人工智能时代是什么时代?
工业4.0是2013年的汉诺威工业博览会上德国为提升工业竞争力而提出的一个概念。基于工业发展的不同阶段划分出4个时代,即工业1.0蒸汽机时代、工业2.0电气化时代、工业3.0信息化时代和工业4.0智能化时代。显然,这种划分只表示了工业革命以来工业领域的时代变迁。如果说“蒸汽机”、“电气化”可以表示工业革命内涵,那么“信息化”、“智能化”就远远超出了工业领域。把人工智能时代称为第4次工业革命时代显然是错误的。
在“第4次工业革命”这一错误概念的影响下,对人工智能时代性的理解出现了许多混乱。仅从工业生产力变迁的角度来看,划分成蒸汽机工业革命、电气化工业革命、信息化工业革命、智能化工业革命时代,的确具有一定道理,但是,如果把它泛化,认为人工智能的智能化是第4次工业革命时代,甚至由此衍生出第5次工业革命、第6次科技革命、第N次工业革命的提法,显然模糊了人工智能的知识革命与工业革命的本质差异。我们可以从以下5个方面看看人工智能时代与工业革命时代的本质差异:
(1)社会生产力结构的本质差异
工业革命后形成了资本整合下的社会化大生产,其社会生产力结构是“劳动者+机械化工具”,劳动者在知识基础上驾驭工具;人工智能时代,在半导体微处理基础上诞生了智能化工具,智能化工具超越了生产领域、经济领域,全面影响人类社会生活,并且具有独立的财富生产能力,其生产力结构变成了“管理者+智能化工具”。
(2)生产工具的本质差异
机械化工具与智能化工具有本质差异,前者无自主能力,必须由劳动者驾驭,后者有自主能力,可以在无人介入下自主式工作。工业革命后期虽然出现过可以自主运行的自动化工具,但不具有智能行为,它们与计算机软件控制的智能化工具有本质不同。
(3)体力劳动与脑力劳动替代的本质差异
工业革命后,机械化工具以蒸汽机械(以及后来的内燃机械、电动机械)代替劳动者的体力劳动,而人工智能时代,智能化工具普遍代替了人类的脑力劳动。
(4)知识相关性的本质差异
工业革命时代,“知识就是力量”是著名的时代口号,因为驾驭机械化工具都需要相应的知识,工人、技师、工程师形成了严格的知识与技术等级;在人工智能时代,智能化工具具有智力行为能力,使用者不需要有相应的知识。知识与知识行为分离,成为人工智能时代的重要特点。
(5)从经济变革到社会变革的本质差异
工业革命的主要变革是经济基础;人工智能变革后的数字化社会、区块链的无偏见人工智能、诚信体制建设等,从经济基础延伸至上层建筑。同时,从资本时代到金融时代、从贸易全球化到经济全球化、从两种文化到第3种文化,都表明人工智能时代从经济基础到上层建筑的延伸效应。
3人工智能时代是第3次浪潮时代
最早揭示人工智能时代与工业革命时代具有本质差异的是著名的未来学者阿尔文·托夫勒。1980年,阿尔文·托夫勒推出了《第三次浪潮》一书,该书将人类现代文明史划分为3个浪潮时代。阿尔文·托夫勒在书中写道:“到目前为止,人类经历了两次重大的变化浪潮,每一次都抹杀了早期的文化和文明,以前人不能想象的生活方式取而代之。第1次浪潮—农业革命—经历了几千年才结束。第2次浪潮—工业文明的崛起—只有300年的寿命。今天的历史速度更快,很可能第3次浪潮将横扫历史,在几十年内结束。”他十分明确地将“今天的历史”与工业革命时期相分割。26年之后,他在2006年出版的《财富的革命》一书中,将“今天的历史”定义为“知识经济”时代,即一个知识创造财富的时代。
阿尔文·托夫勒首先清醒地、科学地认识到“今天的历史”的时代特征与时代本质,它与“机器”创造财富的工业文明完全不同,是一个用“知识”创造财富的时代。托夫勒还天才地描绘了人类现代文明发展史,几千年农业文明、几百年工业文明、几十年知识经济文明演化速度的倍增现象。所有这些都集中反映人工智能时代托夫勒的知识革命观。必须从知识的本源出发,用知识的创新原理来探索人工智能时代的奥秘。不幸的是,托夫勒未能揭示知识革命的奥秘,对“知识”充满了无奈与绝望。
4人工智能时代是知识革命时代
托夫勒敏锐地认识到,人工智能时代是知识创造财富的知识革命时代,但是,对“知识经济”的定义以及“知识创造财富”的知识革命论述却显得苍白无力。在后来《财富的革命》一书中,他充满了悲观与无奈。托夫勒说:“尽管对新兴的知识经济有着数千种分析和研究,但是,知识对创造财富的影响却一直被低估了,而且现在仍然在被低估。”他充分认识到知识经济时代的知识主导作用、知识探索的重要性,书中也描述了人们对“知识”的无知、漠视与无奈,他在书中写道:知“识已经成为我们经济和社会环境中变化最快的组成部分之一。”“自从‘知识经济’开始半个世纪以来,关于知识经济背后的‘知识’我们却了解得很少,简直少得让我们感到尴尬。托”夫勒虽然界定了今天的时代是与工业革命完全不同的知识创造财富的时代,但是并没有回答知识如何创造财富。这是人工智能时代知识革命必须回答的问题。
“知识创造财富”贯穿于人类的全部历史进程中。在原始社会,人类在知识基础上打造工具、使用工具,开创了“人+工具”的社会生产力的基本结构。其后,一直延续到农业社会、工业社会以及人工智能社会。只是人工智能社会之前的生产力结构是“(人+知识)+工具”,即劳动者在知识基础上驾驭工具;人工智能的社会生产力结构变成了“人+(知识+工具),”即人类将知识成果转移到智能化工具中,劳动者傻瓜化地使用智能化工具,出现了知识从“人”到“工具”的根本性转移。这就是人工智能时代知识创造财富的本质与知识革命的核心所在。
人们普遍意识到知识在社会生产力中的重要作用,因为没有知识,人类就不会使用工具,也不可能创造工具。然而在经济学家、社会学家、历史学家的视野中,“知识”消失了。他们用“劳动者、劳动资料、劳动对象”的生产力结构观来诠释人类社会发展史。
人类对知识的无知,经济学家对知识的忽视,托夫勒对知识的无奈与无助是有道理的。因为,尽管人类对知识的研究远早于自然科学、社会科学,然而,在自然科学、社会科学充分发展的今天,人类对知识的研究一直停留在两千年前坐而论道的“认识论”、“知识论”的哲学陷阱之中。因为,传统概念中的知识一直是虚无缥缈、捉摸不定、隐含在事物之中的东西。只有到了知识从量变到质变的人工智能时代,知识才走到前台,人们才得以从学科视角重新研究“知识”的本质,它的诞生、发展、演化、基本规律,以及它在人工智能时代的财富革命与知识力量变迁。从人工智能的实践中探索知识革命的奥秘,寻找人类知识起源,演化发展的本质与基本规律,创建科学的“知识学”。
人工智能时代的“知识学原理”走出了“认识论”、知“识论”的陷阱,成为指导实践的新兴科学。不但能有效地诠释人工智能的智能生成机理,还将人们对人工智能的认识从“是什么”的低级阶段提升到“为什么”的高级阶段。由于知识的普遍性,”知识学原理”还将全面诠释人类起源、人类演化的生态体系、工具中的第3种知识、从第2种文化到第3种文化,人类工具起源与智能化工具智能生成机理等众多未解之谜。
5人工智能知识革命的时代特征
人工智能时代,是继农业革命、工业革命后,人类现代社会的第3次浪潮时代。正如托夫勒所说,“很可能第3次浪潮将会横扫历史,生存在这个爆炸性时刻的我们会感受到第3次浪潮对这个时代的全面影响。因”此,了解人工智能的时代特征具有重要意义。
(1)人工智能时代是一个动荡的时代
人类历史呈非线性发展特征,百万年的原始社会、万年的农业社会、几百年的工业社会,以及不到百年的人工智能时代。百万年的原始社会是凝固的,万年的农业社会是缓慢的,几百年的工业社会有了显著的变化,不到百年的人工智能时代则是一个激烈动荡的时代,人们会普遍感受到生存环境与社会生活的全面动荡。
(2)人工智能时代是一个人类体力劳动、脑力劳动全面解放的时代
工业革命的动力机械代替了人类的体力劳动、智力革命的智能化工具代替人类脑力劳动,未来,机器人将养活人类,人类社会将进入一个在少数精英引领下的傻瓜化时代。体现群体智力的人工智能远远超越人类个体智力,人们寄希望于人类智慧驾驭人工智能。
(3)人工智能时代是自然人类的终结时代
不到百年的人工智能时代,众多新兴科技(生物科技、生命科技、基因工程、人工生殖、脑科学、脑机工程等)与强人工智能相结合,必将导致自然人类的终结,人们最终将迎来一个非自然人类的新时代。
(4)人工智能时代是生产力结构彻底革命的时代
人类社会生产力结构一般表达形式是“人+工具”,知识隐含其中,成为社会财富生产能力的基础因素。原始社会、农业社会,人类使用简单工具,财富生产能力的“知识重心”在原始人类;工业社会,机械化工具代替了人类体力劳动,财富生产能力的“知识重心”向工具转移;智力革命时代,智能化工具独立的行为能力,将财富生产能力的“知识重心”彻底转移到工具中,实现了生产力结构彻底变革。
(5)人工智能时代是上层建筑革命的时代
农业革命、工业革命是经济领域的革命。人工智能时代,第3种文化以科技文化对人文文化的全面入侵方式彻底改变了人文文化属性,文化艺术领域不再有纯文化、纯艺术;互联网从信息网、物联网到资源网(区块链)的诚信体系建设、去中心化的智能合约、无偏见的人工智能等,表明人工智能进入到伦理时代,从而掀起了上层建筑的全面革命热潮。
人工智能时代的知识革命改变了一切,因为人类社会的一切事物都与知识相关。
从本质上讲,我们这个时代,是人类在外部以人工方式将“知识”变革到“知识行为能力”(即智力)的革命时代。但迄今为止,我们没能用知识的基本原理准确地诠释人工智能时代,对这个时代的认识尚处于模糊阶段。人们需要从不同视角来阐述我们这个时代。(此文发表在《单片机与嵌入式系统应用》2020年第4期学习园地)
6.嵌入式系统中AI和ML的实际应用
免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我们联系,我们将根据您提供的版权证明材料确认版权并支付稿酬或者删除内容。返回搜狐,查看更多
人工智能:定义、历史与未来展望
1.引言人工智能(ArtificialIntelligence,简称AI)是一个旨在使计算机具有类似人类智能的领域。近年来,AI的发展以及在各个领域的应用取得了显著的成就,从而引起了广泛的关注。本文将对人工智能的定义、历史发展以及未来展望进行详细阐述。
2.人工智能的定义人工智能通常被定义为使计算机具有类似人类智能的能力,如学习、推理、解决问题、知识表达、计划、导航、自然语言处理、模式识别、感知等。人工智能的研究包括两个方向:强人工智能(StrongAI)和弱人工智能(WeakAI)。强人工智能指的是具有与人类类似的智能和意识的计算机系统;而弱人工智能则指的是针对特定任务的人工智能。
3 早期的人工智能早期的人工智能研究可以追溯到20世纪40年代和50年代。在这一时期,研究者们关注的主要是符号主义方法,试图通过基于逻辑和符号的形式体系来模拟人类智能。以下是早期人工智能的一些关键发展:
3.1.1图灵测试
艾伦·图灵(AlanTuring)是人工智能的奠基人之一。1948年,他提出了图灵测试(TuringTest),作为衡量一个计算机程序是否具有智能的标准。图灵测试的核心思想是,如果一个计算机程序能够在自然语言对话中模仿人类,使人类评估者无法区分它与真实人类的区别,那么这个计算机程序可以被认为具有智能。
3.1.2逻辑理论家
1955年,艾伦·纽厄尔(AllenNewell)和赫伯特·西蒙(HerbertA.Simon)开发了世界上第一个人工智能程序——逻辑理论家(LogicTheorist)。逻辑理论家可以在一定程度上模拟人类的推理过程,实现自动证明数学定理。这一研究成果标志着人工智能领域的诞生。
3.1.3达特茅斯会议
1956年,达特茅斯会议(DartmouthConference)在美国举行,这是人工智能领域的第一个正式会议。会议的目的是探讨如何让计算机实现智能行为,包括学习、推理、自然语言处理等。达特茅斯会议汇集了众多领域的专家学者,为人工智能的发展奠定了基础。
3.1.4ELIZA
1964年,约瑟夫·维森鲍姆(JosephWeizenbaum)开发了ELIZA,这是一个模拟人类心理治疗师的自然语言处理程序。ELIZA通过模式匹配和替换技术来回应用户的输入,实现类似于自然语言对话的效果。虽然ELIZA的技术原理较为简单,但它在当时产生了很大的影响,启发了后来的聊天机器人和自然语言处理研究。
在早期的人工智能研究中,研究者们主要关注符号主义方法,试图通过逻辑推理和知识表示来模拟人类的智能。然而,随着时间的推移,这些方法在处理复杂数字和模糊问题方面遇到了困难。在20世纪80年代和90年代,随着神经网络和机器学习技术的发展,人工智能的研究重心逐渐转向了基于数据的方法。
3.2连接主义和神经网络连接主义是一种基于神经网络的人工智能方法。与符号主义方法不同,连接主义试图通过模拟人类大脑中神经元的连接和活动来实现智能行为。神经网络是由许多相互连接的神经元组成的模型,每个神经元都有一定的权重,权重会随着学习过程不断调整。
在20世纪80年代,反向传播算法(Backpropagation)的提出为神经网络的训练带来了突破性进展。反向传播算法通过计算输出层的误差并向前传递,实现了神经网络的自动学习。这一发现使得神经网络得以广泛应用于图像识别、语音识别和自然语言处理等领域。
3.3机器学习和深度学习机器学习是人工智能的一个重要分支,它旨在开发能够从数据中自动学习和提升性能的算法。机器学习算法可以大致分为监督学习、无监督学习和强化学习三类。监督学习是指从带标签的训练数据中学习模型,无监督学习则从未标记的数据中寻找结构,而强化学习是通过与环境的交互来学习策略。
深度学习是机器学习的一个子领域,主要关注多层神经网络的设计和训练。深度学习的出现使得神经网络能够在更多领域取得显著的成功,如计算机视觉、语音识别和自然语言处理等。2012年,卷积神经网络(ConvolutionalNeuralNetwork,CNN)在图像识别竞赛中取得了突破性成果,引发了深度学习的研究热潮。
随着大数据和计算能力的提升,深度学习在各种应用场景中取得了巨大成功,推动了人工智能领域的发展。然而
,深度学习也面临着一些挑战,如模型的可解释性、计算效率和数据依赖等。为了解决这些问题,研究者们正在努力开发新的算法和技术,以提高深度学习的性能和适用范围。
3.4自然语言处理自然语言处理(NaturalLanguageProcessing,NLP)是人工智能的一个重要分支,致力于让计算机能够理解和生成人类的自然语言。自然语言处理涉及许多任务,如语法分析、机器翻译、情感分析、文本生成等。
在早期的自然语言处理研究中,研究者们主要依赖于规则和模式匹配方法。然而,随着机器学习和深度学习技术的发展,基于数据驱动的方法逐渐成为自然语言处理的主流。近年来,预训练语言模型如BERT、GPT等在各种自然语言处理任务上取得了显著的成功,表明深度学习方法在自然语言处理领域具有巨大潜力。
3.5专家系统20世纪70年代至80年代,专家系统作为人工智能的一个重要分支,取得了显著的发展。专家系统是一种将领域专家的知识编码为一组规则,并通过计算机程序来进行推理的系统。这类系统在医学、地质勘探、金融等领域取得了一定的成功。然而,由于其依赖领域专家的知识,并且难以处理不确定性和大规模问题,专家系统的应用受到了一定的局限。
3.6 机器学习20世纪80年代至90年代,随着统计学习理论的发展和计算能力的提升,人工智能进入了机器学习阶段。机器学习是一种从数据中学习模式的方法,它通过在训练数据上建立模型,从而实现对新数据的预测或分类。这一阶段的研究主要关注支持向量机(SVM)、决策树、集成学习等方法。机器学习的发展极大地推动了人工智能在诸如文字识别、语音识别、推荐系统等领域的应用。
3.7深度学习自21世纪初以来,深度学习作为机器学习的一个子领域,受到了广泛的关注。深度学习主要关注使用深度神经网络(DeepNeuralNetworks,DNNs)进行学习,这种网络具有多层隐藏层,并能自动学习多层次的特征表示。深度学习的发展得益于大数据、GPU计算能力的提升以及新算法的发明。深度学习已经在图像识别、语音识别、自然语言处理等领域取得了显著的成功,推动了人工智能的发展。
4.人工智能的未来展望虽然人工智能在过去的几十年里取得了令人瞩目的成就,但离实现强人工智能仍然有很长的路要走。未来的人工智能研究将面临以下挑战和机遇:
4.1可解释性与可信赖性随着深度学习模型变得越来越复杂,其决策过程也变得越来越难以理解。因此,在未来的人工智能研究中,提高模型的可解释性与
可信赖性将成为一个重要的方向。通过增加模型的透明度,我们可以更好地理解其决策过程,从而提高用户对人工智能系统的信任度。此外,可解释性也有助于发现模型的潜在缺陷,从而改进算法和提高性能。
4.2处理不确定性现实世界中的数据往往充满不确定性,如噪声、缺失值和异常值等。因此,未来的人工智能需要具备更强的抗干扰能力,能够在不确定环境中做出可靠的决策。概率图模型、贝叶斯网络等方法可能在这方面发挥重要作用。
4.3多模态数据处理现实世界的数据往往包含多种模态,如文本、图像、语音等。未来的人工智能需要能够处理这些多模态数据,从而实现更丰富、更自然的人机交互。多模态数据处理涉及到多种领域的知识,如自然语言处理、计算机视觉、语音处理等,因此需要跨学科的合作与研究。
4.4迁移学习与元学习迁移学习是指将在一个领域或任务上学到的知识应用到其他领域或任务。元学习(Meta-Learning)则是一种在多个任务上进行学习,从而能够更快地适应新任务的方法。这两种方法都试图模拟人类的学习能力,使人工智能能够在有限的数据和经验上实现快速学习。在未来的人工智能研究中,迁移学习和元学习将成为重要的研究方向。
4.5最强人工智能虽然当前的人工智能在特定任务上表现出色,但离实现强人工智能仍有很长的路要走。强人工智能需要具备类似人类的智能和意识,能够在多个领域和任务上进行泛化学习。要实现强人工智能,需要突破现有的计算模型和算法,探索新的学习理论和认知机制。
5.总结人工智能是一个充满挑战和机遇的领域,其发展已经深刻地影响了科技、经济、社会等方面。从早期的符号逻辑研究到现代的深度学习方法,人工智能已经取得了显著的进步。然而,实现强人工智能仍面临许多挑战,如提高模型的可解解释性与可信赖性、处理不确定性、多模态数据处理、迁移学习与元学习等。在未来,人工智能研究需要不断创新、跨学科合作,以期在这些领域取得突破,推动人工智能的发展。
随着技术的不断进步,人工智能将越来越多地融入我们的生活和工作,为人类带来巨大的便利。同时,我们也需要关注人工智能带来的伦理、法律、就业等问题,以确保科技的发展能够更好地造福人类社会。
在人工智能的发展过程中,我们将继续见证越来越多的技术突破和惊人的成果。然而,在追求科技进步的同时,我们也应该时刻保持警惕,关注人工智能可能带来的潜在风险。通过在科技发展和伦理道德间寻求平衡,我们有望在未来创造一个更加美好、智能和人性化的世界。