博舍

AI中的图像识别技术的原理及过程 人工智能中的图像识别技术包括哪些

AI中的图像识别技术的原理及过程

来自“ITPUB博客”,链接:http://blog.itpub.net/69946223/viewspace-2665619/

2019-11-2516:23:31伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹识别、医疗诊断等等领域中,发挥重要作用。

这也给学生思考课题给了更多的空间,今天小编就来浅谈热门课题方向中图像识别技术,希望给学生更多的启发!

图像识别技术的含义

图像识别是人工智能的一个重要领域,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理。

在具体应用实践中,特别识别除了要弄清识别的对象具有是什么样的物体外,还应该明确其所在的的位置和姿态。当前图像识别已经被广泛应用到各个领域中,例如交通领域中的车牌号识别、交通标志识别、军事领域中的飞行物识别、地形勘察、安全领域中的指纹识别、人脸识别等。

图像识别技术的原理

图像识别原理主要是需处理具有一定复杂性的信息,处理技术并不是随意出现在计算机中,主要是根据一些医学研究人员的实践,结合计算机程序对相关内容模拟并予以实现。该技术的计算机实现与人类对图像识别的基本原理基本类似,在人类感觉及视觉等方面只是计算机不会受到任何因素的影响。人类不只是结合储存在脑海中的图像记忆进行识别,而是利用图像特征对其分类,再利用各类别特征识别出图片。计算机也采用同样的图像识别原理,采用对图像重要特征的分类和提取,并有效排除无用的多余特征,进而使图像识别得以实现。有时计算机对上述特征的提取比较明显,有时就比较普通,这将对计算机图像识别的效率产生较大影响。

图像识别技术的过程

由于图像识别技术的产生是基于人工智能的基础上,所以计算机图像识别的过程与人脑识别图像的过程大体一致,归纳起来,该过程主要包括4个步骤:

1是获取信息,主要是指将声音和光等信息通过传感器向电信号转换,也就是对识别对象的基本信息进行获取,并将其向计算机可识别的信息转换;

2是信息预处理,主要是指采用去噪、变换及平滑等操作对图像进行处理,基于此使图像的重要特点提高;

3是抽取及选择特征,主要是指在模式识别中,抽取及选择图像特征,概括而言就是识别图像具有种类多样的特点,如采用一定方式分离,就要识别图像的特征,获取特征也被称为特征抽取;

4是设计分类器及分类决策,其中设计分类器就是根据训练对识别规则进行制定,基于此识别规则能够得到特征的主要种类,进而使图像识别的不断提高辨识率,此后再通过识别特殊特征,最终实现对图像的评价和确认。

图像识别技术的常见形式

首先图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。

文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。

数字图像处理和识别的研究开始于1965年。数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。

物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。

随着计算机及信息技术的迅速发展,图像识别技术的应用逐渐扩大到诸多领域,尤其是在面部及指纹识别、卫星云图识别及临床医疗诊断等多个领域日益发挥着重要作用。通常图像识别技术主要是指采用计算机按照既定目标对捕获的系统前端图片进行处理,在日常生活中图像识别技术的应用也十分普遍,比如车牌捕捉、商品条码识别及手写识别等。随着该技术的逐渐发展并不断完善,未来将具有更加广泛的应用领域。

基于神经网络的图像识别技术

目前,基于神经网络的图像识别是一种比较新型的技术,是以传统图像识别方式为基础,有效融合神经网络算法。在此,神经网络主要是指人工神经网络,换而言之就是本文中的神经网络不是动物体的神经网络,而主要是指人类采用人工模拟动物神经网络方式的一种神经网络。针对基于神经网络的图像识别技术,目前,在基于神经网络的图像识别技术中,遗传算法有效结合BP神经网络是最经典的一种模型,该模型可在诸多领域中进行应用。诸如智能汽车监控中采用的拍照识别技术,若有汽车从该位置经过时,检测设备将产生相应的反应,检测设备启动图像采集装置,获取汽车正反面的特征图像,在对车牌字符进行识别的过程中,就采用了基于神经网络和模糊匹配的两类算法。

基于非线性降维的图像识别技术

采用计算机识别图像是基于高维形式的一种识别技术,不管原始图片的分辨率如何,该图片产生的数据通常都具有多维性特征,这在一定程度上增大了计算机识别的难度。为使计算机的图像识别性能更为高效,采用随图像降维方法就是一种最直接而有效的方法。一般情况下,可对降维划分为非线性降维与线性降维两类,比如最普遍的线性降维方式就是主成分分与线性奇异分析等,该方式的特点是简单、理解更容易等,再对数据集合采用线性降维方式处理求解的投影图像使该数据集合的低维最优。

在信息技术中作为近年来新兴的图像识别技术已广泛应用于众多应用领域,随着信息技术的日新月异,图像识别技术也得到十分迅猛的发展。在众多社会领域中,有效应用图像识别技术将使社会与经济价值得到充分发挥。

https://www.toutiao.com/a6763157058641461771/

基于人工智能的图像处理技术:利用Opencv实现

基于人工智能的图像处理技术

本文档基于电子科技大学软件工程学院的的一门图像处理技术课程要求所撰写,希望后来的学习学妹!!!!不要照抄!!!!!

人工智能概述

人工智能,作为计算机科学的一个重要分支,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。作为一个面向未来的新技术,值得我们好好探索。

1.1人工智能的发展与现状

人工智能的发展历经了三起三落,才走向今天勃勃生气的繁盛景致。

“人工智能”(ARTIFICIALINTELLIGENCE)一词最初是在1956年DARTMOUTH学会上提出的。其核心是希望计算机可以帮助人来获取一些认知、感知和决策的难题的解决方案。这样的课题成为了全球技术圈的热点,并相继取得了一些研究成果,如机器定理证明、跳棋程序等,人工智能的序幕就此拉开。人工智能发展初期的突破性极大促进人们对人工智能的期望值,一些科学家开始尝试一些不符合实际的目标方案,陷入接二连三的失败,使得人们对人工智能的期望值大大下降。20世纪70年代开发的专家系统模拟人类专家的知识和经验解决特定领域的问题,标志人工智能实现从理论研究走向实际应用并且能够使用专业知识技术解决专门问题的突破。[1]伴随着人工智能的应用规模扩张与高速增长,专家系统也存在诸多待解决的问题,使得人工智能发展再度受限。20世纪90年代中期,乘着互联网发展的东风,加持云存储、大数据、物联网的赋能,以深度神经网络为代表的人工智能技术发展迅速,人工智能打破了技术牢笼,实现了新的跨越与爆发式增长。其发展历程可以概括为下图。

如今,人工智能遍地开花,我们可以把现状概括为——“专用人工智能取得重要突破、通用人工智能尚处于起步阶段”[2]。我们可以看到,对于专业领域上的人工智能,如“阿尔法Go“在下围棋上表现得极为出色。这类人工智能目标更清晰明确,干扰性小,边界明晰,发展也自然更迅速;而对于通用领域来讲,其还达不到完全能领会人们的指令并作出正确判断的地步,泛化领域的人工智能由于其涉足范围广,发展并不超前。

也可以看到,人工智能创新创业走向快车道——对于一些创新创造的人工智能产品,他们正在赋能升级传统行业。搭载了人工智能的融合创新产品显得更加高端智能,逐渐受到消费者喜爱与偏好。

总之,人工智能的社会影响日益显著。其在智能交通、智能家居、智能医疗等智能领域的优势凸显,发展人工智能必对人民、社会、国家产生积极正向的作用。在《工人日报》的一篇社评就写到——人工智能作为新一代产业变革的核心驱动力之一,以AI为典型代表的、基于大模型应用的技术创新和产业成果在我国全面开花,正成为人工智能发展的新趋势。[2]

但是,人工智能目前仍然存在诸多困境。首先,社会上对人工智能存在一些“炒作”,夸大其词的宣传不免让人们对人工智能的真实发展水平产生错误认识认知;同时,隐私保护、知识产权、科技伦理等诸多衍生的现实问题也需要我们一同探讨才能达成共识,找到适合的解决方案。

1.2人工智能的应用

人工智能在各大行业的应用广阔。随着“互联网+万物“概念的引进和提出,人工智能正在逐步渗入我们的各行各业中。

下面将用简单的几个例子说明。

 智能家居与物联网

智能家居搭载人工智能,配合智能音箱等设备,可以让用户以自然语言对话的交互方式,实现影视娱乐、生活服务、对话交流、信息拆线呢等操作,并且可以通过链接已经适配的互联网家居产品语音控制家具,同时支持自定义场景达到条件自动触发,达到万物互联的目的。国内的天猫精灵、小米智能家居已经实现这类技术的广泛应用。华为正在尝试更进一步的真正的万物互联模式。

智能交通

“人工智能+交通”的模式,对我们的生活也大有裨益。这类系统能够使实现自动对交通需求和流量的分析,通过全局最优解的快速计算,引导交通流量变化,快速输送用户群体到目的地。诸如人工智能控制的“绿波带”,公交车的调度系统,导航app的堵车预测等。

 智能金融

人工智能对金融的生态领域影响也很显著。人工智能可以根据用户的消费行为习惯个性化推荐相关金融产品,推广个性化的金融服务;也可以综合消费者的消费征信记录,自动生成判定用户的信用分。人工智能在金融的巨大价值还藏在金融安全上,例如支付宝的金融风控系统就是依照人工智能对用户的异常行为的判断,及时阻止异常的资金举动,保障用户的金融安全。

个性化推荐

人工智能的个性化推荐在目前的互联网产品中运用广泛。例如世界最大的视频提供商YouTube的基于神经网络的推荐系统,可以实时根据用户的点赞、收藏等行为形成用户画像和视频标签,基于以上特性形成个性化的精准推送,满足不同人群的差异化视频需求。

人工智能的应用在智能医疗、智能教育、智能工业上也有诸多例子。可见,人工智能正在各大行业发光发热,其巨大价值正在逐步发掘。

1.3人工智能技术与分类1.3.1人工智能技术

随着人工智能的发展,人工智能技术也在不断创新突破。目前人工智能的前沿和基础技术主要有以下几类:

机器学习

机器学习是实现智能的基础技术,是使计算机具有智能的根本途径。这项技术可以让计算机通过模拟人的学习方式和动作,从而重新组织已经掌握的知识体系并使得其不断完善

自然语言处理

这项技术可以满足人和计算机用自然语言的有效通信。其可以让人工智能具备一定的理解、反应自然语言的能力,可以让人与人工智能之间实现自然的沟通交流。能够使得人工智能更加普适化、大众化

计算机视觉

计算机视觉解决的是机器“看“的一门科学技术,其利用摄像机和电脑代替人的眼睛进行识别与处理。其技术可运用在识别、捕捉、跟踪、测量、监视、检测等多项功能点上。其需要从图像这一多维数据中获取有效信息并提取处理,形成有效数据。是人脸识别技术的基础技术

 人机交互

人机交互是研究机器与使用者间的交互逻辑与关系的学科。用户可以由人机交互的界面进行操作,控制系统施发命令。人机交互使得人与机器之间可以使用某一种特定的交互方式,高效率地完成人和机器之间的信息交互。视频APP的点赞按键,核电站的控制台等都可以视为人机交互的平台。

 生物特征识别

生物特征识别可以让计算机识别人体的某个指定特征来完成对个体的身份核实和判读。例如常见的指纹识别、人脸识别就是生物识别技术的体现。多用在刑事侦查、保密、权限管理等功能点上。

除此之外,还有“语音识别“技术、”虚拟现实“技术、”决策管理“技术等,门类多而复杂,笔者在此不过多阐述

1.3.2人工智能分类

目前流行的分类方法将人工智能分三类[3]:

弱人工智能(ANI)

只能代替人处理某个单方面能力的工作,其本质上只是实现了某种人类具备的技能,但没有取得自主学习的认知。

强人工智能(AGI)

可代替一般人完成生活中的大部分工作,包括不同领域的技术它都能掌握。其各方面都能和人类比肩,它可以思考、认识、理解问题并综合分析。具有一定的经验管理和快速学习能力。

超人工智能(ASI)

在近乎大部分领域都比最聪明的人脑都具备更高的智能,可以如通人类进行自主的学习。其各项水平(包括科创、社交、决断)会远远超越人类。其也具备一定的直觉与意识。

虚拟机与Ubuntu系统的安装2.1Linux内核

目前我们常用的操作系统是Windows,而Linux是有别于Windows的一款经典的操作系统内核。不同于Windows的封闭,Linux开源且免费,因而有众多开发者负责运维和维护,其安全性更加高。Linux能运行主要的UNIX工具软件、应用程序和网络协议,兼容性更强。

Linux的内核模块化细分很巧妙,它的模块化运行机制可随时由用户的需求,切换或者增删相应的模块组件,使得Linux系统内核可以被分割得非常小巧,具有高度的自由性。

Linux的核心思想有两点:第一,一切都是文件;第二,每个软件都有确定的用途。

但在桌面版发行之前,一切操作都有终端命令构成,如果不熟知Linux命令,几乎完全无法使用这个系统。

2.2Ubuntu操作系统

Ubuntu是一个以桌面应用为主的构建在Linux内核之上的操作系统,其意思是“人性”“我的存在是因为大家的存在"。

与Windows从根本上不同的是,因为是搭载了Linux内核,Ubuntu操作系统具有与Linux相似的优点——免费,而且开源,其具有巨大的操作空间来修改与编辑。

而与Windows相似的是,其提供了一个可视化桌面,对于普通的、未系统接触Linux命令的人来讲,这极大的降低了学习和试错成本。

正因为其兼具两个系统独有的优势,Ubuntu操作系统广受欢迎。

2.3虚拟机

在本课程中,我们使用了VMware虚拟机来软安装新的操作系统Ubuntu。

使用虚拟机相当于单独开辟了一个操作系统,它与我们本省的操作系统基本上毫无关联,两者大体上讲互不依赖,是两个独立的操作系统。

虚拟机通过软件来模拟计算机软硬件,无需分区就能在同一台计算机上使用多种的操作系统。操作系统相互独立,可以保护多个的操作系统的稳定性和安全性,他们互不侵犯。不同的操作系统之间也能相互操作,实现文件的转移,热点的共享等内容。也可以通过网卡将几个虚拟机利用网卡连接到一个局域网,十分便捷。

2.4安装过程

下面来简单介绍一下虚拟机和Ubuntu操作系统的安装过程。

我们需要首先下载VMware软件(版本号16)。

安装好后,双击即进入VMwareworkstation页面,选择创建一个新的虚拟机。进入安装向导。在新的页面,选择将Ubuntu操作系统的光盘映像文件(.iso文件)导入至VMware中(即图示第二个选项),等待读取。

为虚拟机设置名称,并为其分配其合理的存储空间(默认20G)、安装位置和相关配置(包括处理器数量、内核数量、网络设置等)。

等待其安装成功后会自动回到workstation页面,双击进入虚拟机。

至此,我们的VMware配置基本结束,接下来是Ubuntu的配置。

我们双击进入Ubuntu后,会出下如下图展示的Ubuntu欢迎页面

(Ubuntu欢迎页面)

点击“installUbuntu”然后在左侧选择语言,继续,随后设置虚拟机的账号和密码,等待安装成功即可进入Ubuntu的页面。

但是当前Ubuntu的屏幕过小,我们下载VMware-tool后点击最上方的放大按钮即可调整大小。

Ubuntu的软件更新默认从国外的源更新,更新速度和下载速度较慢。我们需要在“软件更新”中设置为国内源。笔者将其更换为阿里云的源下载。

OpenCV的安装与调试3.1关于OpenCV

OpenCV是一个免费且开源发行的跨平台计算机视觉与机器学习软件库,旨在为计算机视觉应用程序提供通用基础架构。其主要有C语言代码生成编写,在Linux和Windows下可以自如地运行,运行快速,方便调用。OpenCV库拥有超过2500种优化算法,可以高效的完成各项图像识别的任务。在人脸识别、运动跟踪、动作识别、物体辨识等方面由诸多应用场景。

3.2关于编程环境

本课程主要运用到的编程环境为C++与Python,又因为OpenCV主要由C语言编写而成,因此使用OpenCV的主流调用语言为C++/C语言。

C++是一种计算机高级程序设计语言,由核心是C语言的升级与拓展。C++擅长面向对象程序设计,同时也可以基于过程进行程序设计。其可以直面系统底层,也打破了很多C具有的限制;而Python语言是一种利于程序员编写和阅读的高效语言,其具有独特的简洁性、可读性和可拓展性,可以大大减少代码输入量。

3.3关于make

当我们需要运行一个程序时,我们首先需要编译这个程序使得其生成一个可执行文件。对于一些简单的项目,我么直接调用python编译器/g++编译器进行编译即可。但对于车牌识别这类大型工程,我们编写的大型程序往往由多个编译单元构成。因此,构建应用时,发出的编译命令可能会比较长。

为达到此目的,推荐的构建方式是使用make工具。以C++为例,我们需要编写一个CMakeList.txt文档,其包含了我们要编译的所有单元,我们要链接的库函数、头文件以及我们目标生成的运行程序等一系列参数。编译好后在终端中依次发出cmake.和make命令即可完成编译

3.4安装OpenCV

首先我们在终端运行

sudoapt-getinstallbuild-essential

安装编译必须的基础程序。编译程序有了这个软件,它才知道头文件和库函数的位置。安装过程中可能出现一些安装失败,为了保证安装成功,我们执行

sudoapt-getinstallffmpeglibavcodec-devlibavformat-devlibavdevice-devlibsdl-image1.2-dev

下载这些可能未安装的必备软件。

接着安装cmake并升级:

sudoapt-getinstallcmake

sudoapt-getupdate

利用命令cmake–version查看版本,确认版本在3.0以上。

接下来,右键解压OpenCV文件夹到Ubuntu的home处,在OpenCV根目录下创建一个release文件夹,进入release文件夹后打开终端输入:

cmake-DCMAKE_BUILD_TYPE=RELEASE-DCMAKE_INSTALL_PREFIX=/usr/local-DWITH_FFMPEG=ON-DWITH_TBB=ON-DWITH_GTK=ON-DWITH_V4L=ON-DWITH_OPENGL=ON-DWITH_CUBLAS=ON-DWITH_QT=OFF-DCUDA_NVCC_FLAGS="-D_FORCE_INLINES"..

make-j7

sudomakeinstall

等待OpenCV的编译,完成即可

3.5测试OpenCV的安装

OpenCV为我们提供了一个样例来检测我们是否正确安装了OpenCV。

我们首先进入进入opencv-3.4.8/samples/cpp/example_cmake文件夹中,可以看到OpenCV已经为我们提供了一个程序opencv_example.cpp并且已经编写好了相关CMakeList.txt文档。

我们首先需要链接摄像头:顶部点击player->可移动设备->xxxcamera->连接。即可链接摄像头(如下图)。若链接失败需要在player->虚拟机设置->USB控制器将USB兼容性调整为3.x。

随后在终端输入cmake.和make命令完成编译,随后输入./opencv_example即可打开摄像头,摄像头右上方带有HelloOpenCV字样。

车牌识别4.1车牌识别应用与技术概要4.1.1技术简述

车牌识别是计算机视频图像识别技术的一种基础应用,其可以实现在运动的视频或静止的图像里面准确识别车牌,通过图像提取、车牌定位、边界处理、字符识别、输出结果等一系列复杂过程实现。常在停车场,道路收费站系统,小区车库,道路电子眼抓拍系统有着广泛的应用。

车牌识别智能车牌识别模块大体共有两个步骤——车牌图像的定位定点,以及字符的识别判读。示意图如下图所示[4]:

4.1.2“PlateLocate”的实现过程

车牌图像的定位定点步骤中其实隐藏着三个子步骤,分别是“PlateLocate”,“SVMtrain”,“Platejudge”。其中最重要的部分是第一步“PlateLocate”过程。

PlateLocate的大体识别思路如下——一个未旋转的车牌包含很多垂直边缘,若能寻找到含有诸多垂直边缘的长方形图形块,我们就可以大概判断其为车牌。

其流程如下图所示

其中,需要用到两个比较重要的计算机视觉技术——高斯模糊和灰度化。

高斯模糊技术可以大大降低图像噪声以及图像的细节层次[4],其是将图像中指定像素点(例如车牌识别就是将车牌边缘)和周围点加权平均得到的效果,越靠近指定的中心点那么其与核心主体关系更加紧密,我们就可以设置更大的权重值

如下图所示:

公式为

此外,由于计算机的功能限制,彩色的图像图块比纯灰度处理的图像更加难以应付,使用灰度处理技术可以提高算法的运行速度。

我们使用Soble算子检测图像中的垂直边缘,以区分车牌。这种基于边缘特征定位的方法核心是获得数字图像的一阶梯度,把图像中每个像素的上下左右四领域的灰度值加权差,边缘处的加权差将会达到极值,从而我们检测到了边缘。[4]我们可以分别计算二维图像和方向的梯度与,利用公式:计算偏离角度,若那么我们可以认为此处为竖直边界。

此后通过二值化(对图像的每个像素做一个阈值处理)以及闭操作(将车牌字母连接成为一个连通域,便于取轮廓)即可取出车牌的轮廓。再进行角度修正、大小统一,即可得到一张标准的车牌图块。

4.1.3“SVMtrain”训练过程

SVM训练类似于人工智能的机器学习,其利用标签这一属性,将明确的车牌图块定义标签,非车牌图块定义另一个标签,机器经过不断的对不同标签的图块的学习,以达到判断图块是否为真正车牌图块的功能(Platejudge)。[5]

其完整训练过程如下:

我们首先将可能含车牌的大量图片传递给机器,并为其打上标签,哪些有车牌而哪些无车牌贴上标签,机器对这些图片的相似点不同点进行分析判断,生成车牌模型。再利用Fscore指标进行评价。对于评价体系,我们需要两个指标——“准确率”(precision)和“查全率”(recall)。设置的相关公式如下:

4.1.4字符识别实现过程

     车牌的样式和编码规则相对固定,我们只需要由取轮廓分割法分割出七个单独的字符块(新能源八个)。且第一个字符永远是省份简称的中文,其他为数字或字母,且字母中没有I与O,减少了识别错误。

字符识别的分块首先仍然需要灰度化、二值化操作,前文已叙述。

类似于SVMtrain的过程,字符识别也需要机器训练,这里采用基于模板的训练方法(ANNtrain):首先,我们向机器输送一定量的字符模板,进行训练。随后在程序实际识别中,机器会根据公式来依次判断七个字符的每个字符与某一模板的相似度(公式中S代表相似值,I待测数据,T为模板),综合相似度大小即可完成字符的判断。

4.2车牌识别工程实现

     在本项目中,我们采用EasyPR库来辅助完成,其提供了大量已经训练好的车牌定位与字符识别数据,我们只需要调用其库函数识别即可。

我们只需要解压EasyPR的压缩包到home目录,在其根目录下打开终端依次输入cdEasyPR-master

./build.sh

EasyPR即安装成功。(如图为安装成功的界面)

在EasyPR提供的根目录中,提供了CMakeList.txt文档,其指向测试程序demo。我们可以借助这个文档加以改编形成自己的make文档。

如下图所示:

     我们只需要将CMakeList.txt中的test/main.cpp改为自己的程序代码(比如我的是car/test.cpp)路径,工程名修改为自己的工程名。这样cmake就会编译我们的车牌识别程序并链接上EasyPR相关库函数,生成可执行文件。

以下以识别五个车牌的图片的代码为例,进行相关代码展示。

#include#include#include#includeusingnamespacestd;usingnamespaceeasypr;intmain(){  easypr::CPlateRecognizepr;   pr.setResultShow(false);   pr.setDetectType(easypr::PR_DETECT_CMSER);   pr.setLifemode(true);                     //启用生活模式,以增大识别范围   pr.setResultShow(false);   pr.setMaxPlates(5);                     //最大车牌识别量   vectorplateVec;   Matsrc=imread("/home/jjq1/EasyPR-master/car/5cars.jpg");                     //图片的地址   intresult=pr.plateRecognize(src,plateVec);   if(result==0)   {      inttotal=plateVec.size();      std::cout

图像识别技术,目前主要应用于哪些领域

主要应用领域

图像识别技术可能是以图像的主要特征为基础的,每个图像都有它的特征。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。图像识别技术是立体视觉、运动分析、数据融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域可广泛应用。

遥感图像识别

航空遥感和卫星遥感图像通常用图像识别技术进行加工以便提取有用的信息。该技术目前主要用于地形地质探查,森林、水利、海洋、农业等资源调查,灾害预测,环境污染监测,气象卫星云图处理以及地面军事目标识别等。

军事刑侦

图像识别技术在军事、公安刑侦方面的应用很广泛,例如军事目标的侦察、制导和警戒系统;自动灭火器的控制及反伪装;公安部门的现场照片、指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等等。

生物医学

图像识别在现代医学中的应用非常广泛,它具有直观、无创伤、安全方便等特点。在临床诊断和病理研究中广泛借助图像识别技术,例如CT(ComputedTomography)技术等。

机器视觉

作为智能机器人的重要感觉器官,机器视觉主要进行3D图像的理解和识别,该技术也是目前研究的热门课题之一。

机器视觉的应用领域也十分广泛,例如用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人。此外机器视觉还可用于工业生产中的工件识别和定位,太空机器人的自动操作等。

总结:人工智能前景不可限量,图像识别作为AI技术的支撑,是一种强有力的识别方式,随着AI在场景上的深入,图像识别应用领域会越来越广。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:AI可以识别图像,但它能理解标题吗?http://www.duozhishidai.com/article-10635-1.html图像识别是什么,卷积神经网络如何进行图像识别的?http://www.duozhishidai.com/article-1957-1.html图像识别技术是什么,应用于智能家居哪些领域http://www.duozhishidai.com/article-133-1.html

多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站

浅谈人工智能中的图像识别技术

伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹识别、医疗诊断、汽车交通等等领域中,发挥重要作用。

图像识别技术概述

图像识别技术的含义

图像识别是人工智能的一个重要领域,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理。

在具体应用实践中,特别识别除了要弄清识别的对象具有是什么样的物体外,还应该明确其所在的的位置和姿态。当前图像识别已经被广泛应用到各个领域中,例如交通领域中的车牌号识别、交通标志识别、军事领域中的飞行物识别、地形勘察、安全领域中的指纹识别、人脸识别等。

图像识别技术的原理

图像识别原理主要是需处理具有一定复杂性的信息,处理技术并不是随意出现在计算机中,主要是根据一些医学研究人员的实践,结合计算机程序对相关内容模拟并予以实现。该技术的计算机实现与人类对图像识别的基本原理基本类似,在人类感觉及视觉等方面只是计算机不会受到任何因素的影响。人类不只是结合储存在脑海中的图像记忆进行识别,而是利用图像特征对其分类,再利用各类别特征识别出图片。计算机也采用同样的图像识别原理,采用对图像重要特征的分类和提取,并有效排除无用的多余特征,进而使图像识别得以实现。有时计算机对上述特征的提取比较明显,有时就比较普通,这将对计算机图像识别的效率产生较大影响。

图像识别技术的过程

由于图像识别技术的产生是基于人工智能的基础上,所以计算机图像识别的过程与人脑识别图像的过程大体一致,归纳起来,该过程主要包括4个步骤:

获取信息,主要是指将声音和光等信息通过传感器向电信号转换,也就是对识别对象的基本信息进行获取,并将其向计算机可识别的信息转换;

信息预处理,主要是指采用去噪、变换及平滑等操作对图像进行处理,基于此使图像的重要特点提高;

抽取及选择特征,主要是指在模式识别中,抽取及选择图像特征,概括而言就是识别图像具有种类多样的特点,如采用一定方式分离,就要识别图像的特征,获取特征也被称为特征抽取;

设计分类器及分类决策,其中设计分类器就是根据训练对识别规则进行制定,基于此识别规则能够得到特征的主要种类,进而使图像识别的不断提高辨识率,此后再通过识别特殊特征,最终实现对图像的评价和确认。

图像识别技术的常见形式

首先图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。

文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。

数字图像处理和识别的研究开始于1965年。数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。

物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。

随着计算机及信息技术的迅速发展,图像识别技术的应用逐渐扩大到诸多领域,尤其是在面部及指纹识别、卫星云图识别及临床医疗诊断等多个领域日益发挥着重要作用。通常图像识别技术主要是指采用计算机按照既定目标对捕获的系统前端图片进行处理,在日常生活中图像识别技术的应用也十分普遍,比如车牌捕捉、商品条码识别及手写识别等。随着该技术的逐渐发展并不断完善,未来将具有更加广泛的应用领域。

基于神经网络的图像识别技术

目前,基于神经网络的图像识别是一种比较新型的技术,是以传统图像识别方式为基础,有效融合神经网络算法。在此,神经网络主要是指人工神经网络,换而言之就是本文中的神经网络不是动物体的神经网络,而主要是指人类采用人工模拟动物神经网络方式的一种神经网络。针对基于神经网络的图像识别技术,目前,在基于神经网络的图像识别技术中,遗传算法有效结合BP神经网络是最经典的一种模型,该模型可在诸多领域中进行应用。诸如智能汽车监控中采用的拍照识别技术,若有汽车从该位置经过时,检测设备将产生相应的反应,检测设备启动图像采集装置,获取汽车正反面的特征图像,在对车牌字符进行识别的过程中,就采用了基于神经网络和模糊匹配的两类算法。

基于非线性降维的图像识别技术

采用计算机识别图像是基于高维形式的一种识别技术,不管原始图片的分辨率如何,该图片产生的数据通常都具有多维性特征,这在一定程度上增大了计算机识别的难度。为使计算机的图像识别性能更为高效,采用随图像降维方法就是一种最直接而有效的方法。一般情况下,可对降维划分为非线性降维与线性降维两类,比如最普遍的线性降维方式就是主成分分与线性奇异分析等,该方式的特点是简单、理解更容易等,再对数据集合采用线性降维方式处理求解的投影图像使该数据集合的低维最优。

在信息技术中作为近年来新兴的图像识别技术已广泛应用于众多应用领域,随着信息技术的日新月异,图像识别技术也得到十分迅猛的发展。在众多社会领域中,有效应用图像识别技术将使社会与经济价值得到充分发挥。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇