主义的“身体”上,使机器人不但能够对环境做出本能的反应,还能够思考和推理。再比如,是否用可以符号主义的方法将人类的智能尽可能地赋予机器,再按连接主义的学习方法进行训练?这也许可以缩短获得更强机器智能的时间。相信随着人工智能研究的不断深入,这三大学派会融合贯通,可共同为人工智能的实际应用发挥作用,也会为人工智能的理论找到最终答案。人工智能的三大学派:符号主义、连接主义、行为主义
原标题:人工智能的三大学派:符号主义、连接主义、行为主义目前人工智能的主要学派有下列三家:
(1)符号主义(symbolicism),又称为逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
(2)连接主义(connectionism),又称为仿生学派或生理学派,其主要原理为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义(actionism),又称为进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
1.符号主义
认为人工智能源于数理逻辑。数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又在计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,它证明了38条数学定理,表明了可以应用计算机研究人的思维过程,模拟人类智能活动。正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法>专家系统>知识工程理论与技术,并在20世纪80年代取得很大发展。符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要的意义。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。这个学派的代表人物有纽厄尔(Newell)、西蒙(Simon)和尼尔逊(Nilsson)等。
2.连接主义
认为人工智能源于仿生学,特别是对人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播(BP)算法。此后,连接主义势头大振,从模型到算法,从理论分析到工程实现,伟神经网络计算机走向市场打下基础。现在,对人工神经网络(ANN)的研究热情仍然较高,但研究成果没有像预想的那样好。
3.行为主义
认为人工智能源于控制论。控制论思想早在20世纪40~50年代就成为时代思潮的重要部分,影响了早期的人工智能工作者。维纳(Wiener)和麦克洛克(McCulloch)等人提出的控制论和自组织系统以及钱学森等人提出的工程控制论和生物控制论,影响了许多领域。控制论把神经系统的工作原理与信息理论、控制理论、逻辑以及计算机联系起来。早期的研究工作重点是模拟人在控制过程中的智能行为和作用,如对自寻优、自适应、自镇定、自组织和自学习等控制论系统的研究,并进行“控制论动物”的研制。到20世纪60~70年代,上述这些控制论系统的研究取得一定进展,播下智能控制和智能机器人的种子,并在20世纪80年代诞生了智能控制和智能机器人系统。行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。返回搜狐,查看更多
责任编辑:人工智能的研究内容
工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。1)知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
2)常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。
3)问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
4)搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
5)机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。
6)知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。
人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。AI的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。强人工智能目前仍然是该领域的长远目标。目前比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。
人工智能导论测试题——第1章绪论
人工智能导论测试题——第1章绪论1单选1956年达特茅斯会议上,学者们首次提出“artificialintelligence(人工智能)”这个概念时,所确定的人工智能研究方向不包括:CA.研究如何用计算机表示人类知识B.研究如何用计算机来模拟人类智能C.研究人类大脑结构和智能起源D.研究智能学习的机制
2单选从人工智能研究流派来看,明斯基等人所推荐的“人工神经网络”方法用计算机模拟神经元及其连接,实现自主识别、判断,应当属于:DA.符号主义,连接主义B.经验主义,行为主义C.理性主义,符号主义D.连接主义,经验主义
3单选从人工智能研究流派来看,西蒙和纽厄尔提出的“逻辑理论家”方法用,应当属于:AA.理性主义,符号主义B.连接主义,经验主义C.经验主义,行为主义D.符号主义,连接主义
4单选在人工智能学说中,有“鸟飞派”一说。意思是:人类通过观察鸟类飞行,发明了飞机,但飞机飞行的方式与鸟类有很大不同。该学说指的是:BA.人类研究人工智能,向自然界学习是唯一的途径B.人类并不一定要完全实现人类智能,而是使用机器模拟智能并达到与人类智能相同的功能C.人类研究人工智能必须要完全符合智能现象的本质D.以上都不对
5单选下列关于人工智能未来发展趋势的描述,哪些是错误的:AA.人工智能将脱离人类控制,并最终毁灭人类B.人工智能目前仅适用于特定的、专用的问题C.人工智能受到越来越多的关注,许多国家出台了支持人工智能发展的战略计划D.通用人工智能的发展正处于起步阶段