人工智能的历史、现状和未来
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。
概念与历程
了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。
人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。
人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:
一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。
三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
现状与影响
对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。
专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。
通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。
人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。
趋势与展望
经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?
从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。
从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。
人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。
人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。
人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。
态势与思考
当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。
差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。
前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。
树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。
推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。
(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)
人工智能的定义人工智能的基本概念是什么
【热门云产品免费试用活动】|【最新活动】|【企业应用优惠】
自从人类发明了计算机或机器人,它们执行各种任务的能力都有了相对的增长,人类已经可以开发出计算机系统的很多功能,涉及各种工作领域,人工智能的定义,简单来说,就是要通过智能的机器,达到人与机器和谐共处的一个社会。逐渐延伸了人类改造自然和治理社会的能力。
人工智能的定义是什么?
人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。
人工智能的定义
人工智能的基本概念(AI)
根据人工智能之父约翰麦卡锡的说法,它是“制造智能机器的科学与工程,特别是智能计算机程序”。
人工智能是一种使计算机,计算机控制的机器人或软件智能地思考的方式,其方式与智能人类的思维方式类似。人工智能是通过研究人类大脑如何思考以及人类在尝试解决问题时如何学习,决定和工作,然后将本研究的结果用作开发智能软件和系统的基础来实现的。
在充分利用计算机系统的力量的同时,人类的好奇心使他想知道“机器能像人类一样思考和行为吗?”
因此,人工智能的发展始于在我们发现并在人类中高度重视的机器中创造类似的智能。
人工智能的定义
学习人工智能的必要性
我们知道AI追求创造像人类一样聪明的机器。我们研究AI的原因有很多。
AI可以通过数据学习
在我们的日常生活中,我们处理的是大量的数据,人类的大脑无法跟踪这么多的数据。这就是我们需要自动化的原因。为了实现自动化,我们需要研究AI,因为它可以从数据中学习,并且可以准确无误地完成重复性任务。
AI可以自学
系统应该自学,因为数据本身不断变化,并且必须不断更新从这些数据中获得的知识。我们可以使用AI来实现这一目的,因为启用AI的系统可以自学。
AI可以实时响应
借助神经网络的人工智能可以更深入地分析数据。由于这种能力,AI可以根据实时情况思考和响应情况。
AI实现准确性
在深度神经网络的帮助下,AI可以实现极高的准确性。AI帮助医学领域从患者的MRI中诊断癌症等疾病。
AI可以组织数据以最大限度地利用它
数据是使用自学习算法的系统的知识产权。我们需要AI以一种始终提供最佳结果的方式索引和组织数据。
了解情报
使用AI,可以构建智能系统。我们需要了解智力的概念,以便我们的大脑可以构建像自己这样的另一个智能系统。
人工智能的定义其实是一个非常广泛的领域。这些领域虽然目前不是非常集中,但是它们正在交叉发展中,很多的未知的领域处在研究之中,并且逐渐走向统一。人工智能的最终目标是希望变成一门真正的科学,形成一个完整的科学体系。
更多相关文章:
1.域名建站专场
2.商标特惠专场
3.云速邮箱
4.网站建设专场
5.SSL证书专场
6.全球云服务专场
7.云服务器免费试用
8.企业免费试用专区
9.个人免费试用专区
10.图片文字识别OCR
11.网站建设自助建站
12.企业应用专场
13.域名注册申请
14.服务器和网关的关系是什么?网关的作用有哪些
15.域名解析a记录是什么意思
16.网址域名ip查询方式有哪些?域名和ip地址的区别是什么?
17.域名和url的区别与联系是什么?
18.域名和ip地址有什么关系?二者的含义是什么?
19.com域名和cn域名是什么意思?com和cn域名哪个好?
版权声明:本文章文字内容来自第三方投稿,版权归原始作者所有。本网站不拥有其版权,也不承担文字内容、信息或资料带来的版权归属问题或争议。如有侵权,请联系contentedit@huawei.com,本网站有权在核实确属侵权后,予以删除文章。
人工智能中的知识表示及应用特点
知识表示是一组描述事物的约定,可以看成是人类知识表示成机器能处理的数据结构。知识表示是人工智能的一个重要研究课题,应用人工智能技术解决实际问题,就要涉及各类知识如何表示。我们要研究如何将知识存储在计算机中,能够方便和正确地使用知识,合理地表示知识,使得问题的求解变得容易和具有较高的求解效率。知识表示是数据结构和控制结构及解释过程的结合,涉及计算机程序中存储信息的数据结构设计,并对这些数据结构进行智能推理演变的过程。知识表示是推理和行动的载体,如果没有合适的知识表示,任何构建智能体的计划都无法实现。
通常有以下几种知识表示方法及应用特点:
1. 一阶谓词逻辑表示方法
利用一阶逻辑公式描述事物对象、对象性质和对象间关系。这种方法是将自然语句写成逻辑公式,采用演绎规则和归结法进行严格的推理,能够证明一个新语句是由已知正确的语句推导出来的,即可断定这个新的语句(新知识)是正确的。知识库可以视为一组逻辑公式的集合,增加或删除逻辑公式即是对知识库的修改。
逻辑表示法有明确和规范的规则构造复杂事物,结构清晰,可以分离知识和处理知识的程序。具有完备的逻辑推理方法,不局限于具体领域,有较好的通用性。缺点是适合于事物间确定的因果关系,难于表示过程和启发式知识,推理过程中可能产生组合爆炸,推理效率较低。
2. 产生式表示方法
根据串代替规则提出的一种计算模型,模型中的每条规则称为产生式。产生式的基本形式P→Q ,P是产生式的前提(前件),Q是一组结论或操作(后件),如果前提P满足,则可推出结论Q或执行Q所规定的操作。
产生式可以表示人类心理活动的认知过程,已经成为人工智能中应用最多的
一种知识表示模式,许多成功的专家系统都是采用产生式知识表示方法。
3.语义网络表示方法
语义网络是一种用实体及其及关系来表达知识的有向图。结点代表实体,表示各种事物、概念、属性、状态、事件和动作等;弧线代表语义关系,表示它所连结的两个实体之间的联系。用语义网络表示知识以求解问题,主要包括两部分,一部分是由语义网络构成的知识库,另一部分是用于问题求解的推理机制。语义网络的推理过程主要有继承和匹配两种。
主要优点:结构性,联想性,自索引性,自然性;主要缺点:非严格性,复杂性。
4. 框架表示方法
框架表示法是在框架理论的基础上发展起来的一种结构化知识表示方法。框架理论是对理解视觉、自然语言对话和其它复杂行为的一种“框架”认识:人们对现实世界中各种事物的认识都是以一种类似于框架的结构存储在记忆中的,当遇到一个新事物时,就从记忆中找出一个合适的框架,并根据新的情况对其细节加以修改、补充,从而形成对这个新事物的认识。
当事物的知识比较复杂时,需要通过多个框架之间的横向或纵向联系形成一种框架网络。框架系统的问题求解主要是通过对框架的继承、匹配与填槽来实现的。框架表示法的优点:结构性,深层性,继承性,自然性。不足之处:缺乏框架的形式理论,缺乏过程性知识表示,清晰性难以保证。
5. 过程表示方法
过程表示是将有关某一问题领域的知识,包括如何使用这些知识的方法,均隐式地表示为一个求解问题的过程。
主要优点:表示效率高,过程表示法是用程序来表示知识的,可以避免选择和匹配无关的知识,不需要跟踪不必要的路径,从而提高了系统的运行效率。控制系统容易实现:控制机制已嵌入到程序中,控制系统比较容易设计。主要缺点:不易修改和添加新知识,当对某一过程进行修改时,可能影响到其它过程,对系统维护带来不便。
【热点聚焦】人工智能教育应用的现状分析、典型特征与发展趋势
一、人工智能的发展历程与核心驱动力
(一)人工智能的三次浪潮
人工智能起源于1956年美国达特茅斯学院举办的夏季学术研讨会。在这次会议上,达特茅斯学院助理教授JohnMcCarthy提出的“人工智能(ArtificialIntelligence,AI)”这一术语首次正式使用。之后,人工智能的先驱艾伦·图灵提出了著名的“图灵测试”:在人机分隔的情况下进行测试,如果有超过30%的测试者不能确定被试是人还是机器,那么这台机器就通过了测试,并被认为具有人工智能。图灵测试掀起了人工智能的第一轮浪潮。在人工智能研究方法上,以抽象符号为基础,基于逻辑推理的符号主义方法盛行,其突出表现为:在人机交互过程中数学证明、知识推理和专家系统等形式化方法的应用。但在电子计算机诞生的早期,有限的运算速度严重制约了人工智能的发展。
20世纪80年代,人工智能再次兴起。传统的符号主义学派发展缓慢,有研究者大胆尝试基于概率统计模型的新方法,语音识别、机器翻译取得了明显进展,人工神经网络在模式识别等领域初露端倪。但这一时期的人工智能受限于数据量与测试环境,尚处于学术研究和实验室中,不具备普遍意义上的实用价值。
人工智能的第三次浪潮缘起于2006年Hinton等人提出的深度学习技术。ImageNet竞赛代表了计算机智能图像识别领域最前沿的发展水平,2015年基于深度学习的人工智能算法在图像识别准确率方面第一次超越了人类肉眼[7],人工智能实现了飞跃性的发展。随着机器视觉研究的突破,深度学习在语音识别、数据挖掘、自然语言处理等不同研究领域相继取得突破性进展。2016年,微软将英语语音识别词错率降低至5.9%,可与人类相媲美。如今,人工智能已由实验室走向市场,无人驾驶、智能助理、新闻推荐与撰稿、搜索引擎、机器人等应用已经走进社会生活[8]。因此,2017年也被称为人工智能产业化元年。
(二)人工智能的三大要素与核心驱动力
回顾人工智能的发展历程,在三次浪潮的浮浮沉沉中,人工智能不断突破并接近自身的目标:能够根据对环境的感知,做出合理的行动,从而获得最大收益。从人工智能的发展历程来看,不难看出,运算力、数据量和算法模型是人工智能的三大要素。如图1所示,人工智能具体应用的实现,如语音识别和图像识别等,需要先赋予机器一定的推理能力,然后它才能做出合理的行动。而这种推理能力,源自于大量的应用场景数据集。通过使用大量的数据对算法模型进行一定的训练,机器才能够根据算法做出具有类人智能的判断、决策和行为。奠定了的坚实基础。
人工智能在逐步发展完善自身理论与方法,以及寻求外部动力的过程中螺旋式上升发展。从图灵测试理论的提出到无人驾驶汽车自动上路行驶,从实验室的“封闭世界”到外部“开放世界”的安全过渡,大数据、云计算和深度学习这三大核心驱动力,共同促成了人工智能的突破性进展。
1.大数据
人工智能建立于海量优质的应用场景数据基础之上。训练数据的数量、规模和质量尤为重要,丰富的海量数据集是算法模型训练的前提。甚至有观点认为,拥有更海量的数据比拥有更好的算法更重要。受益于移动互联网的发展和多样化智能终端的普及,以及物联网的发展和传感器的大量应用,源自各种设备及互联网应用的数据急剧增加,大数据迅速发展。大数据处理技术能在很大程度上提高人工智能训练数据集的质量,并能优化存储和管理标注后的数据。因此,可以说,海量数据是机器智能的源泉,大数据有力地助推了机器学习等技术的进步,在智能服务的应用中释放出无限潜力。
2.并行计算
人工智能发展过程中,有限的运算能力曾是制约人工智能发展的主要瓶颈。从电子计算机出现的早期至今,机器的运算处理能力不断提升,为人工智能的发展提供了极大的动力支持。云计算在虚拟化、动态易扩展的资源管理方面的优势,GPU等人工智能专用芯片的出现,奠定了人工智能在大规模、高性能并行运算的软硬件基础,推动数据处理规模和运算速度的指数级增长,极大地提高了算法执行效率和识别准确率。
3.深度学习
数据和硬件是人工智能的基础,而算法是人工智能的核心。人工智能发展史上,两个转折点尤其值得关注。一个是研究方法由符号主义转向统计模型,自此开辟了人工智能发展的新路径;另一个是深度学习凭借绝对优势,颠覆了其他算法设计思路,突破了人工智能的算法瓶颈。深度学习即深度网络学习,它受人类大脑神经结构的启发,由一组单元组成,每个单元借由一组输入值而产生输出值,该输出值又继续被传递到下游神经元。深度学习网络通常使用许多层次,且在每层使用大量单元,以便识别海量数据中极其复杂和精确的模式。深度学习将人类程序员从构建模型的复杂活动中解放了出来,并提供一种更优化、更智能的算法,能够自动从海量数据库中进行自我学习,自动调整规则参数并优化规则和模型,识别准确率极高。自学习状态已成为机器学习的主流方法。
二、人工智能教育应用的现状分析
逻辑推理、知识表示、规划和导航、自然语言处理和感知是人工智能的主要问题空间[9]。在教育问题解决与应用中,人工智能主要有四大应用形态:智能导师系统、自动化测评系统、教育游戏与教育机器人。
(一)智能导师系统
智能导师系统(IntelligentTutoringSystem,ITS)由早期的计算机辅助教学发展而来,它模拟人类教师实现一对一的智能化教学,是人工智能技术在教育领域中的典型应用。典型的智能导师系统主要由领域模型、导师模型和学习者模型三部分组成,即经典的“三角模型”。领域模型又称为专家知识,它包含了学习领域的基本概念、规则和问题解决策略,通常由层次结构、语义网络、框架、本体和产生式规则的形式表示,其关键作用是完成知识计算和推理。导师模型决定适合学习者的学习活动和教学策略,学习者模型动态地描述了学生在学习过程中的认知风格、能力水平和情感状态。事实上,ITS的导师模型、学习者模型和领域模型正是教学三要素——教师、学生、教学内容的计算机程序化实现,其互相关系如图2所示。其中,领域模型是智能化实现的基础,教学模型则是领域模型和学生模型之间的桥梁,其实质是做出适应性决策和提供个性化学习服务。教学模型根据领域知识及其推理,依据学习者模型反映的学习者当前的知识技能水平和情感状态,做出适应性决策,向学习者提供个性化推荐服务,如图3所示。
ITS尊重学习者的个性特征,如学习风格、兴趣、特长等,满足学习者的个性化需求。ITS根据学习者模型所刻画的个性特征,向其提供个性化的学习路径[10]、学习资源[11]和学习同伴等资源。美国国防高级研究计划署赞助开发的一种使用人工智能来模拟专家和新手之间的互动的数字导师系统,能够帮助学习者获得所需的技能,将海军新兵训练成为技术技能专家所需的时间从几年减少到几个月。
近年来,情感、元认知和动机等研究越来越受重视,神经科学、认知科学、心理学和教育学的研究表明,情感状态在一定程度上影响了学生的学习效率和态度[12],消极的情感状态会阻碍学生的思考过程,而积极的情感为学生的问题解决和创新进步提供有利的条件。然而,情感缺失一直是ITS中存在的突出问题。ITS通过与学生的交互实现情感的感知、识别、调节与预测。根据学生情感的来源,如面部表情[13]、声音等可察因素,及可测量的行为等,采用传感器等技术获取数据,根据相关科学模型,应用人工智能的方法与技术,综合运用心理学和认知科学等知识进行情感推理,也称之为情感识别或情感计算[14]。研究表明,系统通过对话的方式对学生进行的情感调节具有积极效果[15]。
ITS中教学模型模拟人类教师实现一对一个性化教学的过程即是适应性教学策略选取和个性化资源推荐算法的实现过程,适应性教学策略选择是资源个性化推荐的前提。在适应性教学策略的选择方面,这种适应性表现为多个层次:从适应性应答学生的表现,适应学生的知识水平,帮助学生取得具体目标,到对学生的情感状态做出适应性干预调节,提供适应学生元认知能力的帮助。事实上,ITS要模拟人类教师凭借经验进行决策的复杂过程,具有一定难度。而人工智能引发了教育领域的数据革命和智能化革命,数据驱动的智慧教学与智能决策正在成为教育教学的新范式。
(二)自动化测评系统
评价是教学活动的重要组成部分。自动化测评技术的应用引发了评价方法和形式的深刻变革。自动化测评系统能够实现客观、一致、高效和高可用的测评结果,提供即时反馈,极大地减轻教师负担,并为教学决策提供真实可靠的依据。
1.ICT技能与程序作业的自动化测评系统
ICT技能培训与程序设计是计算机教育领域中的重要内容。ICT技能是信息时代的基本素养。文字编辑、电子表格数据处理、收发邮件、制作演示文稿和网页等技能的学习和培训过程中,ICT自动化测评系统所构建的信息模型通过信息获取、知识推理和综合评价三个步骤,动态跟踪用户的操作行为,并对操作过程进行诊断、评价和反馈,极大地提高了学习效率[16]。
计算机程序设计是培养计算思维的有效途径,程序作业通常由学生上机完成。程序设计语言有其自身的语法规则。动态程序测评能够获取程序的编译和运行时信息,分析程序的行为和功能,从程序的功能和执行效率出发,展开综合评价。而静态程序测评,如图4所示,首先对程序代码进行信息提取,然后将程序进行中间形式表示,预测程序所有可能的执行路径与结果,利用知识发现技术实现对程序的评价。目前,国内外已经实现自动化测评的程序设计语言包括Java、C/C++、Python和Pascal,以及汇编语言、脚本语言和数据库查询语言等。
2.自动化短文评价系统
短文写作是当前很多标准化测试的基本要求。随着人工智能技术的发展,自动化短文评价(AutomatedAssessmentofEssaysandShortAnswers)运用自然语言处理技术和机器学习等技术实现对短文本的计算分析和语义理解。美国教育考试服务中心(EducationalTestingService,ETS)设计和举办多项大型标准化考试,如TOEFL、SAT、GRE等。ETS始终致力于测评理论、方法和技术的研究,尤其在自动化测评领域一直处于前沿。目前,ETS已经实现了语音、短文、数学等领域的自动化评价与反馈。在其产品中,TextEvaluator[17]是一种全自动化的基于Web的技术工具,旨在辅助教师、教材出版商和考试开发人员选取用于学习和测试的文本段落。TextEvaluator超越了传统的句法复杂性和词汇难度的可读性维度,解决了由于内聚性、具体性、学术导向、论证水平、叙述程度和交互式对话风格的差异而导致的复杂性变化。另外,E-rater[18]引擎用于学生作文的自动化评分和反馈。在设定了评价标准之后,学生可以使用E-rater的反馈来评估他们的写作技巧,并确定需要改进的地方。教师可用来帮助学生独立发展自己的写作技巧,并自动获得建设性的反馈意见。除了提供短文的整体得分,E-rater还提供关于语法、写作风格和组织结构等的实时诊断和反馈。
3.自动化口语测评系统
自动化口语评价运用语音识别等技术实现了多种语言口语语音的自动化测试与评价,图5展示了基于移动智能终端和测评云服务的口语学习系统架构,其中声学模型和语言学模型是语音识别的关键。ETS的SpeechRater引擎是英语口语测评方面应用最广泛的测评引擎之一。其测评任务并不限定范围和对象,开放性是其最大特点。该引擎可以用于提高发音可靠性、语法熟练度和交际的流利程度。SpeechRater引擎使用自动语音识别系统处理每个响应,该系统特别适用于母语非英语的学习者。基于该系统的输出,使用自然语言处理和语音处理算法来计算在许多语言维度上定义语音的一组特征,包括流利性、发音、词汇使用、语法复杂性和韵律。然后将这些功能的模型应用于英语口语测评,最终得出分数并提供反馈建议。
对于我国的英语教学来说,言语环境匮乏是当前制约学生英语口语学习的最大障碍,口语评价难度较大且时效性差更加加剧了英语口语教与学的难度。科大讯飞依托语音技术的强劲优势,所开发的听说智能测试系统、英语听说智能考试与教学系统和大学英语四六级口语考试系统可以用于促进英语听说训练和自动化测试与反馈。另外,普通话模拟测试与学习系统和国家普通话智能测试系统在推广普通话及相关考试方面发挥着重要作用。
(三)教育游戏
游戏智能是人工智能研究内容的一部分。运用深度学习技术的AlphaGo大胜人类职业围棋选手,标志着人工智能技术的又一次飞跃。在教育应用领域中,计算机和视频游戏不仅仅提供一种娱乐方式,更能推动玩家在游戏中获得新的知识和技能。教育游戏具有明确、有意义的目标,多个目标结构,评分系统,可调节的难度级别,随机的惊喜元素,以及吸引人的幻想隐喻。教育游戏通过构建充分开放的游戏框架和环境,提供一种观察和认识世界的新视角。益智游戏玩家不仅使用游戏工具解决问题,而且还使用自己的知识和技能。在角色扮演中,玩家必须在恶劣的环境中生存和获得新的知识。在所有这些情况下,对周围空间的详细研究等活动都是对玩家的注意力、耐心、专业知识和逻辑思维的考验与锻炼。例如,芝加哥科学与工业博物馆的网站允许游客玩“生存模式”的游戏[19]。该游戏专为青少年设计,专注于研究在极端情况下发生在人体内的主要身体系统的变化过程。游戏玩家不仅克服了许多障碍,还了解了人体的结构。另外,青少年学会使用鼠标和手写笔学习撰写简单的生存搜索等机器人程序。
(四)教育机器人
教育机器人在教学中的应用越来越普遍。一方面,教育机器人可以培养和发展学生的计算思维能力。越来越多的学校正在引进教育机器人作为创新的学习环境,用于提高和建立学生的高层思维能力,作为提高学生学习动机和抽象概念理解的补充工具,帮助学生解决复杂的问题。另一方面,教育机器人具有多学科性质,提供建设性的学习环境,有助于学生更好地理解科学知识,在科学、技术、工程和数学(STEM)教育方面发挥着重要作用。在STEM教学方面,机器人可以协助教师实现工程和技术概念的真实应用,将现实世界中的科学和数学概念进行具体化,有助于消除科学和数学的抽象性。事实上,各种教育机器人的应用推动了科学、技术、工程和数学在教学的改进,机器人固有的灵活性使其在STEM不同教育场景中的应用取得了成功[20]。此外,使用机器人教学有助于增强批参与者的判性思维,促进团队合作,提高沟通交流能力和创新能力。
三、人工智能教育应用的典型特征与发展趋势
人工智能通过知识表示、计算与理解,可以模拟人类教师实现个性化教学;依托于问题空间理论,实现知识和技能的自动化测量与评价;借助于自然语言处理与语音识别技术,解决文本和口语语音的词法分析、语法判别和语义理解;通过教育游戏和教育机器人,以智能增强的方式赋予“寓教于乐”以新的内涵。进一步深入分析人工智能教育应用的典型特征,并把握其未来发展趋势是推动人工智能教育应用的必要条件。
(一)五大典型特征
人工智能在教育应用中的典型特征突出体现在以下五个方面:
1.智能化
智能化是教育信息化的发展趋势之一。海量数据蕴藏着丰富的价值,在知识表示与推理的基础上,构建算法模型,借助于高性能并行运算可以释放这种价值与能量。未来,在教育领域将会有越来越多支持教与学的智能工具,智慧教学将给学习者带来新的学习体验。在线学习环境将与生活场景无缝融合,人机交互更加便捷智能,泛在学习、终身学习将成为一种新常态。
2.自动化
与人相比,人工智能更擅长记忆、基于规则的推理、逻辑运算等程序化的工作,擅长处理目标确定的事务。而对于主观的东西,如果目标不够明确,则较为困难。如数学、物理、计算机等理工科作业,评价标准客观且容易量化,自动化测评程度较高。随着自然语言处理、文本挖掘等技术的进步,短文本类主观题的自动化测评技术将日益成熟并应用于大规模考试中。教师将从繁重的评价活动中解放出来,从而有精力专注于教学。
3.个性化
基于学习者的个人信息、认知特征、学习记录、位置信息、媒体社交信息等数据库,人工智能程序可以自学习并构建学习者模型,并从不断扩大更新的数据集中调整优化模型参数。针对学习者的个性化需求,实现个性化资源、学习路径、学习服务的推送。这种个性化将越来越呈现出客观、量化等特征。
4.多元化
人工智能涉及多个学科领域,未来的教学内容需要适应其发展需要,如美国已经高度重视STEM学科的学习,我国政府高度重视并鼓励高校扩展和加强人工智能专业教育,形成“人工智能+X”创新专业培养模式。从人才培养的角度分析,学校教育应更强调学生多元能力的综合性发展,以人工智能相关基础学科理论为基础,提供基于真实问题情境的项目实践,侧重激发、培养和提高学生的计算思维、创新思维、元认知等能力。
5.协同化
短期来看,人机协同发展是人工智能推动教育智能化发展的一种趋势。从学习科学的角度分析,学习是学习者根据自己已有的知识去主动构建和理解新知识的过程。对于人工智能来说,新知识是它们所无法理解的,所以这种时候学习者就需要教师的协同、协助和协调。因此在智能学习环境中,教师的参与必不可少,人机协同将是人工智能辅助教学的突出特征。
(二)发展趋势
人工智能在教育中的应用特征为推动人工智能与教育的融合创新发展指明了方向。在当前国家大力发展人工智能的政策引领下,不仅要从本质上认识人工智能的核心要素与驱动力,把握其典型应用特征,还要能够顺应其发展趋势。以数据驱动引领教育信息化发展方向,以深化应用推动教育教学模式变革,以融合创新优化教育服务供给方式,将是人工智能教育应用的未来发展趋势,也是人工智能时代教育发展的鲜明任务和重要机遇。
1.以数据驱动引领教育信息化发展方向
人工智能技术在教育领域的深入应用,推动着信息技术与教育的融合创新发展。纵观人工智能在教育领域的应用发展历程,从早期基于规则的知识表示与推理,到今天基于深度学习的自然语言处理、语音识别与图像识别,“智能”的习得已经由早期的专家赋予演变为机器主动学习获取。除了算法模型的显著改进,作为模型的训练数据集,大数据为人工智能添加了十足的动力燃料。大数据智能以数据驱动和认知计算为核心方法,从大数据中发现知识,进而根据知识做出智能决策。数据已经成为产业界争夺的焦点,数据驱动的智能决策与服务已经成为学术界研究的热点。在教育领域,数据可以解释教育现象,也可以揭示教育规律,并能够预测未来趋势。数据驱动的方法推动着教育研究从经验主义走向数据主义和实证主义。因此,教育数据革命已经到来。数据驱动的人工智能将引领教育信息化发展的新方向。
2.以深化应用推动教育教学模式变革
人工智能在教育领域取得如此大的成就,技术引领是关键。同时,不难看出,人工智能在教育领域的应用具有较强的场景性,也就是说,这种应用是针对教育实践活动中的具体问题而展开的,具有明确的问题空间和目标导向。也因此,这种由应用驱动的技术与教育的融合发展,是技术在教育领域中的一种深入应用。如自动化口语测评中,针对具体的语言语音对象,在语音识别技术的基础上,应用语音测评技术实现对学生口语的自动化评价。人工智能技术在教育领域的深化应用,创设了强感知、高交互、泛在的学习环境,为学生的知识建构活动提供了良好条件,为创新型教学模式的发现和运用提供了空间。
3.以融合创新优化教育服务供给方式
人工智能在教育领域中的应用实现了跨学科、跨领域和跨媒体的融合创新。人工智能与神经科学、认知科学、心理学、数学等相关基础学科的交叉融合,联合推动了教育人工智能技术的发展和应用。同时,人工智能本身的发展,离不开人工智能教育和培训。而这种教育更需要建立于STEM学科融合的基础之上。人工智能与教育两者相辅相成,互相促进。跨领域推理融合了多个领域的数据与知识,奠定了强大的智能基础。跨媒体感知计算以智能感知、场景感知、视听觉感知、多媒体自主学习等理论方法为依托,旨在实现超人感知和高动态、高纬度、多模式分布式大场景感知[21]。人工智能技术与教学内容、教学媒体和知识传播路径的多层次融合,突破了传统教育方式的限制,提供跨学科、跨媒体、跨时空的智能教育服务供给,是建设“人人皆学、处处能学、时时可学”学习型社会的有效途径。
基于上述人工智能在教育中的主要应用与典型特征分析,本文提出如图6所示的人工智能与教育融合发展体系。在大数据和深度学习等技术的重要支撑下,人工智能关键技术的突破,推动了人工智能在教育领域中的多样化应用形态,并提供了更智能的学习服务与体验,呈现出智能化、自动化、个性化、多元化和协同化的特征与趋势。在服务监控与治理的保障下,以政策为引领,牢牢把握“应用驱动”的基本原则,进而展开理论和技术研究,是推动人工智能与教育融合创新发展的重要路径。
四、结束语
本文回顾了人工智能的发展历程,揭示了人工智能的三大内部要素与外部驱动力。结合人工智能技术在教育中的四大具体应用形态,深入分析了人工智能教育应用的五大典型特征,并据此指出其未来的发展趋势,最终将上述内容进行归纳总结,构建了人工智能与教育融合创新发展体系,旨在为我国人工智能与教育的融合发展提供理论指导。
人工智能技术正在推动教育信息化的快速发展。然而,在推进人工智能教育应用的过程中,还有很多具体问题值得探讨,亟待解决。如训练人工智能算法模型需要开放教育大数据,但会涉及到个人隐私暴露等信息安全问题;相关技术在教学与考试中的应用,可能需要政策和制度的同步完善;人工智能在提高教学效率和推动教育公平的同时,是否也会造成数字鸿沟的增大;未来的教师和学生、教育研究、教育管理和规划等该如何适应人工智能带来的诸多变革等。面对全球智能化发展趋势及其挑战,教育必须积极主动地调整自身发展,借助现有技术的优势与潜能,实现服务社会经济发展的功能。
参考文献:
[1]贾积有.国外人工智能教育应用最新热点问题探讨[J].中国电化教育,2010,(7):113-118.
[2]闫志明,唐夏夏,秦旋等.教育人工智能(EAI)的内涵、关键技术与应用趋势——美国《为人工智能的未来做好准备》和《国家人工智能研发战略规划》报告解析[J].远程教育杂志,2017,35(1):26-35.
[3]余明华,冯翔,祝智庭.人工智能视域下机器学习的教育应用与创新探索[J].远程教育杂志,2017,35(3):11-21.
[4]唐烨伟,郭丽婷,解月光,钟绍春.基于教育人工智能支持下的STEM跨学科融合模式研究[J].中国电化教育,2017,(8):46-52.
[5]张剑平,张家华.我国人工智能课程实施的问题与对策[J].中国电化教育,2008,(10):95-98.
[6]吴永和,刘博文,马晓玲.构筑“人工智能+教育”的生态系统[J].远程教育杂志,2017,35(5):27-39.
[7]TheElectronicFrontierFoundation.MeasuringtheProgressofAIResearch[DB/OL].https://www.eff.org/files/AI-progress-metrics.html#Vision,2017-10-15.
[8]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.5-25.
[9]FrankChen.AI,DeepLearningandMachineLearning:APrimer[DB/OL].http://a16z.com/2016/06/10/ai-deep-learning-machines,2017-10-15.
[10]HwangGJ,KuoFR,YinPY,etal.AHeuristicAlgorithmforplanningpersonalizedlearningpathsforcontext-awareubiquitouslearning[J].Computers&Education,2010,54(2):404-415.
[11]梁迎丽,梁英豪.基于语音评测的英语口语智能导师系统研究[J].现代教育技术,2012,22(11):82-85.
[12]NkambouR,MizoguchiR,BourdeauJ.AdvancesinIntelligentTutoringSystems[M].Berlin:SpringerHeidelberg,2010.
[13]BoumizaS,BekiarskiA,SouilemD,etal.Developmentofmodelforautomatictutorine-learningenvironmentbasedonstudentreactionsextractionusingfacialrecognition[A].201715thInternationalConferenceonElectricalMachines,DrivesandPowerSystems(ELMA)[C].Sofia:IEEE,2017.488-492.
[14]PetrovicaS,Anohina-NaumecaA,EkenelHK.EmotionRecognitioninAffectiveTutoringSystems:CollectionofGround-truthData[J].ProcediaComputerScience,2017,(104):437-444.
[15]GraesserAC.ConversationswithAutoTutorhelpstudentslearn[J].InternationalJournalofArtificialIntelligenceinEducation,2016,26(1):124-132.
[16]许骏,柳泉波.IT技能测评自动化技术[J].小型微型计算机系统,2001,22(12):1489-1493.
[17]EducationalTestingService.TextEvaluatorCapability[DB/OL].http://www.ets.org/research/topics/as_nlp/educational_applications/,2017-10-15.
[18]BursteinJ.TheE-raterscoringengine:Automatedessayscoringwithnaturallanguageprocessing[A].Mahwah.M.d.shermis&J.c.burstein[C].NJ:LawrenceErlbaumAssociates,2003.113-121.
[19]Chicagomuseumofscience+industry.CodeFred:SurvivalMode[DB/OL].http://www.msichicago.org/experiment/games/code-fred-survival-mode/,2017-10-16.
[20]BenittiFBV,SpolavrN.HowHaveRobotsSupportedSTEMTeaching?[DB/OL].https://www.kukakore.com/robotic-stem-education/,2017-10-15.
[21]PengYX,ZhuWW,ZhaoY,etal.Cross-mediaanalysisandreasoning:advancesanddirections[J].FrontiersofInformationTechnology&ElectronicEngineering,2017,18(1):44-57.
文章来源|文章转自“中国电化教育”微信公众平台,作者系梁迎丽,刘陈,版权归原作者及发布单位所有。
返回搜狐,查看更多