人工智能对中国劳动力市场的影响
周广肃、褚高斯、李力行、孟岭生(中国人民大学劳动人事学院、百度公司集团战略部、北京大学国家发展研究院、香港中文大学经济系)
自动化和人工智能技术在当今经济和社会发展中发挥了越来越重要的作用,尤其是随着互联网+、大数据、云计算等相关技术的发展,人工智能很有可能会引发新一轮的科技革命浪潮,并对经济社会发展的各个方面产生重要影响。为了抓住人工智能经济带来的新的发展机会,我们国家也出台了一系列刺激人工智能发展的规划纲要或政策文件,希望推动中国成为世界主要的人工智能创新中心之一。人工智能是将人的智力和思维模式融入到机器的运作过程中,将会对许多职业和工作产生重要的影响,但是影响结果到底是什么,取决于人工智能产生的替代效应、互补效应和创造效应的相对大小。一方面,人工智能是一种能够替代劳动力的技术进步,越来越多的工作可能会被人工智能取代;另一方面,人工智能的发展还会通过互补效应来带动一部分就业的增长,或者在其相关领域创造一些前所未有的职业类型。为了较为严谨地回答这一问题,本文尝试性地估计了人工智能对就业所产生的潜在替代效应的大小。首先,根据本文中计算的人工智能应用率和Frey&Osborne(2017)估计的人工智能理论替代概率,本研究估算了人工智能对中国各种职业的实际替代概率。通过在职业层级应用实际替代概率,我们还探讨了人工智能对不同特征劳动力的替代效应,发现人工智能对女性、老年人、受教育程度低和低收入的劳动力有较大替代作用。这一结论表明,人工智能对劳动力市场所带来的替代效应并不是中性的,而是对劳动力市场中的相对弱势群体产生了更大的影响,这很有可能会进一步加剧他们的弱势地位。接下来,我们还预测了每个行业中被人工智能替代的就业人数,结果显示,到2049年中国将有2.78亿劳动力(不同应用率下结果是2.01亿至3.33亿)被人工智能替代,占中国当前就业人数的35.8%。其中,中国将有1.42亿城市劳动力被人工智能替代,占城市总就业人数(4.34亿)的32.7%;同时,中国农村劳动力中将有1.35亿人被取代,占农村劳动力总数(3.42亿)的39.5%。具体而言,城市中就业替代数量最大的三个行业是制造业,交通运输、仓储和邮政业,农林牧渔业;中国农村中就业替代数量最大的三个行业是农林牧渔业,制造业和建筑业。当然,以上只是基于人工智能的应用率和对不同职业的理论替代率计算而出的,人工智能对中国劳动力市场的影响也还受制于许多其他因素。首先,它取决于人工智能技术和人类传统劳动力的相对使用成本和收益。虽然目前中国劳动力成本显著增加,但与发达国家相比仍然相对较低,若将劳动力成本因素考虑在内,人工智能的应用则可能需要更长时间。其次,中国逐步加快的人口老龄化进程也会作用于人工智能对中国劳动力市场的影响,但人工智能也会反过来弥补老龄化进程加快造成的劳动力数量的减少。第三,与其他技术类似,人工智能技术在产生巨大替代效应的同时,也具有非常显著的创造效应。受人工智能上下游产业发展的驱动,人工智能技术将创造出一系列相关领域的工作或新职业,但是目前这一数值难以估计。虽然本研究侧重于预测性分析而非因果推断,但它为研究自动化和人工智能对中国劳动力市场的影响提供了第一手实证证据。中国将发展以人工智能为代表的智能产业作为国家重要的产业政策之一,同时也须认真处理人工智能对劳动力市场的潜在影响。首先,应全面考察人工智能对劳动力市场的影响,特别是对不同特征劳动力的影响,此举十分必要。我们的研究表明,人工智能对不同职业、不同行业和不同特征的劳动力具有异质性影响。只有准确分析人工智能的不同影响,才能制定更有针对性的政策。其次,要更加重视人力资本投资的重要性,不断提升中国劳动者的人力资本。中国应该采取更多措施,来帮助劳动力市场中相对弱势的群体(如女性、低教育程度、老年人和低收入群体),特别是通过职业教育或培训来提升其劳动技能和人力资本,从而尽可能地避免人工智能的负面影响。我们还应该关注人工智能对劳动者福利的影响,尽量减少由于就业机会减少和工资增长放缓导致的福利损失。最后,政府还应该关注人工智能可能造成的社会两极分化和不平等现象。随着人工智能的发展,劳动力将至少分化为两个不同的群体——高技能群体和低技能群体,两者将面临完全不同的工作机会和收入水平,而这种社会分化将会进一步加剧不平等和社会矛盾的激化。为了解决这些问题,政府可以发挥税收和转移支付制度的作用。例如,对人工智能设备或机器人征税,补贴被替代的劳动者或者用以提高他们的工作技能;此外,此项税收也可用于解决老龄化造成的养老金短缺问题。
GuangsuZhou,GaosiChu,LixingLi&LingshengMeng(2019)TheeffectofartificialintelligenceonChina’slabormarket,ChinaEconomicJournal,13:1,24-41原文链接:https://www.tandfonline.com/doi/full/10.1080/17538963.2019.1681201
作者简介:周广肃,中国人民大学劳动人事学院副教授,研究重点关注劳动力市场、收入不平等、家庭经济决策等议题,曾获得刘诗白经济学奖、《经济学》(季刊)最佳论文奖、全国优秀财政理论研究成果二等奖等。
褚高斯,百度公司集团战略部高级顾问。
李力行,北京大学国家发展研究院教授、青年长江学者,研究兴趣包括发展经济学、人力资本、公共财政学等,曾获北京大学“黄廷芳/信和”青年杰出学者奖、北京大学方正奖教金、北京大学人文社会科学研究优秀成果奖、北京大学教学优秀奖等荣誉。
孟岭生,香港中文大学经济系副教授、马里兰大学经济学博士,研究领域涉及劳动经济学、中国经济等。
人工智能时代的工作变化、能力需求与培养
摘要:在人工智能时代,程序化工作和一部分非程序化工作将被人工智能取代,工作将向高度智慧化转移,劳动者的工作定位将发生升级方式、介入方式、前进方式、转移方式和集中方式等不同的变化。为了适应人工智能时代,要在学校教育和企业教育中注重提高受教育者的人工智能素养、培养创造性思维能力、社会交流能力以及环境应变能力。应对人工智能时代培养所需人才的关键措施包括:突出个性化培养理念;构建人工智能素养教育体系;实施问题导向及跨学科合作探讨的学习方式;利用人工智能技术提高学习效率。
关键词:人工智能;工作定位;能力需求;能力培养
基金项目:本文系中国社会科学院登峰战略企业管理优势学科建设项目、中国社会科学院京津冀协同发展智库研究课题的阶段性成果。
当前,我们正处在全面进入人工智能时代的过渡期,几乎所有领域都出现了装载有人工智能技术的机械设备。18世纪中期以来,人类历史上先后出现了蒸汽机、内燃机与马达、计算机与互联网技术。这些技术极大地改变了人类的生产生活方式,推动了人类社会的发展。可以说,人工智能是继三大技术之后的又一重大技术。况且,与以往技术不同,人工智能可以替代人的脑力劳动,这将大幅度地改变人们现有的工作内容,并要求人们拥有不同于以往的特殊能力。然而,关于如何界定人在人工智能时代的工作定位及所需能力、如何培养人工智能时代所需要的人才,是尚未解决的课题。目前,有研究围绕人工智能可能产生的就业影响,尤其是结构性失业风险以及社会经济对策等方面进行了分析(万昆,2019;陈明生,2019;王君等,2017;潘文轩,2018),也有研究对人工智能背景下职业教育体制改革与发展问题进行了探讨(南旭光,汪洋,2018;毛旭,张涛,2019;丁晨,2019),但深入到工作能力层面,从劳动者角度探究人工智能时代的人才培养问题的相关研究还较为少见。鉴于此,本文基于技术—工作—能力—培养的视角,结合前沿研究进行理论分析,阐明人工智能对工作业务的影响机制,明确人工智能时代的工作定位与能力需求,探讨能力培养的战略思路和关键方法。
一、人工智能时代的工作变化
人工智能(ArtificialIntelligence,简称AI)是指可以感应环境、做出行动,并获取最佳结果的合理主体(RationalAgent)(S.J.Russell,P.Norvig,2018)。感应环境、做出行动和获取最佳结果,属于人的智慧行为,而这些行为通过计算机程序(合理主体)被再现出来,就成为了人工智能。换言之,人工智能就是具有人类智慧的计算机系统。而在现实的工作环境中,人工智能的计算机系统又是与大量的感应器、超高速通信网、大数据收集分析装置、终端设备、机器手等组成更为复杂的系统来进行实际作业的,如机场出入境管理的人脸识别系统、汽车自动驾驶系统等。因此,可以说人工智能就是装载有可以模拟人类智慧行为的计算机程序的自动化设备。
现阶段的人工智能可以在一定程度上替代人完成识别、决策和操控方面的任务。在识别方面,人工智能可以进行信息判别、分类与检索,如从影像中发现癌变征兆;从音调语速中检测情绪;从图像中监控设备异常、天气异常、用户账号异常等。在决策方面,人工智能可以进行数值形式下的物象评估与匹配,如预测销售额、GDP指标、民意度、信用风险、病变风险;推断消费者爱好、产品推销时机;根据消费者爱好、习惯不同而推荐不同内容的商品广告等。在操控方面,人工智能可以进行表现生成、设计行动最佳化及作业自动化,如自动撰写新闻稿件、概括文章大意;设计项目路线图、商品标识、网页布局、药品成分、建筑物结构;优化游戏策略、送货路线、店铺布局;实施自动驾驶、客户咨询等。只要人规定好了计算机程序的信息处理目的和分析方式,人工智能就能准确无误地替代人工进行作业(安宅和人,2015)。
(一)工作变化的特征
人工智能时代工作变化的特征体现在以下三方面。
1.程序化工作被人工智能取代
所谓程序化工作,按照美国经济学家奥托(D.H.Autor)等的定义,是指变化少、可以按照事先规定的程序进行的工作(Autoretal,2003)。程序化工作又分为主要使用认知能力的程序—认知型工作和主要使用肢体能力的程序—肢体型工作。认知能力是指直觉、判断、想象、推理、决策、记忆、语言理解等能力;肢体能力是指体力。程序—认知型工作具有重复性、单一性、目的明确并且主要使用脑力等特点,如行政事务、会计工作。程序—肢体型工作虽然也有重复性、单一性、目的明确等特点,但主要使用体力,如流水线组装、仓库运输业务。由于程序化工作相对简单,易于编制成计算机程序,所以人工智能对人类劳动的替代,首先会从这些工作开始。例如,产品组装是按照作业标准反复实施同样内容的工作,而作业标准完全可以编制为计算机程序,所使用的设备以及动作也完全可以建立成模型,因此,产品组装就可以由人工智能来代替实施。再如,需要一定认知能力的会计业务,人工智能也可以通过扫描或接受电子信号等方式获取相关数据,而后根据规定程序进行分类、汇总等作业。因此,在人工智能时代程序化工作会呈现明显的减少趋势,以往的自动化设备,基本是替代体力劳动的蓝领劳动者,而人工智能将替代白领劳动者。英国剑桥大学学者弗雷(C.B.Frey)与奥斯本(M.Osborne)在2013年发表的报告中指出,美国在未来20年里将有47%的工作存在被替代的可能性,电话推销员、标题审查与摘要人员、手工缝纫工、技工、保险受理员、手表修理工、货物运输人员、税务代理员、照片处理工、会计助理、图书馆技术员、数据输入员等工作被取代的概率可高达99%(C.B.Frey,M.Osborne,2013)。日本经济新闻和英国金融时报2017年合作进行的调查显示,制造、餐饮、运输等23个产业的2000项工作中有超过3成的业务可能被替代,制造业被替代的比例是80.2%,包括焊接、组装、裁缝、制鞋等业务;餐饮业被替代的比例是68.5%,如客服、点餐、食材准备、餐桌与餐具摆放等业务;运输业被替代的比例是48.4%,包括车辆维修、飞机驾驶、运输信息提供等业务(ShotaroTani,2017)。这些研究表明,被取代概率高的工作基本上都是重复性、单一性、目的明确的程序化工作,其中不乏白领岗位的部分业务。
2.一部分非程序化工作被人工智能取代
相对于程序化工作,非程序化工作通常变化较大,难以按照事先规定的计划进行。这一工作又分为两类,一类是非程序—认知型工作,如科学研究、文学创作、作曲作画、经营管理、医疗诊断、诉讼辩护等;一类是非程序—肢体型工作,如烹饪、理疗、看护以及汽车驾驶等。非程序—认知型工作需要高层次的文化水平、分析能力和想象力,现阶段的人工智能还达不到完全替代的水平。烹饪、理疗、看护以及汽车驾驶等非程序—肢体型工作需要高度的人际间互动、灵敏的环境反应能力以及灵活的肢体动作,而这些要求现阶段的人工智能尚不能完全做到,所以这些工作基本上还需要人来承担。但随着人工智能技术的发展,人工智能在未来不仅会代替人做更多的程序化工作,而且有望将一部分非程序化工作纳入替代范围,如自动驾驶、行走助力、编制诉讼方案、作曲作画等(Autor,2015)。届时非程序化工作完全由人来完成的局面就会发生变化,进而带来业务重组,从以前由人承担所有业务变成由人工智能和人共同分担业务,如影像诊断由人工智能完成,最终诊断由医生完成;围棋陪练由人工智能承担,棋艺解说由教练承担。
3.工作向高度智慧化转移
装载有人工智能的设备可以替代人的程序化工作,甚至部分非程序化工作,但现阶段人工智能仍有很大的局限性,如人工智能不能设定目标和规划未来、不能产生意识、不能对未曾有的变化作出反应、不能提出问题、不能设计分析框架、不能产生灵感、不具有常识判断力、不具有指挥人的领导能力(安宅和人,2015)。所以现阶段仍有四类工作是人工智能所无法替代的。一是高度创造性的思维工作。如通过综合分析各种知识归纳和提出新概念、通过多方面分析发现问题并提出解决方案、基于情感创造出文学艺术作品等。二是高度社会化的沟通工作。如包含理解、说服、交涉在内的工作,人际间交往与协同作业等。三是高度灵敏的肢体型工作。如演奏乐曲、表演舞蹈、高难度手工艺等。四是高度非程序化的工作。如看护、清扫工作。这些工作看似简单,但需要人根据知识、经验以及常识等对情境作出判断,如在清扫时对发现的废纸需要进行判断,确定它是重要笔记还是真正的废纸,而人工智能的扫地机是无法做到的(野口悠纪雄,2018)。但即使如此,现在几乎所有领域中都在使用人工智能,并且人工智能的工作领域还在不断扩展。在看护工作中,移动搀扶患者机器人已经开始出现;人工智能已能够进行文学、绘画及音乐的初步创作,人与人工智能协同作业的状态已成为普遍现象。在这种状态下,人的工作内涵必然要向高度智慧化转移。
(二)人机关系与工作定位
在刚开始引进人工智能的生产过程中,人仍是作业的主体,人工智能起辅助性和支持性作用。人工智能辅助人进行数据和信息处理方面的业务,支持人做一些复杂的、技术性的工作,从事需要肢体劳动的、程序化的操作,但对于需要高度认知能力的工作,如推理与决策,以及需要与人沟通的工作,如协调、开发与咨询、沟通与互动,人工智能的贡献相对较少,但这种情况将会发生改变。世界经济论坛《职业前景报告2018》发表了2018年人与设备的工作时间占比值和2022年人与设备的工作时间占比的预测值(见表1)。对于所有业务,2022年设备的工作时间占总工作时间的比值会增加,其中设备在信息和数据处理、探索和获取业务信息的工作时间占比将超过人的工作时间。在行政、肢体的程序化任务、识别和评估业务信息、执行复杂技术任务中,设备的工作时间占比也将超过四成。即使在推理与决策以及沟通与互动这样原本主要由人来完成的业务中,设备的工作时间也将提高三成左右。因此,未来人工智能不仅能在生产过程中起辅助、支持的作用,而且在一些业务中将会作为“数字劳动力”发挥主导作用。进而言之,在人工智能时代,智能设备将越来越多地替代人的劳动,人机协作的关系将越来越显著。
表12018年、2022年人与设备的工作时间占比值单位:%
资料来源:作者根据世界经济论坛《职业前景报告2018》整理。
在人工智能时代,一些职业及一些工作被替代是不可避免的趋势,因此劳动者必须对职业及工作选择有清楚的认知。美国管理学学者达文波特(T.H.Davenport)和卡比(J.Kirby)认为,人工智能时代劳动者的工作定位,即如何选择能实现自身价值的职业,有五种方式,分别为:一是升级方式,即提升管理素质和掌握超越计算机的大局思维,向高级管理岗位发展。这要求对经营系统有透彻的理解,并需要有充分的计算机知识与技能。随着人工智能质量的提高、数量的增加,高级管理岗位的事务性工作将被大幅度替代,因此升级到高级管理岗位的人数会比以往少;二是转移方式,即转移到不能程序化、结构化的工作领域。现阶段,人工智能设备尚不能完全替代人的劳动,因此工作流程中会保留一些人的岗位。但随着人工智能水平的提高,这些岗位也将逐渐被替代,因此,这些岗位的劳动者,要有充分的危机感;三是介入方式,即学习计算机的程序化决策过程,掌握监视和调整计算机功能的新型能力,以现场管理者的身份介入基本上由人工智能实施的作业过程中;四是集中方式,即以计算机程序尚未渗透到的领域为唯一标准来选择职业或工作。这种方式要求特殊、高超的人类智慧及技能,需要早期、长期训练,甚至需要天赋;五是前进方式,指与时俱进,加大学习力度,研究开发能改变当前领域工作效率的高水平智能机器(T.H.DavenportandJ.Kirby,2015)。从与人工智能的关系看,升级方式、介入方式和前进方式,都需要学习人工智能技术。对这些人群,国家应该对他们的学习进行资助。转移方式中劳动者没有学习新技术的欲望或能力,他们的收入可能会减少,就业也不稳定,国家应从就业政策角度进行援助。集中方式需要从中小学起通过个性化教育对这方面的人才进行培养。
二、人工智能时代的能力需求
随着人工智能在生产过程中的普遍应用,人在生产中的地位不断发生变化,大量程序化作业、甚至越来越多的非程序化作业都将由自动化设备实施,而人必须能够驾驭智能设备,发现和解决工作流程中的问题,对智能设备进行更新创造,从而使其更好地服务于人类社会。从劳动者角度看,必须具备符合人工智能时代所需要的能力,才能使自己的劳动付出变得更有价值;从企业角度看,具有符合人工智能时代能力的员工,是创造价值所不可缺少的人力资源,值得大力引进和培养;从社会角度看,劳动队伍和后备力量都具备符合人工智能时代要求的能力,就可以稳定就业,促进社会经济持续发展。关于能力,可以对有认知能力和社会情感能力的基础理论进行研究。为了探讨能力与社会需求的关系,能力被分成诸多子能力,以验证与不同技术条件的适配性。在解析这些研究之后,笔者将提出符合人工智能时代要求的能力要件,以便为理论研究和政策决策提供参考。
(一)能力的两个方面
理论上看,人的能力一般包含两个方面。一个方面被称为认知能力,另一个方面是非认知能力。其中关于非认知能力有着几种不同的命名,如社会情感能力、软能力、社会能力、人格特质、性格(Heckman,Kautz,2012)。以下将沿用经济合作与发展组织(OECD)(2015)的表述样式,用“社会情感能力”来表示非认知能力。该研究认为,认知是关于获取和应用知识经验的过程,而认知能力就是所有与获取和应用知识经验有关的能力。认识能力有三个层次:第一层是基本能力,如模式识别、计算和记忆;第二层是获取能力,如检索、分类和解释;第三层是应用能力,如思考、推理和概念化。这三层能力的复杂程度从低到高、依次递进。与认知能力不同的是,社会情感能力是对目标实现、社会协作和情感控制产生影响的人格特征。例如,目标实现方面的忍耐、自律、意愿;社会协作方面的沟通、开放、体贴;情感控制方面的自尊、灵活、自信等。
在实际中,人是认知能力和社会情感能力的载体。换言之,这两种能力在人的身体中同时存在,相互影响、相互作用,形成了人的脑力活动和肢体行为。例如,批判性思考就是两种能力合二为一的结果。批判性思考既有认知能力的特点,即能够客观地进行逻辑推理,严守成本收益原则,冷静地进行战略分析。同时,因为批判性思考的对象是现实中的新问题,仅仅依靠过去的经验和教科书手法是不够的,还必须对新现象持有开放心态,根据具体情况,灵活改变思路和行动,而这些特点正是社会情感能力范畴的内容(池迫浩子,宫本晃司,2015)。
(二)能力需求变化与预测
技术进步使得工作环境发生变化,对劳动者的能力需求也出现了新变化。20世纪70年代以来,以大型计算机、电脑终端和互联网为代表的信息通信技术迅速发展,制造业以及服务业的生产过程大为改观,这使得对劳动者的社会情感能力的需求显著提高(Deming,2015)。在1980-2012年间,需要高度社会情感能力的职业就业人数占美国所有就业人数的比例增长了近12个百分点,而只需要认知能力的职业就业人数占比减少了3个百分点。另外,需要高度社会情感能力的职业的工资增长也比其他职业更快,并且2000年以后的增幅大于2000年之前。这是因为生产过程自动化,岗位任务重组,人员重新分配,团队形式增加,而社会情感能力可以降低协调成本,加强不同作业领域的有效合作。
以数字技术为轴心的自动化设备的应用,不仅要求劳动者提高社会情感能力的水平,同时也要求其认知能力和社会情感能力综合水平的提高。维因伯格(Weinberger,2014)利用美国职业大典的数据,对1977-2002年间各职业就业人员具有的计算能力、人际能力以10阶段法进行了赋值,根据数值把职业分为了两类,一类是计算能力与人际能力赋值均高于5的职业,一类是两种能力中一方赋值高于5而另一方赋值低于5的职业。分析发现,两种能力赋值均高于5的职业的就业人数增加,仅一种能力赋值高于5的职业的就业人数减少。该研究还以1972年和1992年的高中3年级中的两个年级层为对象,考察了各层人群的高中数学成绩、领导经验和高中毕业7年后的工资之间的关系。结果表明,同时具有数学能力和领导经验的人的工资在增加,只有一方面能力的人的工资没有变化,不具有这两方面能力的人的工资在减少。这个结论揭示了能力间互补的重要性,即认知能力与社会情感能力,不是各自单独产生价值,而是相互组合(互补)来产生更大的价值。技术进步并没有否定人的任何一方面的能力,而是要求在提高各自水平的基础上达到新高度的互补。由此可以推论出,兼有两种能力的劳动者在以人工智能为轴心的新技术时代将为社会所需,他们的劳动价值会得到社会认可。
表22018年、2022年关键能力需求
资料来源:世界经济论坛《职业前景报告2018》。
以上的推论不仅在以往的数据研究中得到了验证,在近未来的预测研究中也得出了同样的结论。世界经济论坛的《职业前景报告2018》发表了313家跨国企业管理高层的调查数据,从中可以看出2022年需要的关键能力中,属于认知能力的有8个,分别是:分析性思考与创新,主动学习与战略性学习,创造性、独特性和主动性,技术设计与编程,批判性思考与分析,解决复杂问题,问题推理与构思,系统分析与评估。与2018年相比,技术设计与编程、系统分析与评估是新增项目,反映出人工智能时代对劳动者的数字技能的强烈需求,揭示了劳动力素质提高的方向。而领导力和社会影响、情绪性智商属于社会情感能力的范畴。这两个能力同时出现在2018年、2022年两个时间段里,由此可以说,社会情感能力在未来的人工智能技术环境中是不可缺少的。只要生产过程中有人的存在,只要市场及组织内部环境不断变化,就需要社会情感能力去发现问题、运用技术技能去解决问题从而实现劳动的价值。另一方面,包括脑力、肢体在内的基本认知能力的需求将会减少,如操作灵活性、持久性与准确性,视觉、听觉与说话,读、写、算等能力。一些基本操作能力的需求也会减少,如财务和物资资源管理、设备安装与维护、质量管理与安全管理等能力。这些能力基本用于实施程序化业务,其工作的操作标准简单明了,个人发挥创造性的空间较少,从能力层次看,虽然属于知识经验应用能力范畴,但处于低级层次。
世界经济论坛在2016年对人工智能时代的能力需求变化进行了探讨。当时的研究报告指出,高层次认知能力不仅在当时受到重视,而且在2020年对其的需要将会进一步增加。而对于与肢体相关的能力,专家大都认为其需求将会减少。尤其是设备维护、质量管理与安全管理等能力,2016年报告中还有五成的人认为需求会处于稳定状况(世界经济论坛,2016)。由于2016年、2018年的调查方式不同,因此不能对其进行严格的对比,但可以看到能力变化的趋势,即对高层次认知能力的需求一直处于增强趋势,而对设备安装与维护等低层次能力的需求则明显减弱,这反映出人工智能时代对能力的高层次化有着越来越强的需求。
巴克什(Bakhshi)等利用美国和英国数据预测了两国2030年各职业的就业增长和职业所需的能力(Bakhshietal,2017)。该研究中的职业能力包括120项。美英两国各职业最为重视的能力有15项(见表3)。从表3看,美国和英国总体情况类似。在美国,与人际交往有关的能力会越来越重要,这些能力包括指导、社交知觉/认识、协调、服务导向、主动倾听,以及相关知识,如心理学和人类学、教育和培训、治疗和咨询、哲学和神学。认知能力范畴中的应用能力也会越来越重要,如要求能够了解当前和未来形势并且能够做出行动规划(战略性学习);能够了解新信息对当前和未来问题的解决与决策发挥影响(主动学习);能够提出有关某个主题的许多想法(思想流利性)。在英国,有10项属于认知能力范畴中的应用能力,这些能力是判断和决策、思想流利性、主动学习、战略性学习、原创性、系统评价、推理、解决复杂问题、系统分析、批判性思考。在人工智能技术更为广泛应用的近未来,劳动者只有充分具备这些能力,才能够有效解决新环境中出现的新问题,并且能够有针对性地提出新想法,积极吸收新信息;能够识别社会技术系统的变化,了解社会技术系统各环节的互连和反馈关系并采取正确行动。另外,英国对于人际交往的能力也非常重视,这些能力包括指导、协调,以及相关知识,如教育和培训等。
表32030年美国、英国各职业中最重要的15项能力
资料来源:作者根据Bakhshi等(2017)整理。
2017年,日本人才咨询公司阿德卡(Adecco)对309家上市公司管理高层进行了抽样调查,收集到了两个时间点(调查时间点为2017年、人工智能普遍应用的2035年)对各种能力的需求程度。结果显示(见表4),2035年最需要的前10项重要能力中,5项为认知能力,包括创造性、分析性思考与抽象性思考、解决复杂问题、信息收集和解决简单问题。5项是社会情感能力,分别是人际关系、灵活性、挑战精神、领导力和积极性与主体性。2017年的前10项重要能力中,4项为认知能力,依次是分析性思考与抽象性思考、解决复杂问题、创造性和信息收集;6项是社会情感能力,如人际关系、积极性与主体性、挑战精神、团队工作与协调性、灵活性和目标实现意愿。从数量看,不论是2017年还是2035年,认知能力和社会情感能力的排名基本相当,表明无论什么时代,均衡能力结构都是必要的。从内容看,不论是2017年还是2035年,认知能力和社会情感能力的子项目基本相同,反映出企业能力需求具有一定的稳定性。从个别能力变化看,有两个突出现象,一个是认知能力中,创造性需求的大幅上升。这表明在人工智能时代企业将进行业务重组,要求员工在高价值工作领域创新工作方式和取得突破;另一个是社会情感能力中,对灵活性的需求有所提升。这反映出企业需要员工充分发挥主动性,去发现生产流程中的问题、发现新的社会需求,而不仅仅是执行指令。
表42017年、2035年最需要的前10项重要能力
资料来源:作者根据西村崇(2017)整理。
(三)符合时代要求的能力要件
综合以上研究,笔者认为,在人工智能时代,能力的首要内容应该是与人工智能有关的新知识、新技能。此外要在人工智能的学习与应用过程中提高社会情感能力,主要是指与人沟通的方法与相关知识。再者,劳动者的能力结构要向高层次升级,应重点发展高层次认知能力。具体概括为两个方向:一是应用人工智能技术创造新产品、新服务的能力,这里称作创造性思维能力;二是发现新问题和解决新问题的能力,这里称作环境应变能力,包括主动学习与战略性学习、解决复杂问题等。在人工智能时代,对于劳动者而言,重要的是使能力结构升级以符合技术发展需要,不仅认知能力要达到新水平,还要与工作方式变化相匹配,而且与人工智能技术互补的社会情感能力也要同步发展。鉴于此,人工智能时代的能力要件可归纳为以下四个方面。
1.人工智能知识
正如读、写、算是工业社会所必须的基本能力一样,对于要在人工智能技术条件下工作的劳动者而言,人工智能的基础知识是不可缺少的。这是以往时代所没有的全新的能力。所谓的人工智能知识,首先是数学知识。因为人工智能的基础就是数理模型,主要包括概率、统计、线形代数等内容;其次是数据科学,是在计算机上收集、解析数据的知识和技能,需要有数理和计算机语言知识,需要计算机操作能力。有了这两方面的知识,就可以形成关于人工智能的新技能:能够使用程序语言,利用既成模块,编制、操作或使用具有简单的感应、解析、反馈等智慧行为的自动化装备。劳动者掌握了人工智能的新技能,不仅可以理解新设备的基本机制,甚至可以研究更先进的人工智能、或利用人工智能来提高生产效率。根据领域、岗位、业务的不同,涉及人工智能的内容会有所不同。国家的教育、经济以及科技部门应该与企业联手设计内容、层次不同的教材,设定认知资格制度,作为评价人才的标杆。
2.社会交流能力
在人工智能时代,要创造新价值,人际或社会交流能力愈发显得重要。创造新产品、新服务及新的工作模式,意味着要对现状有充分的了解,利用人工智能对现状进行改变、重组。这需要周边很多人及社会的理解、帮助及合作。因此,在人工智能时代,人应该提高自身的社会交流能力,能简明扼要地说明目的,开诚布公地寻求理解与帮助,诚实守信地与人合作。社会交流能力的基础是情感,所以人在情绪、意志等方面的情商以及对于文化艺术的审美都非常重要。人工智能时代社会交流能力的特点,就是大量运用网络社交媒体、互联网等工具。这些工具有其便捷之处,但也存在虚假信息等伦理道德问题以及易受黑客攻击的脆弱性问题。社会交流能力与创造性思维能力一样,需要长时间的培养,需要社会氛围的支撑。社会交流能力的特殊之处在于它涉及性格,而性格有天生的因素。所以,在学校教育以及企业教育中,既要传授基本的交流方法,也要考虑个人性格中的天生因素,因人施教,调动有利因素,培养能够从社会中学习、有益于社会的人才。
3.创造性思维能力
人工智能技术使程序化的工作自动化,把人从单一循环、重度及危险的劳动中解放出来,给予人更多的时间,为人的创造性思维提供了更大的可能性。同时,人也必须发挥自己特有的创造性思维能力,才能在人工智能时代确立自身的存在价值。所谓创造性思维能力,是利用人工智能技术,结合自己所在的特定领域,去发现社会及市场需求,提出关于新产品、新服务以及新工作模式的能力。创造性思维能力包括抽象能力、综合能力和应用能力。抽象能力,就是能够概括出事物本质并发展成为概念的能力。借助抽象能力进行分析和推理,才会产生新的认识。综合能力,就是能够融会贯通,把不同领域的知识连接起来,进行整合、分析和再创造的能力。经济学家熊彼特认为,创新有五种形式,即产品创新、技术创新、原材料创新、市场创新和组织创新,它们无一不是生产要素间组合与创造的结果(约瑟夫·熊彼特,2016)。利用人工智能提出关于新产品、新服务以及新工作模式的设想,是对人工智能与其他知识进行融合与创造的过程,所以需要综合能力。应用能力,是能够把知识应用于解决现实问题,也就是解决问题的能力。其中的关键是有目的意识,能够发现问题,使创造性活动具有经济价值与社会意义。而这恰恰是人类特有的能力,无法用计算机程序再现。创造性思维能力,需要长时间的培养,从幼儿园到大学、甚至到就业之后都必须接受持续的教育或启发。同时,要在家庭教育、学校教育和社会上形成鼓励独创、容许差异的宽松氛围。
4.环境应变能力
环境应变能力,就是能够根据不同情境作出不同决策的能力。在人工智能时代留给人的工作基本上都是非程序化工作,它们不可事先预测,也无法编制操控指南,需要劳动者根据自身掌握的知识、经验、常识以及悟性来灵活行动。现阶段的人工智能可以通过大样本学习来增加经验和提高应变能力,但世界是复杂的,很多变化都带有偶然性,解决方案没有经验可循,这限制了样本数量,从而制约了人工智能应变能力的提高。与人工智能不同的是,人所特有的生命体的构造使得其对事物的理解在很多情况下只需要小样本学习和借助常识就可以完成(李开复,王咏刚,2017)。在以往的人才培养中,人们也注意到了环境应变能力,但人工智能时代的特殊之处在于劳动者要接触更为复杂的数字技术,而数字技术的进步日新月异,人们为了防止知识的陈腐化,要能够主动学习,因为仅仅靠教师或上级安排的在岗或离职学习完全不够,要根据自己的具体情况,不间断地吸取新知识。战略性学习,是具有前瞻性的、有长远目标的学习。这个长远目标,可以是对自己所在领域发展前景的预测、自我发展方向的判断,也可以是对企业战略的理解,提前着手学习新知识,当环境变化时就可以游刃有余地应对。人工智能时代的劳动者往往处于与自动化设备合作的作业环境中,生产过程中的故障不仅有硬件的问题,也有计算控制系统的问题,只有在对硬件、软件充分理解的基础上,才能解决现场工作中的复杂问题。总而言之,人工智能时代的环境应变能力,有其鲜明的时代要求,在学校教育和企业教育中必须使用有针对性的教学方法来培养有用人才。
以上归纳了符合人工智能时代要求的四个方面的能力,这四个方面的能力并不是独立存在的,它们之间有着不可分割的联系。人工智能知识是新时代劳动者能力的基础,有了它才能够驾驭自动化设备,进行新产品、新技术及新价值的创造。创造性思维是人工智能时代劳动者能力的核心,突出显示了人的智慧价值。而社会交流能力和环境应变能力则对人的气质或性格提出了新要求,要求处于人工智能时代的劳动者区别于越来越聪明的自动化设备,在纷繁复杂的社会和飞速变化的技术环境中发挥人的作用。
三、人工智能时代的劳动者能力培养
为了培养与人工智能时代相适应的人才,提高全社会的智慧水平,我们应该在理念、内容以及方式、手段上有所变革。
(一)突出个性化培养理念
在工业时代,大批量单品种生产是主流方式,为了提高效率实施机械化、专业化分工,产生了大量单一循环、目标明确的标准化工作岗位。企业将作业编成操作手册或计算机程序,要求劳动者达到按照手册或程序正确操作的能力标准。在这种体制下,劳动者和设备、产品一样都是标准化管理的对象,因此人才培养也是标准化的。体现在高等教育、职业教育及企业教育上,就是培养能够按照标准进行反复、简单作业的劳动者。教育方法基本上依靠大量、统一的习题,或反复练习。这样的理念与方法培养出来的学生或劳动者,只能做单纯的工作,其不仅在精度、速度方面要输给人工智能,并且会变得只能简单地对工作中的变化作出机械的反应,缺少发现问题、解决问题的能力,更谈不上创造新价值,而这种能力恰恰是人工智能时代的劳动者最需要的。因为程序化的工作都由人工智能完成,需要人来做的正是去发现工作系统的问题,不断地进行更新改进,提高生产效率,或者通过新思路、新方法创造新价值。因此,人工智能时代的人才培养,尤其要重视学习者的创造性思维能力,要在因材施教的理念下,充分发挥个人的潜在优势。
(二)构建人工智能素养教育体系
把人工智能教育贯穿小学、初高中、大学以及工作后的全部阶段,提高全社会的人工智能基本素养。目前,包括中国在内的主要国家都已经在小学及初高中开展计算机编程教育,在大学实施更为专业的人工智能教育。同时,针对在职者的相关教育也极为重要。这是因为人工智能技术对劳动的影响面越来越广泛,工作甚至职业变得愈发不确定,在职者要提前做好转业与转岗的准备。为了维持社会经济的可持续发展,国家应该就全社会、全生涯的人工智能素养教育制定战略规划,集结教育及各行业行政管理部门的力量,从资金、设备、师资、教材、技术资格认定、学习费用补助等诸方面制定具体措施。对于义务教育的中小学阶段,应该完善每个学校的信息网络,要使高速Wi-Fi网络覆盖全部校区,使每个学生都有自己专用的终端设备(电脑或平板电脑)。在教室等集体授课的场所,安装可以触屏输入、可以数据储存传递的电子黑板,在教学过程中使用人工智能设备。当前,教育界中能担任人工智能教学的教师人才十分欠缺。国家应该制定紧急行动计划,至少要在5年内填补中小学相关基础素养课程的空白,使每个学校至少有一名该学科的教师。教师的来源,可以直接从博士毕业生、企业的工程师等专业人才中招聘,可以不受教师资格的约束。在大学阶段,理工科要学习高度的人工智能技术,文科及美术、音乐等学科,也要开设人工智能专业课程,因为今后人工智能将在模拟人的艺术感受方面深入发展,需要既懂艺术又懂人工智能的人才。由于人工智能技术发展很快,要组织学术界和企业界的力量,及时更新课程,并且根据人在不同生涯阶段的特点编制有针对性的教材。应该利用大数据来补充劳动力市场信息系统并监控不断变化的技能需求,以适应所提供的课程与教材(OECD,2016)。要尽快设立国家人工智能技术资格认定制度,使学习成果能在社会上受到评价,提高学习者的学习积极性。对于在职人员的学习,应给予费用和时间上的支持。对于企业实施的员工培训,应该以减免培训费等激励政策给予扶持。
(三)实施问题导向及跨学科合作探讨的学习方式
创造性思维能力、社会交流能力的具体表现是能够利用人工智能技术解决现实问题,以及能够利用人工智能创造新产品、新服务与新工作模式。以往“满堂灌”的学习方式难以培养这些能力,今后应该加强问题导向及跨学科合作探讨方式的学习。所谓问题导向,就是有明确、真实并且具体的现实问题,解决这些问题是学习的目的。这需要企业与学校共同制订学习目标,引导学生进行社会实践。问题导向的学习方式,还需要学习材料具有现实性。数据要真实,设备及材料要先进,教材要能够反映前沿理论与实践。跨学科合作探讨学习包含四个方面,首先是跨学科的学习内容,即学生根据具体问题学习数学、统计、数据、人工智能以及物理、化学、生物、艺术等多学科知识,这需要打破以往文理分科的界限;其次是跨学科的学习成员,即打破以往班级学习约束,组成由不同专业背景学生构成的小组,尤其是大学阶段要尽可能采取这种办法;再次是小组学习方式,即在教师指导下以小组为中心进行讨论和得出解决方案。同时,要构筑互联网学习平台,教师与学生之间、学生与学生之间有充分的提问—反馈—讨论的渠道。跨学科合作探讨形式的学习方法,不仅有利于提高学习自主性和团队合作性,也有助于进行知识碰撞、知识整合和知识创造,从而提高综合能力和应用能力。
现阶段,包括中国在内的一些国家都在进行问题导向及跨学科合作探讨学习方式的实践,诞生了STEAM(Science,Technology,Engineering,Art,Mathematics)教育课程、问题/项目导向型教育课程(Problem/Project-BasedLearning:PBL)、创新思维课程等方法。但这些方式都处在发展过程中,需要专家和学者不断吸取有益经验对其进行改进。日本为了培养人工智能人才,制定了国家战略推行STEAM教育,并研究整理了具体案例,为各学校及企业提供参考材料。如日本某职业高中与企业合作,开展了STEAM教育课程。该课程的项目之一是设计使用便利的人工智能设备,推进智能化农业生产。项目分四个阶段进行。第一阶段引发学生对农业和机器人的兴趣,使用4个课时。教师启发学生考虑联系农业作业的实际需求,确定制作机器人的具体内容。企业技术专家介绍机器人控制语言,演示机器人的动作。学生进行讨论,得出关于制作方向的结论;第二阶段进行机器人控制与数学、物理等学科知识的应用,使用4个课时。具体任务有两个,一个是解剖分析现有农业机械,获得感性、基础认识,再使用控制语言设计机器人基本雏形,另一个是运用数学知识,探讨马达转速与机器人动作的关系,设计控制程序,制作马达。企业技术专家讲解高感度彩色感应器、图像识别等技术,联系物理知识,讲解关于摩擦作用的处理方法;第三阶段学习机器人开发的基本程序,使用4个课时。技术专家讲解现实社会中技术人员如何编写“产品规格书”、通用计算机语言、数据解析工具等,引导学生继续使用控制语言模块制作机器人;第四阶段进行总结和演示,使用4个课时。学生演示、讲解自己制作的机器人的特点以及与农业作业的关联。同时,教师引导学生梳理学习内容,激发今后学习机器人技能的兴趣(经济产业省,2019)。
(四)利用人工智能技术提高学习效率,增强学生的创造性思维能力、社会交流能力
现阶段的人工智能已经可以代替教师对学生进行辅导,提高学生的学习效率,如X-Tech、EdTech、LearnTech等技术。这些工具可以根据每个学生的实际情况,给出不同的学习指导方案,提高学习效率。有国外学校在教学中引进了人工智能系统,学生使用平板电脑阅读数学教材、做习题。人工智能系统收集所有学生的学习信息,包括答案、解题过程、速度、集中力、理解力等,在此基础上判断出每个学生的强、弱项,给出符合个人学习水平的阅读材料和习题,大大提高了学习效率。该学校利用人工智能对小学六年级学生进行了初中一年级上学期的数学课程教育,常规需要14周的学习内容仅用2周就完成了,并且学生们的考试成绩都超过了常规教育的平均点。如果能如此高效地接受知识,学生就可以把时间更多地用在联系实际的项目学习以及体育、艺术等活动上,强化学生创造力和社会交流能力的培养。如果说铅笔、笔记本、橡皮是传统必需的学习工具,那么当前与互联网无障碍连接的电子终端已经成为人工智能时代学习的必要工具。国家应该尽快完善义务教育、高中教育、大学教育和在职教育的电子化环境,引进人工智能设备,提高全社会的学习效率。
目前,人工智能正以前所未有的速度部分或完全替代人的劳动,社会生产率将会大大提高。我们必须精准理解人工智能对职业、劳动和能力的影响,从国家层面制定战略规划,运用市场经济杠杆和政策手段提高包括义务教育、高中教育、高等教育和在职教育在内的生涯教育的人工智能基本素养,维持社会经济的稳定发展。
参考文献
[1]陈明生.人工智能发展、劳动分类与结构性失业研究[J].经济学家,2019(10):66-74.
[2]丁晨.从适应到引领:人工智能时代职业教育发展的机遇、挑战与出路[J].中国职业技术教育,2019(13):53-59.
[3]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.
[4]毛旭,张涛.人工智能与职业教育深度融合的促动因素、目标形态及路径选择[J].教育与职业,2019(24):53-59.
[5]南旭光,汪洋.人工智能时代职业教育治理的限时挑战与路径选择[J].教育与职业,2018(18):25-30.
[6]潘文轩.人工智能技术发展对就业的多重影响及应对措施[J].湖湘论坛,2018(4):146-153.
[7][美]S.J.Russell,P.Norvig.人工智能:一种现代的方法(第3版)[M].殷建平,等译.北京:清华大学出版社,2018.
[8]王君,张于喆,张义博,等.人工智能等新技术进步影响就业的激励与对策[J].宏观经济研究,2017(10):169-181.
[9]万昆.人工智能技术带来的就业风险及教育因应[J].广西社会科学,2019(6):185-188.
[10][奥]约瑟夫·熊彼特.经济发展理论[M].何畏,等译.北京:商务印书馆,2016.
[11]安宅和人.人工知能はビジネスをどう変えるか[J].DiamondHarvardBusinessReview,2015(11):43-58.
[12]池迫浩子,宮本晃司.家庭、学校、地域社会におけるスキルの育成:国際的エビデンスのまとめと日本の教育実践·研究に対する示唆[R/OL].2015-08-27.https://berd.benesse.jp/feature/focus/11-OECD/pdf/FSaES_20150827.pdf.
[13]経済産業省.“未来の教室”実証事業成果報告:ベジタリア株式会社[R/OL].2019-07-12.https://www.learning-innovation.go.jp/verify/z0044/.
[14]野口悠纪雄.AI入門講座[M].東京:東京堂出版,2018.[15]西村崇.AI時代に必要なスキルは「対人関係力」と「創造力」、アデコが調査報告[EB/OL].2017-05-17.https://xtech.nikkei.com/it/atcl/news/17/051701429/.
[16]D.H.Autor,L.F.Levy,R.J.Murnane.Theskillcontentofrecenttechnologicalchange:anempiricalexploration[J].QuarterlyJournalofEconomics,2003(4):1279–1333.
[17]D.H.Autor.Whyaretherestillsomanyjobs?Thehistory andfutureofworkplaceautomation[J].JournalofEconomicPerspectives,2015(3):3–30.
[18]H.Bakhshi,J.M.Downing,M.A.Osborneetal.Thefuture ofskills:employmentin2030[R/OL].2017-12-30.https://futureskills.pearson.com/research/assets/pdfs/technical-report.pdf.
[19]T.H.Davenport,J.Kirby.Beyondautomation[J].Harvard BusinessReview,2015(6):59-65.
[20]D.J.Deming.Thegrowingimportanceofsocialskillsinthelabormarket[J].NBERWorkingPaper,2015:21473.
[21]C.B.Frey,M.A.Osborne.Thefutureofemployment:how susceptiblearejobstocomputerisation?[R].WorkingPaper,OxfordMartinProgrammeonTechnologyandEmployment,2013.
[22]J.J.Heckman,T.Kautz.Hardevidenceonsoftskills[J].LaborEconomics,2012:451-464.
[23]ShotaroTani.Isyourjobrobot-ready?Ourinteractive calculatorletsyoufindouthowthreatenedyouare[R/OL].2017-04-22.https://asia.nikkei.com/Economy/Is-your-job-robot-ready.
[24]C.J.Weinberger.Theincreasingcomplementaritybetweencognitiveandsocialskills[J].TheReviewofEconomicsandStatistics,2014(5):849-861.
[25]WorldEconomicForum.Thefutureofjobs:employment,skillsandworkforcestrategyforthefourthindustrialre-volution[R/OL].2016-01-18.https://reports.weforum.org/future-of-jobs-2016/preface/.
[26]WorldEconomicForum.Thefutureofjobsreport2018:Centrefortheneweconomyandsociety[R/OL].2018-09-17.https://www.weforum.org/reports/the-future-of-jobs-report-2018.
[27]OECD.Skillsforsocialprogress:thepowerofsocialand emotionalskills[R/OL].2015-12-30.OECDSkillsStudies,OECDPublishing,Paris,http://dx.doi.org/10.1787/9789264226159-en.
[28]OECD.Skillsforadigitalworld[R/OL].2016-12-30.https://www.oecd.org/els/emp/Skills-for-a-Digital-World.pdf.
刘湘丽.人工智能时代的工作变化、能力需求与培养[J/OL].新疆师范大学学报(哲学社会科学版),2020(04):1-12[2020-05-20].https://doi.org/10.14100/j.cnki.65-1039/g4.20200518.001.
【新格局下我国制造业发展迎来新使命】
内容提要:当前,我国发展的内外部环境深刻变化,制造业发展步入爬坡过槛的攻坚阶段。新发展格局下,制造业是我国迈向高收入国家的“入场券”,是创新驱动经济高质量发展的主力军,是带动就业实现共同富裕的强引擎,是巩固提升产业链供应链的基本盘。未来,推动国民经济和收入增长突围破局,要坚定不移地坚持制造立国战略不动摇,保持制造业比重基本稳定,巩固壮大实体经济根基。制造业是立国之本、强国之基,是国家经济命脉所系。我国制造业规模已连续多年保持世界第一,在驱动经济发展、参与国际竞争中发挥着不可替代的主体力量。当前,我国发展的外部环境复杂性明显上升,内在要素条件也发生深刻变化,制造业大而不强、全而不优的矛盾日益凸显,制造业发展步入爬坡过槛的攻坚阶段。未来,制造业增长潜力依然巨大,但风险阻力也显著增多,新发展格局下,制造业高质量发展将是我国经济高质量发展的重中之重,也是构建现代化经济体系、建设社会主义现代化强国的重要一环,新发展格局下,制造业发展将迎来新使命。
一、制造业是我国迈向高收入国家的“入场券”
改革开放以来,我国制造业快速发展推动经济和收入水平持续提升,迅速由低收入国家迈上中等收入国家。2020年,我国人均GDP达到10500美元,按照世界银行划分标准,处于中高收入国家行列,接近高收入国家的门槛(12535美元)。纵观工业革命以来世界先行工业化国家发展轨迹,先是英国、美国,后是德国、日本,无一不是依靠强大的制造业迈上高收入国家水平,并长期在诸多制造业领域维持较强国际竞争力。其中,德国、日本制造业占比多年保持在20%左右。尽管美国制造业比重已经降至11%左右,但是其科技创新、金融等面向制造业的生产性服务业在全球占据举足轻重的地位。综合考虑制造业关联延伸范围,制造业对美国经济实际带动作用远高于其增加值占比。
二战之后,韩国与巴西几乎同步开启工业化道路,其后两国的发展路径和经济成效形成鲜明对比。韩国始终坚持制造立国、制造强国之路,制造业比重相对稳定,由此成功迈上高收入国家行列。巴西自20世纪80年代末开始走上去工业化道路,制造业比重持续下降,与此相伴的是多年经济持续低迷徘徊,陷入“中等收入陷阱”。2020年,韩国制造业比重仍然保持在25%左右,而巴西则已降至9.8%;相应韩国人均GDP达到31489美元,而巴西仅有6797美元。两国发展实践从正反两个方面说明,跨越“中等收入陷阱”离不开制造业的有力支撑。
表1 2020年中国经济和制造业发展水平国际比较
2020年,我国人均制造业增加值2749美元,而高收入国家人均制造业增加值平均为6010美元。而高收入国家人均制造业增加值平均6000美元左右。其中,德国和日本的人均制造业增加值均超过8000美元,美国和韩国人均制造业增加值则均超过7000美元。显然,无论是人均收入还是人均制造业发展水平,我国与主要高收入国家均存在很大差距。这表明,一方面未来我国经济和制造业发展水平仍有很大提升空间,另一方面未来较长时期制造业继续增长仍将是国民经济和人均收入继续提高的必要条件。
二、制造业是创新驱动经济高质量发展的主力军
近年来,我国在市场化导向下,以制造企业为主体的应用型创新突飞猛进,并带动国家科技实力和创新能力不断提升。2015年至2020年全社会研发投入从1.42万亿元增加至2.4万亿元左右。2020年,我国总体研发投入结构中,应用研究和试验发展经费分别占11.3%和82.7%。我国制造业研发投入占总研发投入的60.6%。
在技术创新能力提升的同时,随着我国制造规模日益增大,依托生产制造过程积累形成了新产品、新工艺、新业态、新模式的创新土壤,隐性创新能力也成为我国区别于美国等去工业化国家的独特优势。其中,既包括运用已有技术对成熟产品进行改进的逆向创新,也包括设计全新生产流程、制造全新产品、创造全新模式。
当前我国已转向高质量发展阶段,但整体创新能力仍不适应未来高质量发展要求。根据世界知识产权组织发布的“全球创新指数”,2015年至2020年我国排名从第29位跃居至第14位,这与我国世界第二经济大国和第一制造大国的地位仍然很不相称。2020年,我国研发投入强度达到2.4%左右,而2018年,美国、德国、日本、韩国的研发强度分别达到2.83%、3.13%、3.28%、4.53%。上述国家制造业研发投入占总投入的比重分别为46.9%、58.8%、68.7%、71.3%,均远远高于其制造业增加值占GDP的比重,制造业本身的研发投入强度均不同程度高于我国。
表2 中国研发投入强度和制造业研发投入占比国际比较
新发展格局下,国际环境将显著恶化,技术封锁趋于严格,特别是美国主导下技术民族主义兴起蔓延,我国传统技术“引进-消化-吸收-再创新”的发展模式遭遇空前阻击。2019年,美国对我高技术产品出口比2017年下降超过10%。同时美国对我国企业投资和技术并购审查更趋严格,并利用“长臂管辖”加强对我高技术企业制裁和围剿。在新一轮科技革命和产业变革的档口,我国面临被边缘化、被迫另起炉灶的潜在风险,创新突围成为不二选择。未来,我国经济高质量发展需要推动产业链高端化,突破一批关键核心技术,加速科技成果转化应用,培育壮大发展新动能,无疑制造业将继续承担技术、模式、业态创新的重要载体。
三、制造业是带动就业实现共同富裕的强引擎
改革开放以来,我国制造业成为带动就业的重要载体,也成为提高居民收入的重要引擎。首先,制造业快速发展吸纳了大量劳动力,不仅带动了城镇职工就业,也促进了大量农民工进城务工,并通过关联作用创造了越来越多的就业岗位,极大地推动了我国城镇化进程。
其次,我国制造业发展也持续提高了居民收入。2010年到2019年,我国城镇单位就业人员平均工资从36539元提高到90501元。按照当年价格测算,货币工资年均增长10.9%,扣除物价因素实际工资年均增长8.1%,工资增速高于同期我国GDP年均增速和企业收入平均增速。根据国家统计局《2020年农民工监测调查报告》,2020年我国农民工月均收入4072元,同比增长3.5%;其中,制造业农民工月均收入4096元,同比增长2.8%。可见,制造业农民工月均收入和增速均高于平均水平。从国际比较来看,我国制造业工资水平与美国、日本、韩国等国家的差距正在缩小。制造业发展广泛推广了现代工业文明,历炼出一批更高水平的人才队伍。根据《“十四五”就业促进规划》,2005年至2020年,我国技能劳动者总量由1.3亿人增至2亿人。
表3 分行业农民工月均收入及增速
未来,实现更加充分更高质量就业,是践行以人民为中心发展思想、扎实推进共同富裕的重要基础。我国促进高校毕业生等重点群体就业任务仍然艰巨,还有大量农村富余劳动力需要转移就业,制造业高质量仍将是带动高质量就业不可或缺的强大引擎。制造业稳定发展,能够带动制造业就业数量稳步增长,新兴制造业将不断创造新的就业创业机会。随着制造业结构升级和模式转型,我国制造业增值能力将不断提高,由此会直接和间接带动职工收入水平持续增长,也将助推劳动者素质不断提高。目前我国制造业整体效率和效益水平仍然较低,未来仍有很大提升空间。
可见,高质量制造业带动形成收入提高和素质提升综合效应,将为实现共同富裕提供重要支撑。从近年来美国实践来看,制造业比重下降扩大了贫富差距。对美国行业工资的数据研究发现,服务业中只有批发贸易、信息产业、金融和保险业、科学和技术服务业、公司管理部门的工资高于制造业工资,其他部门工资都低于制造业部门工资,因此制造业比重下降恶化了工人的总体收入。在上世纪70年代后,美国制造业比重快速下降,同期美国底层90%人群实际收入平均增长率出现负增长(-0.17%),而美国顶层10%的精英阶层实际收入仍保持着1.42%的平均增长率。
四、制造业是巩固提升产业链供应链的“定盘星”
制造业首先是产业链、供应链体系的重要构成,外部与农业、服务业等产业领域关联互动,内部涵盖了从原材料、中间产品到最终产品生产与流通的系列环节,制造业健康发展是产业链、供应链安全稳定的主要标志和基本前提。制造业为产业链、供应链循环提供着源源不断的产品和要素,为现代经济社会稳定运行和健康发展提供了不可或缺的物质保障。同时,制造业是国际经济竞争甚至综合国力竞争的主战场,是人才、技术、数据等产业要素资源的“练兵场”和“蓄水池”。实践反复证明,我国作为一个大国,重要产品和关键核心技术是要不来、买不来、讨不来的,只有不断增强制造业发展韧性,把关键环节牢牢掌握在自己手里,才能从根本上保障产业链、供应链安全稳定。
近年来,突如其来的新冠疫情和国际格局变化凸显了产业链供应链安全的重要性和紧迫性,也给世界各国敲响了警钟,而制造业韧性成为检验产业链供应链稳定甚至国家安全的仪表盘。美国首任财政部长汉密尔顿说,与制造业繁荣休戚相关的不仅是一个国家的财富,甚至还有这个国家的独立。当前,主要发达国家开始更加重视产业链供应链安全,未来不断加强制造业发展韧性成为欧美等国家的战略共识。2021年1月,欧盟委员会研究和创新总局发布《工业5.0——迈向可持续、以人为本和韧性的欧洲工业》报告,系统阐述了未来欧洲工业发展愿景,其中发展韧性是工业5.0三个标志性特征之一。倡导工业发展要准备好迅速适应关键价值链不断变化的环境,增强灵活应对政治突变(英国脱欧等)和自然紧急情况(大流行病等)突发事件的能力,提出通过一系列创新举措增强发展韧性。2021年6月,美国发布拜登总统上任百日审查报告《建立富有韧性的供应链,重振美国制造业,促进广泛增长》,再度阐述了制造业对于保障美国供应链甚至国家安全的重要性。
新发展格局下,国际竞争版图正在重构,我国在发达国家围堵和发展中国家追赶的双重压力下,产业链供应链安全稳定受到严峻挑战。近年来,美国和欧盟从我国的进口大幅下降,东盟转而成为我国第一大出口贸易伙伴。同时,我国制造业传统阵地也不断被后起国家分流。2018年至2019年,我国纺织品在美国、欧盟、日本三大市场进口占比分别下降0.6、3.8和2.5个百分点。目前,我国约有500万-600万锭纺织产能已外迁至东南亚国家,我国手机产能从2017年的19.22亿台下降至2019年的17.53亿台。得益于制造转移,越南、孟加拉国和柬埔寨等新兴国家制造业增加值占我国比重分别从2010年的0.78%、0.97%和0.09%快速提升至2019年的1.11%、1.47%和0.11%。
同时,新冠疫情等重大公共事件对全球产业链供应链进行了一次大考,我国在医疗物资等领域表现出较强制造能力和产业链韧性,为我国率先战胜疫情提供了坚实保障。此外,近年来全球气候变化导致各类极端天气更加频发,由此可能带来一系列难以预见的潜在公共危机,也对产业链供应链安全稳定不断提出新要求。未来保障产业链供应链安全亟待重塑竞争优势、稳定制造业比重。
面对新格局下的新使命,推动制造业高质量发展成为大势所趋,“十四五”规划和2035年远景目标纲要明确提出"深入实施制造强国战略",亟待保持制造比重基本稳定,不断巩固壮大实体经济根基。
专家:人工智能对国家政治安全带来5大挑战
【讲武堂】
人工智能技术的蓬勃发展和广泛应用,给人类生产生活带来了极大便利,同时,也对国家主权、意识形态、执政环境、社会关系、治国理念等带来冲击,深度影响国家政治安全。充分认清人工智能对国家政治安全的挑战,研究应对之策,对于有效维护国家政治安全,意义重大。
人工智能影响政治安全的机理
作为一种颠覆性技术,人工智能进入政治领域后,既具有技术影响政治安全的一般规律,又体现出其不同于以往技术的鲜明特点。
从技术影响政治安全的一般机理来看,主要体现在三个方面。第一,技术进步不可避免地直接或间接服务于政治安全。政治安全是国家安全的根本,经济、社会、网络、军事等领域安全的维系,最终都需要以政治安全为前提条件。因此,包括技术在内的一切社会条件,首要的任务是为政治安全提供服务和保证。综观人类历史上的技术进步,往往被首先考虑用于维护国家安全特别是政治安全,尽管这些技术研发的初衷并非如此。人工智能亦然。第二,政治安全与技术进步相生相克、相生相长。马克思认为,先进技术进入政治领域后,有效提高了“社会控制和权力再生产”。同时,政治安全对技术进步的需求,反过来成为技术不断进步的推动力。但技术并非完美的政治工具。一旦技术利用不当、发生技术失控,或者技术自身缺陷所蕴含的风险爆发,政治安全可能被技术进步反噬。第三,技术进步倒逼政治发展转型,给政治安全带来新课题新挑战。从历史上看,技术进步对社会结构、社会关系、社会文化等带来的变化和冲击,从来不以人的意志为转移。当火枪火炮成为主战兵器时,继续用木盾藤牌来保卫政权的行为无疑是愚蠢的,迫切需要当政者转变思想观念,寻求能够有效维护政治安全的新模式新方法。当计算机网络技术逐渐普及时,西方国家政党纷纷利用互联网进行政治宣传和选举拉票。人工智能较之以往的技术,拥有前所未有的机器“主观能动性”优势,必将对政治安全理念、安全机制、安全路径等带来更大的改变。
从人工智能影响政治安全的独特机理来看,主要体现在两个方面。第一,算法和大数据将左右智能机器“认知”“判断”,继而影响政治行为体的抉择。人工智能的核心“三大件”是算法、算力和大数据。一方面,算法是否公正不偏袒、大数据是否真实完整未被删减篡改伪造污染,直接决定机器的研判结果,并影响人的判断和行为。另一方面,与传统的人口学变量的定量分析不同,大数据、云计算、机器学习等可以将数以亿计的政治行为体抽象成社会的“节点”,人工智能通过分析信息中节点的度数、介数和接近度,来揭示权力集聚规律、赢得政治威望的秘诀,这为执政安全提供了新的技术支撑和智慧渠道。第二,人工智能技术对经济、军事、社会、网络、信息等领域的影响向政治领域传导,间接冲击政治安全。作为一项赋能性技术,人工智能正在逐渐“改写”各领域的秩序规则,给各领域带来机遇和挑战。尽管以往的技术进步也是如此,但其影响的深度和广度远远不及人工智能。而且,以往各领域安全问题“错综复杂、交织并存”的程度,也远远不及人工智能时代高。其他领域的安全问题一旦发酵,极有可能冲击政治安全。
人工智能给政治安全带来新挑战
技术变革具有两面性,人工智能既是维护政治安全的新机遇,也是新挑战。
挑战之一:人工智能技术的普及应用,导致政治权力呈现出“去中心化”趋势。在人工智能时代,数据即代表着权力。掌握数据的主体既有国家权力机构,也有个人、企业团体、社会组织等非国家行为体。“互联网数据”结构的“多节点、无中心”设计,决定着处于线上社会任何位置的主体,均不可能比其他位置的主体位势高。人人都有“麦克风”“摄像机”,处处都是“舆论中心”“事发现场”,这一显著特征,弱化了传统的线下科层制国家管理结构和单向治理模式,政治话语权由政府这个传统的权力中心逐渐向社会层面弥散,国家治理难度大大增加,政治安全风险也大大增加。目前,这种风险已初露端倪。2019年9月,因有人线上传播“老师辱骂原住民学生是‘猴子’”的种族歧视谣言,印尼巴布亚省爆发严重骚乱,导致26人死亡、70余人受伤。
挑战之二:随着人工智能技术和数据垄断持续扩张,资本权力的扩张将危及国家权力边界。生产力的发展变化必将带来生产关系包括政治权力结构的调整。作为“第一生产力”的科学技术,其发展进步势必引起国家权力结构的调整。当人工智能技术广泛应用于经济社会各领域并引起变革时,将会推动国家治理结构与权力分配模式做出相应调整。从当前种种迹象来看,资本的权力依托技术和数据垄断持续扩张,将成为新时代国家治理结构调整的重大课题。一方面,人工智能技术研发门槛很高,依赖于大量的、长期的资本投入和技术积累,这导致社会各产业、各阶层、各人才群体间的技术研发能力、资源占有程度、社会影响力等方面极不平衡,以互联网商业巨头为代表的技术资本将占据明显优势。另一方面,人工智能技术强大的赋能作用,以及良好的经济社会应用前景,导致资本趋之若鹜。商业巨头实际上掌握了目前人工智能领域的大部分话语权,并正在逐步形成行业垄断。人工智能时代,巨头企业以强大资本为后盾,逐步垄断技术、控制数据,或将不可避免地在一定程度上逐渐分享传统意义上由国家所掌控的金融、信息等重要权力,进而可能插手政治事务。因此,国家是否有能力为资本权力的扩张设定合理的边界,是未来政治安全面临的重大挑战。
挑战之三:人工智能技术及其背后的数据和算法潜移默化引导公众舆论,进而影响人的政治判断和政治选择,间接把控政治走向。在人工智能时代,数据和算法就是新的权力。近年来围绕国家大选而展开的种种政治运作显示:拥有数据和技术能够从一定程度上影响政治议程。据有关媒体报道,2020年美国总统大选期间,有人利用网络社交平台的大量机器人账号,发布海量虚假信息,力图影响选民的认知、判断与选择。类似的情况,也曾出现在2016年的美国大选、2017年的英国大选和法国大选中。这些案例非常清晰地显示:只要拥有足够丰富的数据和准确的算法,技术企业就能够为竞争性选举施加针对性影响。当某种特定政治结果发生时,人们很难判断这是民众正常的利益诉求,还是被有目的地引导的结果。
挑战之四:人工智能技术可能被政治敌对势力用于实施渗透、颠覆、破坏、分裂活动。利用先进技术威胁他国政治安全,这样的例子屡见不鲜。计算机网络技术出现后,被西方国家用来进行网络窃密、网络攻击、网络勾联、传播政治谣言、意识形态渗透和进攻。人工智能时代,攻击一国人工智能系统或利用人工智能实施渗透、颠覆、破坏、分裂活动,带来的后果将比以往更为严重。
挑战之五:人工智能技术进步对主权国家参与国际竞争带来严峻挑战。人工智能是当前最尖端最前沿的技术之一,其核心技术多被美欧等发达国家所掌握。这些国家利用它提升生产自动化水平,提高劳动生产率,加快制造业回迁,将冲击发展中国家的传统比较优势,使后者在国际政治经济竞争格局和全球分工中处于更加不利的地位。通过发展军事智能化,进一步扩大对发展中国家的军事优势。国家之间一旦形成技术“代差”,综合实力差距将被进一步拉大。在这种情况下,技术强国对发展中国家实施政治讹诈和技术突袭的可能性增大。
多措并举,维护我国政治安全
政治安全事关我党生死存亡和国家长治久安,我们必须高度重视人工智能带来的政治安全挑战,多措并举,综合施策。
人工智能技术具有高度专业性和复杂性,企业、科研机构常常处于技术创新前沿,而国家政府则往往远离技术前沿,对技术的感知相对滞后,对技术的安全风险准备不足。为此,要强化风险意识,密切跟踪人工智能技术和应用的发展,运用系统思维,定期研判人工智能可能带来的政治风险,提高风险识别、防范和处置能力。要创新技术治理模式,构建政府主导,企业、研究机构、技术专家、公众等多方参与的人工智能治理体系。“治理”不同于“管理”,管理是政府单向的行为过程,治理则是一种开放的、多个利益攸关方参与的互动过程。通过多方互动,政府既可以跟踪掌握技术和应用的前沿动态、发展趋势,掌控治理主动权,又有助于企业、研究机构、专家、民众更好地了解政府关切,共商制定风险管控机制,推进治理工作的科学化民主化。
当前,我国在人工智能技术领域面临的最重大的安全威胁,是关键核心技术受制于人。从现在起到2030年,是我国抢抓机遇的关键期。要举全国之力,集全民之智,打造一批国家级人工智能研发平台,加强基础性、原创性、前瞻性技术研发,从智能芯片、基础算法、关键部件、高精度传感器等入手,加快核心技术突破。
没有规矩,不成方圆。针对技术应用风险,严格人工智能标准制定和行业监管,确保人工智能良性发展。紧跟技术发展变化,动态修订完善相关技术标准。加紧完善人工智能相关法律法规和伦理道德框架,对相关的民事与刑事责任确认、隐私和产权保护、机器伦理等问题予以明确,理顺设计者、使用者、监管者之间的权责关系。要建立健全人工智能监管体系,形成设计问责和应用监督并重的双层监管结构,实现对算法设计、产品开发、成果应用的全过程监管。积极促进行业自律,加大对数据滥用、算法陷阱、侵犯隐私、违背道德伦理、擅越权力边界等不良行为的惩戒力度。要积极主动参与人工智能国际议题设置,共同应对安全、伦理、法律等诸多挑战。抓住人工智能国际准则和配套法规刚刚起步之机,积极参与规则制定,及时宣示我国主张,努力掌握规则制定话语权和国际交往主动权。
针对外部安全风险,加强军事能力建设,为维护国家政治安全提供力量保证。要积极研究探索智能化战争理论,加快推进现代武器装备体系和人才队伍建设,强化智能化条件下部队训练演练,不断提升我军新时代军事斗争准备水平。
(作者:许春雷,系军事科学院博士研究生,现任河北省石家庄市鹿泉区人武部副部长)