六部门发文以场景创新推动人工智能发展看点解析
新华社北京8月27日电题:六部门发文以场景创新推动人工智能发展看点解析
新华社记者胡喆、宋晨
近日,科技部等六部门联合印发了《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》。随后科技部又公布了《关于支持建设新一代人工智能示范应用场景的通知》,打出以场景创新推动人工智能发展的政策“组合拳”。该系列文件出台的背景是什么?哪些场景将是重点鼓励发展的典型场景?新华社记者采访了负责文件起草的相关部门负责人。
当前,我国人工智能技术快速发展、数据和算力资源日益丰富、应用场景不断拓展,为开展人工智能场景创新奠定了坚实基础。科技部新一代人工智能发展研究中心主任、中国科学技术信息研究所所长赵志耘介绍,此次印发的指导意见,旨在统筹推进人工智能场景创新,着力解决人工智能重大应用和产业化问题。
指导意见提出,以促进人工智能与实体经济深度融合为主线,以推动场景资源开放、提升场景创新能力为方向,强化主体培育、加大应用示范、创新体制机制、完善场景生态,加速人工智能技术攻关、产品开发和产业培育,探索人工智能发展新模式新路径,以人工智能高水平应用促进经济高质量发展。
科技部战略规划司副司长邢怀滨表示,随着我国人工智能发展进入新阶段,需要适应新阶段新特征的创新政策。借助场景创新和需求牵引,将与技术研发形成双向互促的良性循环,推动人工智能技术突破成为促进人工智能技术研发的有效模式。
此次印发的指导意见提出“企业主导、创新引领、开放融合、协同治理”四项基本原则,提出“场景创新成为人工智能技术升级、产业增长的新路径,场景创新成果持续涌现,推动新一代人工智能发展上水平”的主要发展目标,将围绕“高端高效智能经济培育、安全便捷智能社会建设、高水平科研活动、国家重大活动和重大工程”等打造重大场景。
“人工智能是赋能技术,必须与应用场景结合才能发挥最大作用,我国人工智能发展的优势也在于丰富的应用场景,特别是实体经济智能化升级,提供了丰富的场景需求。”工业和信息化部科技司副司长任爱光说。
随着场景对推动人工智能技术与实体经济深度融合、加速人工智能快速发展的作用正逐步显现,以新一代人工智能创新发展试验区为代表,很多城市已经意识到场景对于人工智能、新经济发展的重要作用,开始在交通、农业、医疗、教育等领域开展场景探索工作。
交通运输是人工智能技术的重要行业用户,在新一轮科技革命和产业变革中,交通运输已成为新技术和新业态创新实践的热点领域。指导意见提出,在交通治理领域探索交通大脑、智慧道路、智慧停车、自动驾驶出行、智慧港口、智慧航道等场景。
“以应用为驱动,打造面向出行和运输服务实际需求的重大场景,可以更好促进新一代人工智能技术赋能交通运输高质量发展。”交通运输部科技司司长岑晏青说。
在农业领域,指导意见提出优先探索农机卫星导航自动驾驶作业、农业地理信息引擎、网约农机、橡胶树割胶、智能农场、产业链数字化管理、无人机植保、农业生产物联监测、农产品质量安全管控等智能场景。
“这对提高农技装备和信息化水平,健全现代农业科技创新体系,提高生产力水平具有重要意义。”农业农村部科技教育司副司长张振华说。
安全便捷智能的社会服务事关百姓民生。指导意见提出,医疗领域积极探索医疗影像智能辅助诊断、临床诊疗辅助决策支持、医用机器人、互联网医院、智能医疗设备管理、智慧医院、智能公共卫生服务等场景。
国家卫生健康委科教司监察专员刘登峰表示,国家卫生健康委将认真落实指导意见各项措施,推动人工智能卫生健康领域场景创新,促进人工智能高水平应用,不断丰富卫生健康服务手段。
一流大学是基础研究主力军和重大科技突破策源地。教育部科学技术与信息化司司长雷朝滋表示,教育部将引导高校面向国家战略和产业发展需求,以应用场景为驱动,持续加强人工智能领域基础理论研究、关键核心技术攻关和科技成果转移转化,培养一批符合产业发展需求的高水平、复合型创新人才,大力促进我国人工智能领域技术进步和广泛应用。
下一步,有关部门将在推动人工智能场景创新工作中坚持“三位一体”原则。邢怀滨介绍,科技部将与相关行业部门和地方政府紧密合作,采取横向联动、纵向贯通等组织方式,调动各方积极参与,在技术研发组织、复合型人才培养、基础设施建设、行业数据开放、落地政策配套等方面汇聚多方资源,形成工作合力,共同破解行业数据缺乏、落地成本高、场景创新深度不足等产业化难点问题。
加快推动人工智能产业高质量发展
原标题:加快推动人工智能产业高质量发展人工智能产业为中国经济发展提供战略新动能,是引领中国经济发展的重要战略抓手。2018年9月17日,习近平总书记在致2018世界人工智能大会的贺信中指出,新一代人工智能正在全球范围内蓬勃兴起,为经济社会发展注入了新动能,正在深刻改变人们的生产生活方式。习近平总书记强调,中国正致力于实现高质量发展,人工智能的发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。习近平总书记的重要论述,为人工智能产业实现高质量发展,更好服务于人民的美好生活指明了方向。
推动高质量发展是“十四五”时期的主题
党的十九届五中全会明确指出,我国经济已转向高质量发展阶段。以推动高质量发展为主题,是“十四五”时期以习近平同志为核心的党中央根据我国发展阶段、发展环境和发展条件变化对我国经济做出的新的重大科学判断。习近平总书记指出,高质量发展就是体现新发展理念的发展,是创新成为第一动力、协调成为内生特点、绿色成为普遍形态、开放成为必由之路、共享成为根本目的的发展。高质量的发展意味着在中高端产品消费、创新引领、绿色低碳、共享经济、现代供应链、人力资本服务等领域需要培育经济新增长点、形成发展新动能。新时代新阶段的发展必须贯彻新发展理念,必须是高质量发展。而推动经济高质量发展,关键在于以创新为驱动、高质量供给为引领,加快建立科技创新体系,构建现代产业体系,推动质量变革、效率变革、动力变革,建立中高端产业链、价值链,使发展成果更好惠及全体人民,不断实现人民对美好生活的新需求。
当前新一轮科技革命和产业革命正在发生变革,这与我国高质量发展形成历史性交汇。“十四五”时期我国经济发展应抢抓这一重要变革机遇,为高质量发展“动力换挡”导入强劲引擎。伴随移动互联网、大数据、超级计算、传感网、脑科学等新理论新技术的驱动,以人工智能技术为代表的新一轮科技革命蓬勃发展,以前所未有的速度和方式改变着经济发展,成为高质量发展的重要引擎。习近平总书记在十九届中央政治局第九次集体学习时的讲话中指出,“人工智能是引领这一轮科技革命和产业变革的战略性技术,是新一轮科技革命和产业变革的重要驱动力量,具有溢出带动性很强的‘头雁’效应”。加快发展新一代人工智能不仅“事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题”,而且是“我们赢得全球科技竞争主动权的重要战略抓手”,更是“推动我国科技跨越发展、产业优化升级、生产力整体跃升的重要战略资源”。在推动经济高质量发展的过程中,人工智能产业的高质量,可以为中国经济发展添薪续力。
党的十九届五中全会审议通过的《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》指出,“在当前和今后一个时期,我国发展仍然处于重要战略机遇期”,要紧扣重要战略机遇新变化,“坚持把发展经济着力点放在实体经济上,坚定不移建设制造强国、质量强国、网络强国、数字强国,推进产业基础高级化、产业链现代化,提高经济质量效益和核心竞争力”。在推动经济高质量发展阶段,人工智能正在为中国新旧动能转换和国民经济高质量发展提供有力支撑,它是推动工业变革的核心驱动力量,也是最能体现知识要素贡献和打造经济社会发展新动能的基础设施产业,加快推进人工智能产业优化升级,成为未来科技创新的一个“超级风口”。近年来,中国人工智能产业化发展迅速,技术发展日益成熟、应用场景日益丰富,企业数量、融资规模均居全球第二,成为人工智能产业化大国之一。与此同时,我国人工智能产业的发展在基础理论研究、关键核心技术、人才培养等方面存在一些短板,这在一定程度上限制了人工智能产业创新发展潜能的充分释放。对此,习近平总书记强调,要深刻认识加快发展新一代人工智能的重大意义,加强领导,做好规划,明确任务,夯实基础,创新技术,促进其同经济社会发展深度融合,推动我国新一代人工智能实现高质量的发展。
以人才、技术促进人工智能产业实现高质量发展
我国人工智能产业迅速发展,在智能芯片、智能算法、知识图谱、计算机视觉、自然语言处理等技术方面不断取得突破,为人工智能产业的创新发展奠定了一定基础。但中国智能产业在芯片硬件等关键性核心技术上仍然比较薄弱,这成为制约人工智能产业实现高质量发展的重要隐患。对此,习近平总书记指出,人工智能具有多学科综合、高度复杂的特征。我们必须加强研判,统筹谋划,协同创新,稳步推进,把增强原创能力作为重点,以关键核心技术为主攻方向,促进人工智能实现高质量发展。
重视产业人才培养,构建“引才、留才、用才”新格局。人工智能产业要实现高质量发展,培养人工智能人才是关键。因此,要强化多层次人才的培养和引入。一是培养人工智能产业所需的复合型人才。一方面,构建以技能为本的劳动力市场,鼓励企业和各类机构为员工提供人工智能技能培训,培育一批专业技能扎实、科学素养高、动手实践能力强、具备开阔产业应用视角和国际前瞻视野的人才,确保关键工种拥有充分数量的人才储备;另一方面,完善高校人工智能学科体系建设和布局,深化“产学研”融合发展,鼓励高校、科研院所与企业合作,通过校企共建人工智能专业和课程,培育更多符合人工智能产业高质量发展所需的复合型人才。二是坚持“走出去+引进来”,加大全球高端人才的培养和引入。一方面,选派人工智能领域优秀科研人员赴海外学习交流,扩大国际化视野;另一方面,充分利用海南自由贸易港、自由贸易区、粤港澳大湾区等历史性战略机遇,鼓励人工智能产业人才引入。
加快完善数字基础设施,增强人工智能科技创新能力。人工智能产业要实现高质量发展,技术的完善和突破是重点,这就要求在技术上既要加快完善基本数字基础设施,也要坚持核心技术的攻坚克难。一是要完善数字基础设施,推动传统产业智能化转型。一方面,充分利用新基建机遇,加强人工智能基础研究和技术研发,协调推进各类数据中心、5G网络部署,全面提升端侧的数据计算、采集及传输能力,为传统产业全面向数字化转型打造坚实广泛的计算基础。另一方面,充分发挥国家新一代人工智能开放创新平台赋能作用,加强传统产业与科技公司合作力度,共同突破工业数字化壁垒,实现双赢。二是要加大基础研究力度,加快突破一批人工智能产业化关键技术。国家要调整人工智能投入结构,提高基础研究经费投入比重和投入力度,支持科学家勇闯人工智能科技前沿的“无人区”,鼓励校企开展深度合作,建立协同创新联盟,努力在人工智能发展方向和理论、方法等方面取得变革性突破,确保我国在人工智能重要领域的理论研究走在前面。同时,要以问题为导向,重点突破自主芯片技术和算法技术,加快建立新一代人工智能关键共性技术体系,确保人工智能关键核心技术牢牢掌握在自己手里。
融合实体经济,推动人工智能产业高质量发展
人工智能是具有极强渗透性的技术。当前人工智能产业化应用正加速从娱乐、消费等领域开始向制造、医疗、能源、交通等更大范围的实体经济进军,这给人工智能产业提供了庞大的市场和丰富的场景。人工智能在我国交通、医疗、教育等传统行业中的发展和应用仍然处于较低水平,无法满足人民对美好生活的需要。因此,要实现人工智能产业高质量发展,就要发挥人工智能在产业升级、产品开发、服务创新等方面的技术优势,推动人工智能与实体经济深度融合,以人工智能技术推动各产业变革,加快产业对接,聚焦重点领域,形成以场景应用为导向的发展模式。
搭建智能平台,发挥人工智能技术应用功能。人工智能不仅能创新产品和服务,而且也能在相当程度上改进或优化传统产业的生产流程,重构传统产业的业务模式。当前,以人脸识别、车辆特征识别、手写识别、文字识别等为代表的计算机视觉相关技术基本成熟,“机器视觉”在制造业中已经逐渐推广应用,加强计算机视觉技术与传统汽车制造等产业的深度融合,用机器代替人力劳动,不仅能节约人力投入,还能提高产品品质。人工智能还能对生产过程的数据进行分析并加以改进。工业生产线在运行过程中会生出大量实时数据(比如温度、压力等等),利用人工智能技术对数据进行分析,能提前预测可能出现的机器故障、残次品率等等,进而对生产流程进行优化,以达到节约成本、提高效率的目标。因此,要大力推广应用人工智能在促进制造业转型升级中的支撑和引领作用,使其成为推动高新技术产业创新发展中的“头雁”和区域发展的“增长极”。
聚焦重点领域,助推人工智能应用场景落地。如果说人工智能产业是供给侧,那么传统行业则是需求侧。推进人工智能应用场景落地,就要处理好供给侧和需求侧的关系。随着人工智能加速向医疗、交通、智慧城市等多领域的渗透,应聚焦这些涉及民生的领域,提升人工智能产业与实体经济的融合度,为人民群众提供更优质、丰富、便利的新产品和新服务,满足人民群众对美好生活的需要。因此,人工智能技术要着眼于我国庞大的市场和丰富的场景,围绕社会发展需求领域布局,探索出一条充分发挥我国市场和场景资源优势的高质量人工智能产业发展路径。
(作者单位:北京科技大学马克思主义学院)
中国发展人工智能有五大优势
原标题:中国发展人工智能有五大优势文|《中国发展观察》杂志社记者杜悦英
“人工智能(AI)技术已经发展到应用期,中国在这方面具有五大优势。”9月16日,在由国务院发展研究中心指导、中国发展研究基金会主办的2018中国发展高层论坛专题研讨会期间,一场主题为“人工智能革命”的分会场讨论中,创新工场创始人及首席执行官李开复做出上述表示。他说,美国、加拿大、英国曾经几乎霸占了AI所有的顶级研究,但过去十年,AI领域发生了“中国式奇迹”。
李开复说,中国发展AI技术具有五大优势:一是中国产品创新开始(和美国共同)领先全球;二是中国市场的残酷竞争锻炼出世界级创业家、企业家;三是中国AI资本优势领先全球;四是AI发展到应用期,中国具有工程师、创业者、市场优势;五是数据优势,这是中国发展AI的最大优势。
物美控股集团创始人、董事长张文中在发言中同样提到数据的重要性。他说,AI时代,最核心的是数据。新一轮AI技术的兴起有三个核心要素,一是算力,二是算法,三是数据,这是新AI革命的三大支柱。以物美的运营为例,张文中说,现有商业模式中有大量数据存在,而且线上、线下并行,所以需要AI强有力支持,也要求AI下一步在算法上有新的革命。
AI技术的发展也带来一些新问题。英特尔公司高级副总裁彭茂盛提醒,如何保证AI能创造新的就业,是必须考虑、且应当提前考虑的事情。“随着技术的不断发展,要保证人们的福祉”,他说,此外还需警惕AI做决策可能会面临的道德陷阱。
英国南安普敦大学教授温迪·霍尔认为,除了AI对就业的影响,还应当关注相关技术在数据接入、隐私、数据安全等问题及其所带来的道德和法律问题。她强调,人类应当负责任地发展AI,英国在这方面的经验是:政府为了解决相应问题,建立了数据道德创新中心。
对AI的未来发展,微软亚洲研究院副院长潘天佑提出三个建议:一是鉴于AI不再只是一个科技问题,而是影响到未来社会平等、安全等的社会问题,因此政府应当予以相应的制度和政策规范。二是如给小学生开设数学课一般,在学校里进行计算思维的普及教育。三是推进AI技术的数字化转型,探讨AI技术如何在各行各业落地应用。
文琳编辑返回搜狐,查看更多
责任编辑:中国人工智能创新处于什么发展水平
◎编辑|数字经济先锋号
◎来源|北京工业大学学报
◎作者|王山陈昌兵
人工智能作为新技术创新的代表与引领未来、重塑传统行业结构的前沿性与战略性技术,逐渐成为全球新一轮科技革命和产业变革的重要驱动力量。世界各国在以创新为主的人工智能新技术方面展开了激烈的角逐与残酷的竞争。
目前,我国人工智能技术创新水平如何?技术处于何种发展阶段?我国发展人工智能的优势在哪?未来我国人工智能发展趋势如何?本文即将告诉你答案。
指标体系的构建
基于技术创新大数据,本文创新性地构建多指标测度体系与技术创新综合发展指数;根据综合发展指数模拟各国人工智能技术创新S演化曲线,描绘动态演变轨迹并定位中美技术创新发展位置。重点结合五维度在不同阶段的权重分布,比较中美新技术创新发展差距,探讨影响我国人工智能新技术创新发展的主要因素。提出提高新技术创新水平的具体措施与发展建议,助力实现我国人工智能关键核心技术突破、摆脱被先发国家控制的劣势地位。
表1人工智能技术创新发展水平多指标测度体系
根据技术创新周期不同发展阶段可能呈现出的特征与各特征之间的内在逻辑关系,同时结合人工智能新技术创新发展影响因素与技术创新发展测度相关参考文献,我们选择了基础研究、技术创新、科技布局、产业规模与技术进步5个维度来测度人工智能技术创新发展水平(如表一所示)。
根据指标熵权计算式得到的人工智能技术创新水平各测度指标的权重值(Wj)(如表二所示)。从单个指标权重看,首先体现产业规模的人工智能技术融资规模指标权重最高,然后为人工智能新增企业数指标;其次为体现技术创新程度的人工智能技术优先权年专利申请量指标,研发课题数指标权重最低。从分析维度看,首先产业规模维度权重最大;其次为技术创新维度与科技布局维度,基础研究维度权重值最小。综上可知,产业规模与技术创新维度各参数动态变化对人工智能技术创新所处发展阶段的判断具有显著影响。
表2人工智能技术创新水平测度指标权重值
中美等国的对比与分析
根据分析,目前,我国人工智能技术正处于快速发展的技术成长期后期,技术创新十分活跃,未来将涌入更多的企业和科研机构,竞争也将越来越激烈。而美国人工智能技术萌芽于1990年,于2005年步入技术成长期,2020年开始走向成熟,并预计于2034年进入技术衰退期,目前正处于开展商业应用的技术成熟期,创新动力将持续增强。(拟合优度是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R²。R²最大值为1,越接近1,说明回归直线对观测值的拟合程度越好,表三可见各国人工智能技术创新S演化曲线拟合优度R²均在0.9以上,拟合效果较为理想。——数字经济先锋号注)
表3中美等国人工智能技术创新发展阶段判定
日本、英国、法国与德国作为较早启动人工智能新技术研究开发与科研成果推广应用的主要发达国家,同样具有较大的先发优势,其技术创新发展水平早期均位列世界前沿且技术发展历程与演化轨迹比较相似,均在1990年左右进入技术创新萌芽期,后经技术不断地积累、发展与突破,分别于2005年与2019年左右步入技术创新成长期与成熟期,目前技术已经成熟。
图1中美等国人工智能技术创新周期S曲线
得益于雄厚的科技与经济实力,美国人工智能技术创新累计综合发展指数遥遥领先于其他各国,日英法德4国作为人工智能新技术创新发展早期的追随者与前期领导者,在人工智能技术领域,同样具有较高的发展水平与先发优势,鉴于人工智能技术创新是一个显著的动态累计过程,且发展周期较长,美日等世界主要发达国家并未因前期先发优势而形成技术发展垄断局面,因而为后发国家的技术追赶提供了巨大的机会窗口。
由图1技术创新演变曲线可预测出,在技术经验渐进性积累与自主创新能力不断提升的条件下,我国正逐步缩小与美国在人工智能新技术创新赛道上的发展差距,预计将在人工智能新技术创新发展的成熟期实现技术的追赶与超越。
目前,中国人工智能技术创新累计综合发展指数已超越英法德日4国,但与技术创新水平处于全球领先地位的美国相比仍有较大发展差距。本文从人工智能新技术创新累计综合发展指数增长率探索未来中国是否能反超美国并掌握创新发展的主导权,图2是各国人工智能技术创新累计综合发展指数增长率变化结果。
图2拟合中美等国人工智能技术创新累计综合发展指数增长率
由图2可知,1985-2003年,美国、英国、法国、德国与日本人工智能技术创新累计综合发展指数增长速率基本处于快速上升状态,尤其是美国。而我国的人工智能技术创新起步晚于美国,在基础研究原创性成果的不足或某些前沿领域的投入缺失的情况下错失了先发优势。但在国家大力扶持与自主创新能力不断提升的情况下,我国人工智能技术发展呈现出了非常强劲的增长态势。
因此,可以预见,在当前快速增长态势下,再加上后天技术的积累以及先发的数据优势,我国必将在人工智能新技术这一赛道上领跑全球。
影响因素动态分析
我国人工智能新技术创新发展速度较快,但关键核心技术水平与美国相比仍有差距。技术创新是一个多阶段过程,不同发展阶段因所需资源、条件不同而影响因素权重不同。本节创新性地引入技术创新不同阶段变量,动态分析不同阶段下人工智能技术创新的多指标测度体系中维度权重变化。进一步深入剖析我国人工智能新技术创新发展的影响因素。
由表四可以看出,中美两国在人工智能技术的发展阶段、技术创新和技术进步等方面存在差异。美国在人工智能新技术基础研究投入、技术创新布局、技术产业链上游的占据等方面具有较为显著的优势,而我国在科技布局、产业规模和融资份额等方面具有一定优势。但是,我国与美国相比,技术进步较为缓慢,尤其是在芯片领域存在较大差距,这将对我国的人工智能产业化形成不利影响。
因此,我们应该着眼于加强人工智能领域的基础研究,不断提升自主创新能力,积极推动技术创新和进步,在技术产业链上游抢占制高点,实现由技术跟随到技术引领的转变。同时,也需要加强与市场的有效结合,促进技术产业化的发展,让科技创新更好地服务于经济社会的发展,实现以科技创新驱动高质量发展的目标。
表4人工智能技术不同发展阶段影响因素权重分布
通过与美国的比较不难看出,我国人工智能新技术创新在基础研究、技术创新与技术进步维度,仍有相当发展空间,由于缺乏占据世界产业制高点的核心技术,存在若干被他国“卡脖子”的领域。
图3中美等国人工智能技术创新逐年发展指数
虽然我国人工智能新技术研发起步较晚,基础研究薄弱,技术创新累计综合发展指数与美国存在较大差距,但由技术创新逐年综合发展指数(图3)可知,我国人工智能新技术创新发展指数自2003年开始逐年上升,正不断缩小与美国人工智能技术创新累计综合发展指数的差距。作为后起之秀,在经历长期以技术跟随为主的技术潜伏期与萌芽期,以及二次创新为主的技术成长期后,依靠后发优势,我国于2017年反超自2003年以来技术创新逐年发展指数呈逐步下降态势的美国,跃居全球首位。
结论及建议
本文基于人工智能技术创新科研大数据,提出了人工智能技术创新水平多指标测度体系与技术创新综合发展指数计算模型,并通过绘制技术创新生命周期S演化曲线,对我国与世界主要发达国家在人工智能技术创新方面的发展阶段进行了评估与预测,深度剖析了我国与美国等国之间在技术创新、科技布局、产业规模、技术进步等方面的差距。
基于这些结论,本文提出了几点建议。首先,要强化基础研究,加大对基础研究长期稳定的支持力度,同时引导企业增加基础研究投入,提高我国基础研究水平和源头创新能力。
其次,要推动应用研究与基础研究的融合贯通,坚持问题导向、目标导向,设立重大科技计划项目,支持设立联合攻关团队(校企联合或校校联合等),或以企业为主导并协调高校和有关科研院所的资源,对有关人工智能的应用技术进行研究开发(委托研究、联合研究等形式)。
此外,还建议要产业化市场化发展,中国目前以高校为主、各自为战的人工智能研发体系不利于中国人工智能产业对前沿技术的把握和整体技术创新水平的进一步提升,也不利于技术的快速转化应用。建议培育一批技术先进、世界领先的企业,并带动产业上下游协同发展,形成持续创新能力、技术全球领先的产业集群。
最后,要完善技术创新机制,应鼓励企业培育和引进掌握关键核心技术的科技领军人才和团队,为产业发展提供智力支持;建立综合的关键核心技术突破与创新机制,将短期与中长期科技积累相结合,建立国家基础研究、产业科技等方面的公私结合的综合创新体系,将产业发展创新需求、国家战略创新需求、科研好奇创新需求等三大方面的创新动力综合起来,并重结合,实现“远水”和“近渴”的融合。
综上所述,通过实施这些建议,我国在人工智能技术创新方面可以进一步提升自身的科技水平和创新能力,缩小与美国等发达国家的差距,加速我国在人工智能领域的发展进程。
原文来源:王山,陈昌兵.中美人工智能技术创新的动态比较——基于人工智能技术创新大数据的多S曲线模型分析[J/OL].北京工业大学学报(社会科学版)。(因篇幅原因,本文有部分删减)
关于我们
「数字经济先锋号」是成都数联产服科技有限公司旗下数字经济研究交流平台。围绕数字产业、数字基建、数字治理、数字生态等数字应用领域,揭示与记录数字经济发展点滴与脉络。
数联产服是一家数字经济行业智库、产业大数据服务商,具备全流程大数据治理-分析-决策支撑服务能力,面向各级政府和产业运营机构提供基于大数据的产业经济发展解决方案和综合服务。