博舍

对话业界大咖:人工智能高速发展背后的原因到底是什么 为什么人工智能能迅速发展起来

对话业界大咖:人工智能高速发展背后的原因到底是什么

第三,为GPU、云计算领域技术的快速发展,促进了计算力的明显提升。在这样的时代背景下,人人都可以做这件事。我们早年开始做图像处理的时候内存就只有几兆,图像就只能一点点读,很多事情做不了,但是现在都可以做了。

第四,就是人力。有人说,人工智能是有多少人工就有多少智能,这个事情其实一点都不假。一方面,研究人员多了,比如人脸检测,很多人在做,数据集是开放的,大家都可以不停地刷数据。另一方面,就是标数据的人力数量的提升。比如,你有个想法要做一个手势识别,会有几十个人专门来标数据,一星期就标出很多数据,然后拿去训练,就可以很快实现。

我认为,是以上四个原因让人工智能飞速发展。上述原因主要是基于计算机视觉这个领域来分析,其实语音也是一样的,都是先标数据,然后经过大量的机器训练,最后到功能的实现。

提问:

您认为AI技术已经相对成熟,可以在工业界逐步走向商用了吗?

罗教授:

我先讲视觉领域,无论看国内还是美国,国内其实更明显,真正成熟的技术主要是围绕从检测到识别的人脸相关技术。为什么成熟呢?因为人脸技术虽然不是刚体,但是接近于刚体,变化比较小,不同的人种差异不大,即使带有表情也都可以识别。另一个我觉得比较成熟的AI技术是车辆识别,车辆虽然每年在更新,其实外观都差的不多。

因为有了斯坦福大学公开的图像识别数据集ImageNet,才有了深度学习,其实一般物体的检测准确率已经大大提升。拿椅子举例,我们当年认为椅子是不可解的,是找不出来的。因为椅子不是一个视觉概念而是一个功能概念(人可以坐),椅子的形状材质各种各样,视觉上变数太大。现在为什么可以找出来呢,还是因为数据量大了,把所有椅子,从各种角度看的椅子都拿来训练,最终识别率就提升了。

工业界在应用AI时有几点要注意。关于AI技术从工业界到商用,我有一个70-90-99.5的经验公式。分为三个阶段:

第一个阶段的门槛是70%。如果一个技术方向在实验室,在适量的数据集上能达到70%准确,那么证明这个方向是可行的。

第二阶段是走出实验室到真实世界,用真实世界的数据把它推向更高的层次,目标是90%。当准确性达到90%大概率而且不出错时,可以去找一个垂直的场景,这个场景需要达到能够预估到剩下10%的错误不是灾难性的,或者让它在有限的范围内准确性高于90%,这样我们的产品就可以推广上市。

第三阶段的门槛我认为是99.5%。我认为100%可能性不大,但让机器做到99.5%,就能达到超过人的程度,这个时候说明它已经走向产业化了。

其实到了90%的时候就应该开始做,不要等到99.5%再做。你在做的同时可以考虑和你应用有关的东西,同时学术界也会继续把它往前推,等你把这边工作做好了,学术界的研究也跟上来了。

提问:

您认为工业界在应用AI技术时,除了AI自身还需要关注哪些问题,或者需要避免哪些误区?

罗教授:

谈到误区有几个事情我想说明一下。我以前在柯达的时候,他们有一个做事的理念:事情没有做到完美就不能拿到市场上去。其实AI用这种理念来做是会受到影响的,我们到了90%就可以推出去,这样我们就能在实践中找到缺陷在哪里。另外,是目前在中国看到的一个误区,事情还没有谱,就去大肆宣传,就去卖理念,最后造成大家很失望。因为之前AI好几次都是这样的,大家都认为AI要改变人类、改变生活,结果没有付诸行动实现,信心就撤掉了。要警惕这种过度承诺,要做到适度,既不要太激进也不要太保守,更不能被人忽悠。

还有一个注意要点跟安全、隐私有关,其中包括视觉和大数据用户画像,这个在一定程度上涉及了人的隐私边界。安全和隐私,企业还是要注意,哪些能用哪些不能用,要做到心中有数。用的时候,有一个方式就是把个体信息脱敏,聚合到群体信息中,这样没有针对某一个人,但是实际上是了解了一类人的行为,进而洞察出有价值的信息。

提问:

前些年,工业界大数据技术非常火爆,最近AI又在兴起,您怎么理解工业大数据和AI的关系?

罗教授:

这个事情我是比较有发言权,我发现有一些公司,他们经常把大数据和AI割裂开,或者成立两个部门管理,我认为这个做法是错误的。大数据如果不用AI,大数据的价值是出不来的,因为数据多了以后,人是没有能力去分析这么多数据的,必须靠AI。用AI去发现人不容易一眼就能看出来的东西,一个是数据量大,维度高的时候,人是没法想象的,这个东西只能靠AI来做,所以我认为大数据离不开AI。反过来AI也离不开大数据,特别是现在数据驱动的一些模型,没有大数据寸步难行。

我不是说,AI离开大数据什么都不能干。因为AI现在更多强调的也是如何运用数据来创造价值,AI还是非常需要大数据的。我认为在学术界只想研究大数据或只想研究AI是可行的,但是在工业界两边都要看,不能隔绝开。而且只有当两个放在一起的时候,你才能实现价值的最大化。

提问:

最后请您判断一下,未来几年AI技术的主要发展方向和趋势。

罗教授:

我先讲一个我不是太熟悉的方向,我觉得硬件上肯定是会继续发展的。NVIDIA现在其实也在推动一些把计算从云端往移动端或边缘端转移的事情,也有一些移动的芯片,我觉得端与云的协同会继续发展,这是一种趋势。

朱松纯的那篇《浅谈人工智能》内容很好,讲的就是大AI。最早AI是一个领域方向,后来细分为视觉、语音、文本理解、机器学习、机器人等等若干领域。这是因为每个小领域的人认为,我们其实可以在这个领域里面率先取得突破。

现在大家在各自领域发展一段时间,已经取得了一些成绩,分享的意识就提高了,希望得到更多的关注与聆听。实际上,应该是AI所有的子领域在一起汇合,才会产生聚合效应。所谓“大AI”,就是各个领域的成果互通,经验共享,这非常有意义。

拿机器人举例分析,实际上人和机器人最快捷的感知就是视觉,但是要给它命令需要语言,用语言去驱动它,而不是按个什么键。AI有一个领域被大家遗忘了,SchedulingPlanning(调度与规划)就是怎么去做一个计划。

SchedulingPlanning的典范就是导航GPS,我要从A去B有这么多条路,我该怎么找出最佳的路线,这就是规划的问题,搜索在有一个目标函数的情况下找出最佳的结果。目前这个变成冷门了,但实际上,在机器人这个领域里面是绝对有用的。机器人要做一个事情,它在想我的任务是从这搬到那,我怎么去越过这些障碍,这就是SchedulePlanning的问题,它得知道自己的位置,然后把这个环境映射到地图中。

机器人这个应用实际上会涉及到视觉、语音,然后你给他发号指令,并且不局限于简单的指令,NLP也得有,它自己还得有SchedulePlanning,而且好多东西都要机器去学习,所以在这个例子里,AI最后起作用的是,AI多分支整合产生的最大效应,这个我认为是接下来几年的发展方向。

实际上,特别是从工业界的角度,把这些最新的AI技术结合起来然后在一个场景下就可以爆发出最大的效应。客户不看你用的什么方法,无论是视觉还是语音,每一个领域都不是百分百对的,这个时候要采用多模态、多方式的思路,会让系统更加稳健。返回搜狐,查看更多

2023年人工智能领域发展七大趋势

2022年人工智能领域发展七大趋势

有望在网络安全和智能驾驶等领域“大显身手”

人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。

美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。

增强人类的劳动技能

人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。

比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。

总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。

更大更好的语言建模

语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。

2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。

众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。

网络安全领域的人工智能

今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。

随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。

人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。

人工智能与元宇宙

元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。

人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。

低代码和无代码人工智能

2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。

美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。

自动驾驶交通工具

数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。

特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。

此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。

创造性人工智能

在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。

2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)

【纠错】【责任编辑:吴咏玲】

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇