欧盟《人工智能法案》进入最终谈判阶段
据德新社近日报道,欧洲议会全体会议以499票赞成、28票反对、93票弃权的压倒性优势表决通过了《人工智能法案》授权草案。这意味着,法案进入欧盟立法严格监管人工智能技术应用的最终谈判阶段,欧洲议会、欧盟委员会和成员国将进行“三方”谈判,以确定法案的最终条款。德国《商报》称,《人工智能法案》预计将在今年年底获得最终批准,不过距离完全生效可能还需数年时间。
做好谈判准备
报道称,欧洲议会决定对ChatGPT等生成式人工智能工具增加更多安全控制措施,以确保人工智能的研发和应用符合欧盟相关法律法规。
作为全球首部通过议会程序、专门针对人工智能的综合性立法,草案从安全、隐私、透明度以及非歧视等方面制定了详细规则。据欧洲议会网站消息,欧洲议会“为制定史上首部人工智能法案已经做好谈判准备”。按照立法议程,欧洲议会将就这一授权草案与欧盟委员会和成员国进行“三方”谈判,欧洲立法者希望在今年年底前就法案的最终版本达成共识。
今年5月,欧洲议会市场委员会和公民自由委员会通过欧盟委员会于2021年4月提出的《人工智能法案》提案的谈判授权草案。此前,欧洲议会和欧盟理事会已就草案进行多轮修订和讨论,并且在ChatGPT等生成式人工智能应用横空出世后,欧盟立法者紧急商讨了原版本草案中未涵盖的问题。欧洲议会声明,这部提案如正式获得批准,将成为全世界首部有关人工智能的法规。
草案将适用于在欧盟境内将人工智能系统投放市场或投入使用的实体(无论该实体是在欧盟境内还是在第三国)、在欧盟境内使用人工智能系统的实体以及在第三国使用人工智能系统,但系统的输出用于欧盟境内或对欧盟境内人员产生影响的实体。
风险分类监管
《人工智能法案》授权草案的一个突出特点是注重基于风险来制定监管制度,以平衡人工智能的创新发展与安全规范。草案将人工智能风险分为不可接受的风险、高风险、有限的风险和极小的风险四级,对应不同的监管要求。其中高风险人工智能的使用必须受到严格监管,系统提供者和使用者都要遵守数据管理、记录保存、透明度、人为监管等规定,以确保系统稳定、准确和安全。对于违反规定者,草案设定了最高3000万欧元(1欧元约合人民币7.895元)或全球年营业额6%的罚款。
草案严格禁止对人类安全造成不可接受风险的人工智能系统,包括部署潜意识或有目的操纵技术、利用人们弱点或用于社会评分的系统,并扩大了人工智能高风险领域的分类,将对人们健康、安全、基本权利或环境的危害考虑在内。草案还要求人工智能公司对其算法保持人为控制,提供技术文件,并为“高风险”应用建立风险管理系统,还针对ChatGPT等生成式人工智能设立专门监管制度。每个欧盟成员国都将设立一个监督机构。
此外,引进监管沙盒(指通过设立限制性条件和制定风险管理措施,允许企业在真实的市场环境中,以真实的个人用户与企业用户为对象测试创新产品、服务和商业模式)机制以管控风险和促进创新,在人工智能系统入市或投入使用前,对人工智能系统进行开发、测试和验证降低风险。草案还提出,这一机制同样被允许用于在现实条件下测试创新人工智能,以鼓励人工智能企业持续创新。
面临重要挑战
欧盟试图建立一个统一的人工智能法律监管框架,是全球人工智能发展进程中一个重要的标志性事例。欧盟对人工智能进行有效法规约束的探讨和尝试都将产生全球性影响,可能引发越来越多的国家尝试跟进相关法规的探索。
对于欧洲议会的决定,德国社民党表示支持:“人工智能的潜力和风险应得到全社会关注。”但也有反对者担心监管过度可能给欧洲人工智能公司带来更高成本和过重负担。
在人工智能开发方面处于领先地位的公司,某种程度上也是过去十年中面临反垄断违规风险、违反现行法律以及造成信息泄露危害的科技公司。基于此,OpenAI公司首席执行官萨姆·阿尔特曼表示,如果《人工智能法案》对AI进行过度监管,他将带领团队撤出欧洲市场。
专家称,欧盟推动人工智能立法,有利于维护欧盟在数字主权和科技领域的领导地位,并通过这样一部综合性立法抢占全球人工智能监管先机。但其本身具有局限性。它采用的是横向立法,并非针对特定人工智能应用领域,而是试图把所有人工智能都纳入监管范围,在执行层面将面临大量的解释问题。
有声音进一步指出,欧盟并未就人工智能技术可能给人类带来什么样的影响形成共识。从辩证的角度看,人工智能既能造福和服务人类,但如若用之不善,也会给人类带来威胁或伤害,如何平衡创新和约束是欧盟立法机构面临的一个非常重要的挑战。此外,统一的法律框架并未涉及具体法律规范,实际的执行效果可能“大打折扣”。
国际社会认为,当前,人工智能技术发展仍处在探索期。欧盟此时制定《人工智能法案》,释放出欧盟正在强化其在数字领域内建规立制的强烈信号。如何更好地平衡与衔接技术创新和制度创新,还需在实践中不断修正。
人工智能人才培养现状、问题及发展方向
7月26日,中国科协青少年科技中心、中国青少年科技辅导员协会和山东省科学技术协会共同主办的2021年中国人工智能普及教育发展论坛在山东烟台举行。论坛主题为“智能时代智创未来”,中国科学院大学人工智能学院副院长肖俊,浙江大学计算机学院教授、教育部义务教育信息科技课标组专家翁恺,山东大学软件学院副院长许信顺围绕人工智能人才培养现状、问题及如何做好人工智能人才培养等话题进行了分享和交流。小编整理专家们的干货观点,为你呈现:
2021年中国人工智能普及教育发展论坛会议现场
人工智能人才培养历史及现状
01
国内外人工智能人才培养链条初步形成
基于研究的高端人工智能人才培养已经发展了近半个世纪,肖俊梳理了国内外人工智能人才培养发展过程中有影响力的十件大事。
1958年,麦卡锡在麻省理工大学组建全球第一个人工智能实验室,开始人工智能研究和人才培养。1962年他在斯坦福组建了世界上第二个人工智能实验室。时至今日,上述两个实验室和卡内基梅隆大学的人工智能实验室排名全球前三。
2017年5月,中国科学院大学成立国内首个全面人工智能人才培养学院,随后,清华大学、北京大学、中国人民大学、南京大学等相继成立了人工智能学院和研究院。
2017年,中国《新一代人工智能发展规划》出台,明确提出要加快培养聚集人工智能高端人才,包括“人工智能+X”复合专业培养、学科交叉和产学研合作,同时实施全民智能教育项目,中小学阶段设置人工智能相关课程。
2018年4月,中国教育部印发《高等学校人工智能创新行动计划》,提出要加强理论研究,引导高校从增量知识和存量调整方面加大人工智能人才培养力度。教育部印发文件还指出,为构建人工智能多层次教育体系,中小学阶段也将引入人工智能普及教育。同时鼓励支持高校相关教学、科研资源开放,建立面向青少年和社会公众的人工智能科普公共服务平台,积极参与科普工作。
2018年5月,卡内基梅隆大学(CMU)开设全美第一个人工智能本科专业。同年,中国35所高校申请并获批招收人工智能本科专业学生,2019年之后逐渐变多,教育部也新增高职(专科)人工智能专业,2020年起开始执行。人工智能本科、专科和研究生层次的人才培养开始正式招生。
2018年来,中小学人工智能普及教育引发广泛关注。相关专业机构成立、面向中小学的教材陆续出版。2018年4月14日,中国青少年科技辅导员协会成立人工智能普及教育专业委员会;2019年5月26日中国人工智能学会成立了中小学工作委员会。如陈玉琨、汤晓鸥编写的《人工智能基础(高中版)》等。
2019年,中国人社部相关通知发布人工智能工程技术人员成为“新”的职业工种并组织专家和相关企业起草人工智能职业的相关标准和规范。
2019年3月22日,首届中国人工智能教育大会召开;2019年5月16-18日,国际人工智能与教育大会在北京召开,时任中国教育部部长陈宝生出席。
2019年9月22日,北京大学、清华大学等9所高校及清华大学出版社成立中国人工智能教育联席会,围绕全面提高人工智能人才培养这一核心,共同研讨人工智能人才培养的理念、方法和机制,抓好人工智能专业内涵建设,构建和完善“多主体协同育人长效机制”,培养高水平人工智能人才。
2020年1月21日,教育部、国家发展改革委和财政部印发的《关于“双一流”建设高校促进学科融合加快人工智能领域研究生培养的若干意见》出台,2020年人工智能专业研究生大幅扩招。
从上述这十件事情可以看出:尽管国内人工智能教育开始时间不长,但已受到学校、企业和政府等多方的高度重视;我国已逐步开启学位教育与职业培训协同发展的多元化人工智能人才培养模式;我国已经初步形成覆盖中小学、专科、本科、研究生等各个层次的人工智能人才培养链条,但仅仅是“初步形成”,和高等教育相比,中小学、专科和本科教育仍需再深入研究。
02
我国人工智能人才缺口大
人工智能人才紧缺是我国人工智能发展面临的主要困境。肖俊以2017年《全球AI领域人才报告》为依据,将当前中美人工智能人才数量做了一个对比。截至2017年一季度,全球人工智能领域专业技术人才数量超过190万,美国超过85万,排在第一位,而中国超过5万,全球第七,不足美国的6%。从人工智能人才从业时间的角度分析,中国高层次AI人才极其稀缺且从业时间短,美国从业十年以上的人才比我国高一倍。从年龄分布角度来看,我国也处于明显的弱势,整体而言28-37岁是AI主力军,但是在中国48岁以上的资深AI人才比较少,年轻人比较多一些。而48岁以上美国占到16.5%,中国只有3.7%。
随着诸多行业转向人工智能领域,该领域的人才需求量十分巨大。传统IT企业全面向人工智能转型,纷纷抢占智能产业制高点,如谷歌、IBM等。诸多非IT企业也开始布局人工智能产业,这与人工智能逐渐深入各行各业迫使它们不得不向该方向做转型有关,比如碧桂园就不惜重金招人工智能博士帮企业布局新发展。很多学物理化学材料专业的学生也开始学人工智能技术,希望可以通过学科交叉做出一些新的东西。据TalentSeer和AI人才社区Robin.ly联合发布的数据显示,2016-2019年,全球人工智能人才需求年均增长达74%,而我国工业和信息化部人才交流中心数据显示,当前我国人工智能产业内,有效人才缺口达30万。可见,人工智能的人才培养已是刻不容缓。
人工智能高等教育人才培养
面临的问题及解决思路
01
追求短平快,学科建设、各方协作不足
肖俊认为我国目前的人工智能高等教育主要存在三方面的问题。一是学科建设不健全。人工智能非一级学科,国内现在有几个专业都在做人工智能人才培养,包括智能科学与技术、数据科学和大数据、机器人工程等,没有明确规定人工智能人才必须在哪个系统或者哪个学院培养,导致培养体系不健全,目前每所高校的方案都不一样。二是要警惕“短平快”导向偏差。现在人人都来跨专业学人工智能,简单学一些深度学习算法和Python编程等基本能力就出去找工作。这种浅层次学习和人才培养其实不一定需要由高校承担。高校的人才培养需要贯彻落实“百年树人”思想,不能追求短平快。三是产学研协作不足。人才培养定位和目标不明确、校企供需对接不够、学校招生需求与就业脱节。
02
做好人才培养的精确分类
肖俊认为,人才培养需要执行“三个面向”方针,即面向世界科技前沿,面向国家重大需求和面向国民经济主战场,对人才做好分类培养。针对人工智能人才培养定位和目标不明确、校企供需对接不够、学校招生需求与就业脱节等问题,首先应面向不同需求做好精确分类,比如学术和职业教育层面就应区分开。研究生层面应设立创新型人才培养与技术应用型人才培养互补,专业化培育与定制型培育相结合的培养体系。职业教育层面,要充分发挥高职高专的职业教育优势,尤其是要与新公布的人工智能新职业工种和标准做好衔接。此外,人工智能教育培训市场目前也存在一定的泡沫,社会化培训也需要进一步规范,培养人才的初衷不能变。面向成人的教育,可以以技能培训为目标,并与职业资格考试结合。许信顺将高等教育人工智能人才培养划分为三个层次:一是研究人才培养,主要做核心算法、核心理念创新的工作,还有产业研发等;二是应用型人才培养,主要是把人工智能算法和具体产业相结合落地,使用现有人工智能工具,根据场景解决具体问题,做规模化、产业化;三是人工智能人才基础素养培养。
03
注重学科交叉、数理人文基础教育
“学科交叉”是肖俊谈人工智能高等人才培养的第一个关键词。针对人工智能培养体系不健全等问题,他认为首先应加快人工智能一级学科论证,充分考虑和重视人工智能的学科交叉性,考虑在2020年新增的“交叉学科”门类下进行设置;第二,应制定规范的人工智能人才培养方案,明确招生目标,合理设置招生专业和课程,充分体现人工智能与计算机科学、控制科学的异同;第三,应区分相关教材和专著,目前是专著多,教材少,应打造真正适合教学、学生使用的人工智能系列教材。针对“短平快”问题,现阶段人工智能方向的研究生应将模式识别、计算机视觉作为首选方向,像一些基础性、交叉性方向比如(脑)科学、生物信息学是很好的,但很多学生不一定很感兴趣,他们大多喜欢刷数据集,做应用,调参数,短平快的出成果。当然,出现这一现象也有老师的一部分责任,很多教师的目标在于出“成果”,这个目标本无可厚非,但不应该是人才培养的全部。事实上,不管是人工智能人才培养还是其它学科的人才培养,既然是人才培养,就一定要遵循自身规律,要注重周期性、流畅和质量。
“数理人文基础”是肖俊提出的第二个关键词。在论坛中,他介绍了卡内基梅隆大学(CMU)开设的人工智能本科专业的课程设置。它的课程很有特点,数学与统计学核心课程占6门,人文与艺术占7门,反而像计算机科学和人工智能这类核心课程加一起才8门。可见其非常重视培养学生的数理基础和人文艺术等交叉学科的整体素养的培养。这也是现在我国很多大学所做的通识教育,比如中国科学院大学的本科,前三个学期主要在学数理基础。因此,通过国外的做法可以看到,人工智能高等教育应重视对学生数理基础和人文知识素养的培养,为交叉学科做好准备。因为数学是人工智能核心算法的基础,而人文、伦理是人工智能涉及的重要方面。
04
政府、学校、企业协同
作为一个对硬件和软件要求较高的学科,在人工智能人才培养过程中联合政府、学校和企业之力实现资源共建共享是十分必要的,这也是目前很多学校在探索的路径。
许信顺提出,研究型人才的主要培养主体在高校和研究所。高校主要做规模化课程体系,而科研院所拥有非常先进的设备和优质的研究环境。除了前述两个主体外,还离不开政府和企业。政府方面,在国内能否培养哪个专业人才是需要教育部批准的,另外还需要做资金投入,需要政府拨款,与此同时政府还通过典型的项目投资来推动相关人才的培养工作。企业方面,前些年许多企业经常表示大学培养出来的人才与实际需求相脱钩,为此国家也非常重视这方面的问题,比如推动产教融合的人才培养模式。在人才培养过程中,企业可以提供相关研究环境包括数据,从而深入参与到人才培养过程中。尤其,对于应用型人才培养,更应该推动高校和企业的联合培养,高校有系统化的课程体系,企业有非常完善和成熟的应用场景,二者可以做深度结合。
肖俊也提出,校企协作是提高人工智能人才培养效率重要途径。企业、研究机构和高校有最先进的技术、设备和体验场所可以向社会开放,如中国科学院的研究所每年都有公众开放日,年年预约总是瞬间就满了,这说明社会需求量很大。如果相关企业高校都可以做这种开放日让公众去体验,那么可以在很大程度上解决这个问题。还有如百度、华为、阿里等企业,它们都有体验中心可以对学生开放,在这方面国外企业开始的很早,而国内比较晚。
中小学人工智能普及教育
面临的问题及解决思路
01
基础教育师资短缺,课程、平台不完善
人工智能普及教育要进入中小学,目前面临了三个难题。第一是没有形成成套系统的课程体系。许信顺建议,应该把人工智能基本概念、算法程序设计、机器学习、计算机视觉、人机交互等知识在整个素养培养过程当中进行融入。除了课程体系外,师资力量短缺的问题更是制约发展的瓶颈。依靠现有各个中小学的师资,把所有课程体系内容都讲通有一定难度,在济南很多学校达不到,师资配备不可能把所有课程串起来。第三,教学平台不完善。据许信顺了解,目前济南市拥有比较完善平台的学校只有一所,大部分学校现有的教学平台难以支撑实施所有的人工智能课程模块。现在很多学校有一个思路就是做高校企业的联合培养,通过资源整合来加快人才的培养进程。
02
人工智能普及教育应是一种素质教育
翁恺在论坛发言中特别强调,基础教育阶段的人工智能教育首先应是一种素质教育,即所有学生都应该在基础教育阶段学习,从小学到大学需要有连贯的规划和设计。其次是非技能性,基础教育学科的课程都是基本原理,而不是技能,既不期望学生学了语文可以成为小说家,也不期望学生学了物理可以成为机械工程师;理解人工智能的核心价值和基础理念比掌握具体可见的人工智能技术、手段更重要。
翁恺简单介绍了教育部新一轮的义务教育阶段信息科技课程标准修订的大致情况。课程的核心素养包括信息意识、计算思维、数字化学习以及信息社会责任等,课程目标是让学生具备应用信息科技解决问题的能力,养成合作与探究的习惯,自觉践行信息社会责任,为成为信息社会的合格公民打下数字化基础。
为什么要提“信息科技”而非“信息技术”呢?翁恺表示,之所以这样提,是为了使课程更具科学性。课程的科学性既体现在知识内容上,也体现在教和学的方法上,如何设计教学手段让学生自己探究来得到这些知识,这才是更重要的。教育不仅仅是使学生习得谋生的方法,正如浙江大学老校长竺可桢曾说,教育更需要有科学的方法来分析,公正的态度来计划和果断的决心来执行,而这些都应该是小学时代养成和学习的,这就是教育当中科学的体现。
03
培养孩子对机器的亲切感
生活在信息时代的孩子们,是互联网的原住民,对于非物质世界的认识,他们比以往任何一代都要深刻。因此,人工智能作为一门理解非物质世界的基础学科,需要把握好核心和出发点。在翁恺看来,人工智能教育最重要的是培养和机器打交道的能力,最原始的出发点就是让孩子喜欢计算机,培养他们对机器的亲切感,见到机器不陌生不害怕,习惯用机器解决问题。就像农民的孩子看到锄头是亲切的,医生的孩子看到听诊器是亲切的,我们的孩子看到机器应该是亲切的。在这样一个基础之上理解什么是虚拟,什么是现实,理解技术的边界和能力。
(来源:“全国青少年人工智能科普活动”微信公众号)
中国青少年科技辅导员协会
提醒广大科技辅导员
戴口罩勤洗手少集会
不给病毒可乘之机!
原标题:《人工智能人才培养现状、问题及发展方向》