博舍

十款最佳人工智能软件 生成式人工智能软件有哪些

十款最佳人工智能软件

市场上逐渐将人工智能软件用于程序,编程和其他目的的计算机化已变得普遍。基于AI的平台具有丰富的机器计算和学习能力,可实现业务流程的自动化。自动化可以节省大量时间和精力。这是十大最佳人工智能软件的列表。

 

自动化使组织能够更高效,更有利地执行工作。

此外,自动化可以帮助个人更新其技能和能力。您将要使用商业智能软件来促进公司的运营。

最佳人工智能软件1.DeepVision

DeepVision专为个人面部分析而设计,是针对安全性,安全性和商业智能的完美AI解决方案。该软件可有效监视指定区域,以根据年龄,性别和其他详细信息随时间推移识别人员。

它使用面部人口统计模型来了解目标区域内随时间变化的人口统计变化,或用于跟踪客户模式。此外,它还帮助广告商和品牌与目标受众建立联系,以进行产品展示和广告宣传。该模型的创建是通过面部匹配来跟踪个人,以量化访客的访问频率,并帮助零售商立即找到潜在的顾客。

主要特点

它可以使用支持AI的技术识别视频或图像中的个人面孔。该软件可以通过执行面部匹配来检测目标对象的位置。它具有面部识别和检测功能。该软件只需查看人的图像即可立即识别人的脸。凭借其面部人口统计功能,它可以估计人们的性别和年龄。2.Braina

它是少数支持多种语言的顶级AI软件之一。Braina也可以用作虚拟语音识别软件。借助于此,可以轻松快捷地将软件语音转换为文本。这个以生产力为中心的商业智能平台支持100多种语言。

主要特点

Braina中集成的工具和功能使用户可以快速完成工作。它与多语言虚拟助手集成在一起。该软件为用户提供了完美的成绩单。另外,它还可以读回非英语文本,以便于用户理解。其无可挑剔的语音命令使用户可以使用自己的语音搜索,播放/暂停/停止媒体。使用此软件,用户可以在不费力的情况下调整窗口大小,打开网站,文件夹和文件并执行其他任务。

 

3.GoogleCloudMachineLearningEngine

无论您是希望开展新业务还是计划对现有业务进行数字化转型,GoogleAI技术和云解决方案都将帮助您取得令人难以置信的成功。GoogleCloudMachineLearningEngine是用于训练,调整和分析模型的理想解决方案。它带有ComputeEngine,CloudSDK,CloudStorage和CloudSQL。

该软件还提供了安全耐用的对象存储的好处。其库和命令行工具允许用户利用GoogleCloud。此外,还有用于SQLServer,MySQL和PostgreSQL的关系数据库。

主要特点GoogleCloudMLEngine通过预测和监视这些预测使用户受益。用户可以管理其模型及其多个版本。该解决方案的各个组成部分包括g-cloud,它是用于管理版本和模型的命令行工具。RESTAPI,旨在帮助用户进行在线预测;和GoogleCloudPlatformConsole(用于部署和管理模型的UI界面)。4.Engati

使用Engati,用户可以轻松创建规模和复杂程度不同的聊天机器人。它带有150多个模板,因此个人可以快速开始使用聊天机器人。另外,该软件还包括高级“对话流”构建器,高端集成功能以及用于在网站或任何可用渠道上部署漫游器的功能。

该平台使聊天机器人的构建比以往更加轻松。有专门设计用于部署,构建,分析和训练机器人的部分。此外,使用该软件广播的聊天机器人用户信息,门户网站用户,实时聊天和广告系列将使您受益匪浅。

主要特点

使用此软件创建具有成本效益的聊天机器人,并轻松简化客户支持。当聊天代理不在线时,它提供了自动答复的好处。该软件具有自动营销和销售功能。使用此工具,您可以构建聊天机器人,该聊天机器人可以作为交互式,即时的方式让客户获取您的品牌详细信息。通过减轻筛选过程,它也可以减轻人事经理的工作。该软件能够实时对潜在员工进行背景调查。智能聊天机器人可帮助自动解决客户请求。

 

5.Azure机器学习工作室

Azure机器学习Studio是出色的交互式编程软件之一,最适合创建可用于预测分析的商业智能系统。它是用户用来将对象移动到界面的高级工具。

使用此软件,您将有机会探索在云上构建创新的,基于AI的应用程序的新技术。Azure还提供了创新工具,人工智能服务和可扩展基础架构的优势。此外,您还将获得构建智能解决方案所需的资源。

主要特点AzureMachineLearningStudio充当专业人员的交互式工作区。您可以借助从不同来源收集的数据来构建预测分析模型。它是一个交互式平台,可使用数据操作和统计功能来转换和分析数据。您可以轻松确定结果。将分析模块或数据集拖放到界面上,以链接和修改参数和功能,以设计能够在MLStudio中运行的合格且受过训练的模型。借助该软件,您可以通过编写R脚本来准备数据。6.TensorFlow

TensorFlow是广受欢迎的开源软件,对于寻求高级数值计算工具的专业人员而言,它是一个完美的解决方案。它具有灵活的架构,可跨多个平台(包括TPU,CPU和GPU)进行计算部署。另外,它可以部署在台式机,服务器,移动设备和其他设备上。

这是Google的AI工程师和研究人员团队的创意。TensorFlow能够进行深度学习和机器学习。而且,它对可在多个科学领域中使用的核心数学表达式提供了强大的支持。

它的一些核心组件包括自然语言处理,决策,聊天机器人,图像识别,数据摄取,多语言,视觉搜索,语音识别,虚拟助手,机器学习和工作流自动化。

 

主要特点与多维数组有关的数值计算的理想选择为有关机器学习和神经网络的概念提供出色的支持使用CPU和GPU计算的用户受益,而两者需要一个代码用于数据集和各种机器的高度可扩展的计算7.Cortana

像GoogleNow和Siri一样,Cortana是一个智能的个人助理,可以帮助用户启动应用程序,安排约会以及许多其他虚拟任务。它还能够调整设备设置,例如将Wi-Fi切换为关闭和打开模式。该工具还可以回答您的查询,设置提醒,开灯,在线订购比萨等。

主要特点它在Bing搜索引擎上运行。它与XboxOS,iOS,Windows和Android兼容。该平台支持多种语言,包括日语,英语,法语,葡萄牙语,意大利语,德语,西班牙语和中文。使用其语音输入功能,您可以管理和安排会议/重要任务,查找定义,事实等。该工具甚至可以通过语音命令打开系统上的应用程序。8.IBM沃森

这是一个基于AI的计算机系统,旨在回答用户的问题。IBMWatson与认知计算集成在一起-包括推理,机器学习,自然语言处理,人工智能等技术的融合。该工具以IBM首任首席执行官ThomasJ.Watson爵士的名字命名,可将人工智能集成到各种业务流程中。它有助于提高组织的生产率和效率,从而可以获得更好的结果。

通常,业务数据采用非结构化的形式,例如语音数据,段落等。借助IBMWatson,专业人员可以系统地整理和组织非结构化数据,以生成所需的信息。IBMWatson的处理速度约为80teraflops,是人类回答问题能力的两倍。

主要特点使用此工具,您将完全控制基本任务。它可以通过保护IP地址,维护数据所有权和保护数据洞察力来处理所有这一切。该软件经过培训,可以重新构想用户的工作流程,而不管他们的工作领域如何。它是运输,医疗保健,金融,教育(包括其他领域)的理想选择。它对几乎所有行业和企业都有深入的了解。该软件可以帮助您做出更快更好的决策。IBM甚至重视数据的最小单位。如果您的数据量很小,则可以分析并确定可能的结果。无需集成任何其他工具,它就可以使用大量数据。通过使用它,您可以轻松地从多个来源访问所需的数据。

 

9.InfosysNia

InfosysNia是一款高度评价的商业智能软件,可以从旧版系统,人员和流程中收集信息。它将数据聚合到一个知识库中,并自动执行IT流程和业务任务。该软件旨在减少人工工作,并找到需要想象力,创造力和激情的客户问题的解决方案。

用户可以利用该平台来获得深入的见解,增强的知识以及探索机会,以简化,优化和自动化复杂的组织流程。

主要特点它有助于增强流程和系统,以增强组织及其员工的能力。它包括一个高级的对话UI。该工具具有用于编程和重复任务的自动化功能。它是结合认知自动化,RPA和预测自动化的自动化平台之一。它可以捕获,处理和重用知识,以更好地开展业务。该平台还能够为用户提供数据分析。它也可以用作机器学习工具。10.Playment

它是一个数据标记平台,可以为机器人模型大规模生成训练数据。Playment增强了处理无人机,制图,自动驾驶和类似空间的业务。

该工具已由CYNGN,DriveAI和StarskyRobotics等多家知名研究机构和组织选择。

主要特点支付具有AI和人类智能的独特组合。它可用于映射输出质量。它是一种高质量的工具,能够以100%的准确性组织多个类别的图像。该平台与竞争对手分析和产品比较功能集成在一起。企业使用它来使用户意识到可以带来良好结果的事物以及可能被证明对他们的业务致命的事物。该工具附带一个图像注释套件,允许用户构建对计算机视觉技术有用的数据集。结论

这些是当前可用的顶级人工智能软件。该软件非常方便,可以从头开始构建和开发智能应用程序。这些工具具有AI和机器学习的强大组合,个人可以用来改善和简化他们的业务流程。

简而言之,可以说人工智能(AI)已变成商业软件的主要元素。如今,机器学习和AI学习能力经常安装在软件应用程序中,以为客户提供无与伦比的预测和自动化功能等功能。

生成式人工智能

ChatGPT一经问世,在全球范围内引起巨大轰动,GPT-4接入未来办公软件更是让人震惊,而且技术正在以前所未有的速度快速迭代。那么,以这些技术为代表的生成式人工智能(AIGC)是否为新一轮的技术革命?它到底能做什么,具有哪些优势和场景应用趋势?面对新技术,未来商业的机会在哪里,对我们个人又有着什么样的影响?……这些问题对于我们理解当下,面向未来都十分重要。本书基于作者的专业背景和长期实践,系统介绍生成式人工智能的内在逻辑与应用,并将其与产业发展,理论和实际相结合,帮助读者从本源了解生成式人工智能,结合未来趋势和发展为读者指明方向。

构建人工智能未来法治体系

核心阅读

    任何技术都是双刃剑,人工智能也不例外。在享受最新技术带来的便利时,不能忽视与之相关的安全问题。要用法治为人工智能产业健康发展保驾护航,让人工智能服务造福人类社会。

    从智伴机器人到自动驾驶汽车,再到法院庭审中的智能语音识别,近年来,人工智能已逐渐进入人们的日常生活。

    “深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”今年政府工作报告让人工智能产业看到了前进的方向。

    在人工智能迅猛发展的进程中,关于可能引发的道德伦理问题,可能带来的社会治理问题争议不断。

    推动新一代人工智能健康发展,法治应该有哪些作为,或者说人工智能产业健康发展到底需要怎样的法治保障?近日,《法制日报》记者采访了人工智能产业领域、法律界的相关代表、委员,以及人工智能法律研究的相关专家学者。

人工智能发展亟需立法保障

    几天前,全球首例无人车致死案宣判,Uber公司不承担刑事责任,再次引发了公众对人工智能发展中法律问题的热议。

    “如何推动法律体系与时俱进,尽快满足人工智能产业飞速发展和社会进步的需要,这对法治带来了很大挑战。”全国人大代表、科大讯飞董事长刘庆峰说。

    与刘庆峰观点一致,在记者采访的代表委员中,无一例外都提出应加快人工智能立法工作。

    全国人大代表、中华全国律协副会长刘守民认为,立法一方面要对人工智能发展做引领,另一方面也要规制如发展目标、路径和阶段。但由于人工智能发展飞快,立法往往跟不上发展速度。

    关于法律滞后,全国人大代表、重庆盼达汽车租赁有限公司党支部书记、总经理高钰有不同看法:前沿的技术变革和创新的商业模式带来的不确定性,也决定了相关的立法工作会有滞后性。

    “但新生事物并非排斥法律法规的制约,相反,法律对于新兴商业模式和技术创新的有效规范和制约能更好地引导企业、行业健康有序发展。”高钰说。

    由于人工智能涉及的领域众多,不同领域涉及的立法也存在差异。因此,全国人大代表、北京市律师协会会长高子程建议,前期可在重点领域,比如交通、医疗等先行试点专门立法,待总结经验后再进行综合系统立法。

    全国人大代表、致公党上海市委专职副主委邵志清也有类似的建议:“由于涉及面太宽,社会对人工智能的认识还处于初步阶段,目前对人工智能进行综合立法的条件还不具备。但是为了防范重大风险,需要针对人工智能的具体应用进行立法。”

    对于立法到底应该从哪些方面进行,基于自己的专业实践,受访者都有不同的认知。

    刘庆峰指出,算法、算料(数据)、算力是人工智能技术发展的重要支点,需要有针对性地予以立法规制。

    而在高子程看来,还应立法应明确规定人工智能的法律地位、人工智能生成内容的权利归属、人工智能损害后果的责任分担、人工智能风险的法律控制等亟待解决的内容。

    邵志清告诉记者,人工智能应用的管理应该重点围绕伦理道德、资源获取、主体认定、行为认定、责任划分等方面进行立法。

    “人工智能立法已不仅是一个国内法的问题,这是人类共同面对的课题。”刘守民认为,人工智能发展还需要国内与国际间的协调,通过国际的公约条例,包括技术标准等领域形成共识。

规范司法加强执法不可或缺

    “用法治的手段保障人工智能‘安全、可靠、可控’,也是欧、美、日、韩等国发展人工智能产业的必经之路和共同经验。”西南政法大学人工智能法学院院长陈亮说。

    在陈亮看来,立法只是法治保障人工智能发展的其中一环:执法、司法等环节同样不能偏废。

    高子程也认为,完善立法,规范司法,加强执法,加大普法,积极构建人工智能未来法治体系,用法治保障人工智能健康持续发展。

    “在司法中,要坚持法治理念、法治思维和法治方式,树立谦仰、审慎、善意、文明、规范办案理念,恪守技术中立原则,不轻易对司法机关看不准、有市场、受欢迎的技术业态产品采取强制措施,最大限度减少司法活动对新技术发展的不利影响。”高子程说。

    在高子程看来,司法还应坚持刑法的谦抑性,在其他法律规范足以保护相应法益的前提下,刑法不应首先介入,只有在其他法律规范无法充分有效保护相应法益时,刑法才有介入的必要和空间。

    “在执法环节,应建立专门的执法部门,明确其职权范围,规范其执法程序。”陈亮认为,尤应注意的是,在制度设计时,应以委托代理理论为指导,从制度层面解决好该执法部门的参与约束和激励相容的问题,以免执法过程中出现委托代理人问题,导致人工智能立法流于形式。

    为让执法真正有成效,高子程认为,应组织相关执法部门专责制定人工智能领域配套的各种技术规范、技术标准,这个标准应当是对行业自身所发展出来的标准与公共利益、个人权利保护原则的综合考量,其制定程序应当遵循公共参与、听证等行政程序规则。

伦理及安全问题不容忽视

    从目前已经投入使用的人工智能产品中看,部分智能庭审系统甚至已经能够基本代替书记员的记录工作,加快了庭审进度。

    人们不禁会问,当人工智能广泛应用之时,一些可以替代的传统行业是否会造成大量的失业,造成社会的不稳定。

    “解决这些问题首先是在人工智能大规模替代现有工作之前,把社会保障体系建立起来。”刘庆峰说,在社会保障体系之下,人工智能代替了重复性工作后,人会有更多的时间去做创意等不能替代的事情,从而获得社会价值感。

    刘庆峰认为,人机合成是未来人工智能的重要突破方向。他举例称,目前“智医助理”可以根据医嘱对话,自动生成对疾病的判断,供医生参考确认。“所以我想人工智能并不是要淘汰人类,而是要让人类站在人工智能的肩膀之上。”刘庆峰说。

    对于人类与人工智能的关系,刘庆峰还是很乐观。他认为,人工智能立法应当遵循“人机耦合”和“以人为本”原则。

    “这意味着要充分认清人工智能是帮助人的,而不是替代人的,要刺破技术面纱,有针对性地规制技术背后人的行为;意味着要把人民群众的生命和财产安全放在首位,实现人工智能在风险可控的范围内发展。”刘庆峰说。

    不论乐观与否,人工智能立法在伦理道德方面还是要有明确规定。

    邵志清认为,应明确禁止应用人工智能技术实施违反人类伦理道德的行为,特别是在基因工程、生命科学、情感意识等方面用法律为智能社会划出伦理道德的边界,让人工智能服务造福而不是困扰危害人类社会。

    “对人工智能要抱有一定的尊重和敬畏,技术进步带来的东西不见得都是好事,一定要慎重,避免出现有悖伦理道德的事情。”刘守民说。

    全国政协委员、360集团董事长兼CEO周鸿祎也认为,任何技术都是双刃剑,人工智能也不例外。“但我们在享受最新技术带来的便利时,也不能忽视与之相关的安全问题。”(法制日报记者战海峰)

浅析人工智能生成内容的保护路径

原标题:浅析人工智能生成内容的保护路径

随着人工智能技术的成熟,越来越多的行业开始将这项技术运用于商业生产中,如利用人工智能技术进行自动的图像、符号信息处理,进而产生有欣赏价值的绘画、文学内容等。那么,这些内容是否符合我国著作权法中对作品的定义?相关主体是否可以通过著作权法来进行保护?这些问题在司法实务界和理论学界均存有一定的争议。在笔者看来,分析这些问题应把握两个原则:第一,不能因为保护某些行业而采用功利主义来论断适用某项法律,即对人工智能投资者、使用者的保护不一定要通过著作权法的路径来实现;第二,在大陆法系中需要保障法律的稳定性,不能因出现新事物而轻易改变既有法律规则,因此不宜为人工智能创设新的民事主体类型。

功利主义分析的误区

作品的构成要件包括“属于智力成果”“具有独创性”“表达相对完整”等要素。笔者认为人工智能自动生成的内容难以符合第一个要件,即智力成果是由民法上的自然人或法人创作而产生。但是,从外在表现上看,人工智能生成内容有的难以和自然人或法人创作的作品相区分,如果有人把它当成自己的作品使用、寻求著作权法保护,能否得到支持?这就引发了人工智能生成内容是否应该获得著作权法保护的问题。部分学术和司法观点认为:人工智能生成内容从外在表现上难以与人类的作品区分开来,如果有人将其冒充为人类所创作的作品,事实上很难识别出来,因此区分是没有意义的。另外,如果不给予人工智能生成内容著作权保护,人工智能生成物的投资者就缺少对该内容的垄断性,这可能会损害其利益。基于上述理由,如果人工智能生成物外在表现上类似于人类的创作,那么该内容应该被认定为作品。但笔者认为这种推论存在一定逻辑缺陷,需要加以厘清。

思考人工智能生成内容是否应该获得著作权法保护,需要从两个层面思考问题:一是从本质主义的视角,人工智能生成内容是否满足作品的实质性要求;二是从功利主义角度,给予人工智能著作权有无必要。回答第一个问题,需要厘清我国法律对于作品的实质判断要件。其中,著作权法实施条例第三条所称的“创作”和人工智能生产过程是否等价?如果人工智能生成过程属于著作权法实施条例第三条所称的“创作”,那么人工智能生成物可以被认定为作品,但谁才是这一作品的作者和著作权人?这仍然是法律要解决的问题。从功利主义出发,则需要厘清人工智能生成内容是否值得保护。如果回答是肯定的,则需要研究应采取什么路径来进行保护。如果采取著作权法保护路径,该如何确定著作权归属?此时,无论从本质主义还是功利主义层面,都要解决人工智能的法律地位问题。

具体而言,人工智能生成内容的使用涉及人工智能研发者、人工智能使用者、生产内容使用者之间的利益平衡。例如,媒体斥资购买人工智能软件,使用人工智能生成新闻稿件或股市和金融市场快报,若其他媒体未经同意擅自使用该文稿,此类行为无疑会分流前者的受众,损害前者的商业利益。此时,如果将人工智能生成的新闻稿认定为作品,则前者的利益可以获得著作权法的保护。如果新闻稿的独创性较低,无法被认定为作品,还可以通过反不正当竞争法来保护前者的利益,因此,著作权法保护并非是唯一路径。功利主义分析常见的误区是:以保护人工智能使用者的利益来证明人工智能生成内容应当受著作权法保护,这在逻辑上是有缺陷的,两者不是必然的因果关系。

人工智能的法律属性

将人工智能生成内容认定为作品,还面临一个难以逾越的理论难题:人工智能生成的内容不是人类智力创作成果,不满足作品必须是由自然人或法人所创作、具有创造性这两个条件。为此,有人提出可以扩大受著作权法保护的主体的范围,将人工智能作为“赛博人”,即拟制的人加以保护,并且这方面有法人制度可供借鉴。然而,这种思路不仅会导致知识产权法的重大变化,而且也将影响民法有关主体的规定。

根据有关法律规定,法人和自然人一样,具有独立的民事权利能力和民事行为能力,法人以其独立的财产作为民事责任的承担。如果将“赛博人”拟制为新的民事主体,其权利由谁享有?义务和责任由谁负担?如果为其创设新的民事主体规制,那么法人制度的存在还有什么意义?显然,在可以预见的时期内,“赛博人”是无法自行负担其权利和义务的。但是“赛博人”产生的后果,需要由对应的自然人或法人来享受权益承担义务和责任,如此,为什么不采用类似动物致人损害、产品责任这样的传统民法制度来解决有关问题?

具体而言,在权利方面,将人工智能视为“无体物”,其生产的内容视为由“无体物”产生的“孳息”,由人工智能的投资者享有对于“孳息”的利益。责任方面,因人工智能进行的文本和数据挖掘、算法自动生成文字等内容,由此造成的民事责任、知识产权责任由财产的所有者、使用者承担无过错责任。因此,引入“赛博人”作为新的法律主体的必要性要画个大大的问号。更核心的问题是人工智能生成内容也不具备创造性,因为就目前的“弱人工智能”而言,其可以进行运算但是不会进行思考,遵循数理逻辑但不具备自然人或法人的理性。除此之外,人工智能更没有自然人非理性的情感机制。因此,人工智能不具备著作权法上作者的“人格”特质,其生成的内容也不具备创造性,而创造性是人类特有的能力,是人区别于物的根本属性之一。

“工具论”的合理性

人工智能不具备独立的民事主体资格,人工智能自动生成的内容不满足作品的“智力成果”要件,但是,这并不能排除人工智能生成内容可能受到著作权法的保护,只是著作权主体仍为自然人或法人,而该类人工智能生成内容是作为人利用技术辅助生成的作品加以保护的。创作作品是人的主体性的实现,是人的自由意志的运用,人可以直接创作作品,也可以借助一定的工具完成、甚至通过委托他人实现创作目的。就部分“弱人工智能”生成内容而言,本质上是创作者借助人工智能这一工具进行创作,而生成物是人意志发动的结果,是人的自由意志的实现,因而是人的意志的产物。人工智能生成内容的过程是运用一定的算法进行信息加工选择的过程,因此算法体现程序设计者的主体意志和选择,而程序的使用者某种程度上承认、接受了该算法,创作方向和人工智能设计方向有着高度的契合,这种对算法的接受也是使用者自由意志的选择。所以人工智能生成内容归根结底是人的自由意志的运用和实现。人工智能使用者运用人工智能生成的表达可以作为使用者的作品加以保护。

通过以上分析可得出初步的结论:人工智能不宜被视为独立的作者或著作权人,但部分内容可以作为人工智能使用者的作品得到著作权保护,也即有人参与创作的人工智能生成物可以被认定为作品。

从功利主义出发,论证人工智能生产内容应该以著作权法保护是有逻辑缺陷的。除此之外,部分观点反驳“工具论”的理由是:既然从内容本身无法分辨一项表达究竟出于人工智能还是自然人或法人,那么在司法实践中还有必要去进行分辨吗?但笔者认为,这实际上是一个证据的问题,应该从举证角度去考虑。即便一项表达事实上出自于人工智能,但由自然人对其进行署名并登记,那么如果无相反证据,法律应推定该表达属于人类智力成果,构成作品。以证据来推定事实是法律制度对现实生活的简化,追求法律的形式正义就需要接受应然层面和实然层面的一定脱节。

因此,在无法举证证明作品不是由人创作而是由人工智能生成的情况下,只能认定该表达构成作品,受到著作权法的保护。在总体上不对人工智能自动生成内容提供著作权保护的情形下,这将导致部分人工智能生成内容实际上可以冒充人类的创作而得到著作权保护,但并不能因此说明所有人工智能生成内容都可以作为作品受到保护,只要它形式上看起来类似人类的创作,这就好比某些假冒商标的商品无法被识别出来,不能因此主张所有的假冒该商标的商品都应该被认定为真品。(华东政法大学龙文懋龙明明)

(本文仅代表作者个人观点)

(责编:林露、李昉)

分享让更多人看到

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇