人工智能基础——知识的概念
知识的概念:事实与规则。知识反映了客观世界中事物之间的关系,不同事物或者相同事物之间的不同关系形成了不同的知识。例如,”雪是白色的“是一条只是,它反映了”雪“与”白色"之间的一种关系,又如“如果头疼且流鼻涕,那么有可能患了感冒”是一条知识,它反映了“头疼且流鼻涕”与“可能患了感冒”之间的一种因果关系。在人工智能中,把前者叫做事实,把后者,即用”如果。。。那么。。。“关联起来形成的知识叫做规则。
知识的特性:1.相对正确性:在一定的条件下,知识一般是正确的。比如:在十进制的条件下,1+1=2,但是如果换个条件,换成二进制的条件下,那么1+1=10,不等于2了。
2.不确定性3.可表示性和可利用性
知识的分类:按作用范围分:常识性知识,和领域性知识。按作用及表示分:事实性知识,过程性知识和控制性知识。
事实性知识:概念。例如北京,上海,飞机,火车。过程性知识:乘飞机,乘火车控制性知识:乘飞机较快,较贵,乘火车较慢,较便宜。
按知识的结构及表现形式分:逻辑性知识和形象性知识。
形象性知识:通过事物的形象建立起来的知识。(神经网络)
按知识的确定性分:确定性知识和不确定性知识。
人工智能技术的主要应用及基本原理
1:什么是人工智能?
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。人工智主能它是用来研究使计算机来模拟人的某些思维过程和智能行为(如学习,推理,思考,规划等)的学科,主要包括计算机实现智能的原理,制造类似的人脑智能的计算机,使计算机能实现更高层次的应用。
2:人工智能的研究价值
列如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能比人脑做得更好、更快、更准确,因此当代人不再把这种计算看作是“需要人工智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门学科的具体目标自然也是随着时代的变化而发展的。它一方面不断获得新的发展,另一方面又转向更有意义的,更加困难的目标。
3:人工智能的细分领域有哪些?
人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。
(1):深度学习
深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。
深度学习的技术原理:
1.构建一个网络并且随机初始化所有连接的权重; 2.将大量的数据情况输出到这个网络中; 3.网络处理这些动作并且进行学习; 4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重; 5.系统通过如上过程调整权重; 6.在成千上万次的学习之后,超过人类的表现;
(2):计算机视觉
计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……
计算机视觉的技术原理:
计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。
(3)语音识别:
语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。
语音识别技术原理:
1、对声音进行处理,使用移动窗函数对声音进行分帧; 2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态; 3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;
(4)引擎推荐:
不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。
引擎推荐技术原理:
推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。
人工智能涉及的学科
人工智能涉及的学科人工智能涉及哪些学科?计算机类自动化类数学专业领域类心理学和哲学学习人工智能为什么要会心理学知识?哲学和人工智能有什么关系?其他人工智能涉及哪些学科?人工智能相关学科有很多,看看你的知识储备够不够!需要补充哪些方面?
计算机类首先,人工智能是计算机科学中的一个分支,所以对应的计算机科学、计算机基础知识、编程语言、互联网知识、物联网知识、软件工程、信息安全等是必备的。
自动化类其次,人工智能的目标是实现辅助人类智慧、部分代替人类智能、扩展人类智能,所以还会涉及自动化、机器学习、智能科学与技术、空间信息与数字技术、电子与计算机工程、信息与计算科学。
数学然后,人工智能需要处理大量的数据,所以数学和逻辑思维也很重要,高数、数学与应用数学、信息与计算科学、数理基础科学、数据科学与大数据技术等。
专业领域类另外,除了一些通用的学科,面对不同的领域,还要学习不同的学科,如:通信工程、信息工程、水声工程、电子信息工程、微电子科学与工程、光电信息科学与工程、自然语言处理、电磁度场与无线技术、电子信息科学与技术、电波传播与天线、集成电路设计与集成系统、轨道交通信号与控制。
心理学和哲学除了计算机知识,心理学和哲学也是必学的学科。
学习人工智能为什么要会心理学知识?试想一下人工智能模仿的是人类的什么?是人类的智慧。人类的智慧由什么产生?人的思想、知识、记忆、创造力。而这一切皆由人的大脑控制。而心理学其实是大脑活动后的一种产物,所以要想让一台计算机真正拥有人类智慧,必须了解人类的心理活动和思考方式。与其说人工智能是在模仿人类智慧,不如说人工智能是在模仿人类思维。只有当人工智能可以像人类一样思考、分析问题、拥有人类的喜怒哀乐,才能算得上是真正的人工智能。
哲学和人工智能有什么关系?说到人工智能中的哲学问题,不得不提著名的图灵测试。图灵测试是由阿兰·麦席森·图灵在1950年的一篇论文《计算机器与智能》中提出的。图灵是英国著名的数学家和逻辑学家,被称为计算机科学之父、人工智能之父,是计算机逻辑的奠基者。图灵测试说的是,一个人和一台机器,在人类不知道对面是机器的情况下对他提问,以此来判断对面的是人类还是机器。进行多次测试后,如果机器让平均每个参与者做出超过30%的误判,那么这台机器就通过了测试,并被认为具有人类智能。从哲学层面来说,如果一台机器通过了图灵测试,那么它真的能被称之为和人类一样有智慧吗?判定一台机器有智慧的标准或者说是界限到底是什么?在实际应用中,哲学在人工智能上也起到了很多决定性的作用。比如一台人工智能机器,在面对文化、信仰、法律都不同的日本人和阿拉伯人,一个可能说这台机器非常智能,一个可能说并不智能,达不到想要的、或做的不对。那么这时,这台机器能不能被称之为是一台人工智能机器?在人工智能发展上,有很多关于类似的哲学问题。仅仅是“智能”二字,在哲学上都有很多的争议。比如,智能的含义到底要怎么去定义?达到什么样的界定才能称之为智能?在这里,我给自己留一个作业,等以后我积累了更多的知识,再和大家讨论关于“人工智能与哲学之间的关系”的问题。
其他除了上面提到的学科,还有认知科学、神经生理学、信息论、控制论、不定性论等。因为人工智能属于跨学科的技术,所以想要学习人工智能,不仅要知道人工智能的基本知识,还要确定研究的方向,朝着既定的目标前进,才不至于在人工智能的学习道路上走岔了。
人工智能之基础理论
1.大数据智能理论。研究数据驱动与知识引导相结合的人工智能新方法、以自然语言理解和图像图形为核心的认知计算理论和方法、综合深度推理与创意人工智能理论与方法、非完全信息下智能决策基础理论与框架、数据驱动的通用人工智能数学模型与理论等。
2.跨媒体感知计算理论。研究超越人类视觉能力的感知获取、面向真实世界的主动视觉感知及计算、自然声学场景的听知觉感知及计算、自然交互环境的言语感知及计算、面向异步序列的类人感知及计算、面向媒体智能感知的自主学习、城市全维度智能感知推理引擎。
3.混合增强智能理论。研究“人在回路”的混合增强智能、人机智能共生的行为增强与脑机协同、机器直觉推理与因果模型、联想记忆模型与知识演化方法、复杂数据和任务的混合增强智能学习方法、云机器人协同计算方法、真实世界环境下的情境理解及人机群组协同。
4.群体智能理论。研究群体智能结构理论与组织方法、群体智能激励机制与涌现机理、群体智能学习理论与方法、群体智能通用计算范式与模型。
5.自主协同控制与优化决策理论。研究面向自主无人系统的协同感知与交互,面向自主无人系统的协同控制与优化决策,知识驱动的人机物三元协同与互操作等理论。
6.高级机器学习理论。研究统计学习基础理论、不确定性推理与决策、分布式学习与交互、隐私保护学习、小样本学习、深度强化学习、无监督学习、半监督学习、主动学习等学习理论和高效模型。
7.类脑智能计算理论。研究类脑感知、类脑学习、类脑记忆机制与计算融合、类脑复杂系统、类脑控制等理论与方法。
8.量子智能计算理论。探索脑认知的量子模式与内在机制,研究高效的量子智能模型和算法、高性能高比特的量子人工智能处理器、可与外界环境交互信息的实时量子人工智能系统等。