博舍

人工智能算法解决结构生物学挑战—论文—科学网 人工智能结构生物学

人工智能算法解决结构生物学挑战—论文—科学网

人工智能算法解决结构生物学挑战

 

一种新的人工智能算法可以从诸多错误形状中识别出RNA分子的3D形状。图片来源:斯坦福大学/CamilleL.L.Townshend

确定生物分子的三维形状是现代生物学和医学研究中最困难的问题之一。研究人员经常要花费数百万美元来确定分子结构——即使如此成本高昂的努力也经常失败。

近日,美国斯坦福大学博士StephanEismann和RaphaelTownshend在计算机科学副教授RonDror的指导下,使用新机器学习技术,开发了一种方法,通过计算预测精确分子结构,从而帮助克服这个问题。

最值得注意的是,即使只从少数已知结构中进行学习该人工智能新方法仍然成功,这使得它适用于那些结构最难以通过实验确定的分子类型。

相关论文8月27日刊登于《科学》。连同之前发表在《蛋白质》上的论文,研究人员详细介绍了该技术在RNA分子和多蛋白复合物领域的应用。

“结构生物学是研究分子形状的学科,它有一个信条,即结构决定功能。”Townshend说,该算法可以预测精确的分子结构,从而科学家可以解释不同分子是如何工作的,应用范围从基础生物学研究到药物设计实践。

“蛋白质是执行各种功能的分子机器。为了执行它们的功能,蛋白质经常与其他蛋白质结合。”Eismann说。“如果你知道一种疾病涉及一对蛋白质,你知道它们在3D中如何相互作用,你可以尝试用药物非常具体地针对这种相互作用。”

研究人员表示,机器学习领域最近取得的大多数显著进展都需要大量数据进行训练。这种新方法在很少训练数据的情况下能取得成功,这表明,相关方法可以解决许多数据匮乏的领域中未解决的问题。

“一旦你掌握了这种基本技术,你就可以提高对下一步的理解水平,并开始提出下一组问题。”Townshend说。(来源:中国科学报 唐一尘)

相关论文信息:https://doi.org/10.1126/science.abe5650

 版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。

人工智能会让结构生物学家“失业”

记者俞陶然

最近,网上流传着一个关于结构生物学家颜宁回国“真实原因”的说法,称AlphaFold2(阿尔法折叠2)等人工智能系统的问世,让结构生物学家面临“失业”困境。知乎上有人写道:“颜宁教授看到AlphaFold,就像骁勇善战的部落首领看到了航空母舰。不是颜宁不行,而是英国DeepMind太强大了。”

事实是否如此?记者采访了计算生物学家、复旦大学复杂体系多尺度研究院院长马剑鹏教授。他带领团队已开发出功能与AlphaFold2类似的OPUSFold(作品折叠)系统。他直言:“AI(人工智能)让一流结构生物学家失业,是我听过的最荒唐的说法。”

AI助力摘取“皇冠上的明珠”

“阿尔法折叠2”是谷歌旗下深度思维(DeepMind)公司的产品,与“阿尔法围棋”相仿,都是采用机器学习技术的人工智能系统。在2020年举行的国际蛋白质结构预测大赛上,“阿尔法折叠2”夺得冠军,它预测的蛋白质三维结构与实验测定的结构只有很小差异,被《科学》杂志评为“2020年十大科学突破”之一。

为何要用人工智能系统预测蛋白质三维结构?马剑鹏解释,蛋白质由一系列氨基酸折叠而成。氨基酸线性排列成一条长链,把它放到水里,整条链会在微秒至毫秒内折叠成一个稳定的三维结构。研究氨基酸长链如何自发地折叠成三维结构,简称“蛋白质折叠”问题,因其重要性和复杂性,被视作现代分子生物学“皇冠上的明珠”。在应用领域,小分子药物研发的基础就是蛋白质结构解析,只有探明目标蛋白质的“三维地图”,才能找到药物作用于蛋白质的靶点。

对科学家来说,测定氨基酸序列相对容易,但解析蛋白质结构的难度很大,因为蛋白质结构取决于几千个氨基酸各个原子间的相互作用力。根据已知氨基酸序列,用计算机预测蛋白质结构的运算量,连世界上最快的超级计算机也很难承受。

随着深度学习、强化学习等人工智能技术的兴起,计算生物学出现了跨越式发展。“阿尔法折叠2”等系统在学习实验测定的大量蛋白质结构后,具备了根据氨基酸序列准确预测结构的能力。今年,深度思维公司发布数据集更新,称“阿尔法折叠2”已预测几乎所有已知的蛋白质。

“干湿结合”成为生物学趋势

既然人工智能系统可以准确预测蛋白质结构,那么结构生物学家是否会面临“失业”困境?

据介绍,结构生物学是一门研究生物大分子的三维空间结构、动态过程和生物学功能的交叉性学科。解析各种蛋白质的三维结构,是结构生物学家的一项主业。作为国际知名的结构生物学家,颜宁曾在清华大学、普林斯顿大学工作,是美国国家科学院外籍院士、美国艺术与科学院院士。

对于网传说法,颜宁通过微博回应:在她研究的电压门控钠离子和钙离子通道领域,“阿尔法折叠2”学习了她带领团队解析的多个生物结构后,去年的预测精度达到颜宁团队2017年的水平,今年则没有进步。“AI团队做预测,我们做实验,测试新型小分子与蛋白的相互作用,迄今为止预测无一正确。”

马剑鹏表示,“阿尔法折叠2”远没有达到取代结构生物学家的能力。目前,它只能预测单链蛋白质的结构,基本不具备预测多链蛋白质结构的功能。而且在单链蛋白质预测方面,由于人工智能预测基于对已知蛋白质结构的比对学习,它对与其同源的蛋白质结构预测是比较准确的,然而面对拥有“孤儿序列”(氨基酸序列独一无二)的蛋白质时,“阿尔法折叠2”往往就无法准确预测了。

另外,在蛋白质侧链预测方面,“阿尔法折叠2”也有较大的提升空间。2021年,复旦大学复杂体系多尺度研究院在英国《生物信息学简报》上发表论文,报告他们开发的“作品折叠”在蛋白质侧链预测精度上,比“阿尔法折叠2”高。据介绍,蛋白质三维结构由主链和侧链搭建而成。药物分子与蛋白质的结合大多通过与氨基酸侧链相互作用来实现,所以人工智能系统对侧链结构的精准预测,对新药研发具有重要价值。

由此可见,人工智能并不会让结构生物学家“失业”,两者不是取代关系,而是互补关系。“AlphaFold2对颜宁这样的一流实验结构生物学家来说,有百利而无一害。”马剑鹏说,实验结构生物学家也是要用计算机建模的,AlphaFold2、OPUS-Fold这类软件可以加快建模速度,提高蛋白质结构解析的效率。

如今,“干湿结合”已成为结构生物学研究的趋势。长期以来,开展计算生物学研究的“干实验室”是生物学的配角。随着人工智能的兴起,这个配角已逐渐成长为主角,与实验生物学家工作的“湿实验室”更紧密地结合在一起,共同探索生命分子结构的奥秘。

“真正的研究者都乐于拥抱技术进步,善于用各种技术去探寻、解答自己感兴趣的问题。”颜宁表示,期待AI越来越强大。

人工智能会让结构生物学家“失业”

本报记者俞陶然

最近,网上流传着一个关于结构生物学家颜宁回国“真实原因”的说法,称AlphaFold2(阿尔法折叠2)等人工智能系统的问世,让结构生物学家面临“失业”困境。知乎上有人写道:“颜宁教授看到AlphaFold,就像骁勇善战的部落首领看到了航空母舰。不是颜宁不行,而是英国DeepMind太强大了。”

事实是否如此?记者采访了计算生物学家、复旦大学复杂体系多尺度研究院院长马剑鹏教授。他带领团队已开发出功能与AlphaFold2类似的OPUSFold(作品折叠)系统。他直言:“AI(人工智能)让一流结构生物学家失业,是我听过的最荒唐的说法。”

AI助力摘取“皇冠上的明珠”

“阿尔法折叠2”是谷歌旗下深度思维(DeepMind)公司的产品,与“阿尔法围棋”相仿,都是采用机器学习技术的人工智能系统。在2020年举行的国际蛋白质结构预测大赛上,“阿尔法折叠2”夺得冠军,它预测的蛋白质三维结构与实验测定的结构只有很小差异,被《科学》杂志评为“2020年十大科学突破”之一。

为何要用人工智能系统预测蛋白质三维结构?马剑鹏解释,蛋白质由一系列氨基酸折叠而成。氨基酸线性排列成一条长链,把它放到水里,整条链会在微秒至毫秒内折叠成一个稳定的三维结构。研究氨基酸长链如何自发地折叠成三维结构,简称“蛋白质折叠”问题,因其重要性和复杂性,被视作现代分子生物学“皇冠上的明珠”。在应用领域,小分子药物研发的基础就是蛋白质结构解析,只有探明目标蛋白质的“三维地图”,才能找到药物作用于蛋白质的靶点。

对科学家来说,测定氨基酸序列相对容易,但解析蛋白质结构的难度很大,因为蛋白质结构取决于几千个氨基酸各个原子间的相互作用力。根据已知氨基酸序列,用计算机预测蛋白质结构的运算量,连世界上最快的超级计算机也很难承受。

随着深度学习、强化学习等人工智能技术的兴起,计算生物学出现了跨越式发展。“阿尔法折叠2”等系统在学习实验测定的大量蛋白质结构后,具备了根据氨基酸序列准确预测结构的能力。今年,深度思维公司发布数据集更新,称“阿尔法折叠2”已预测几乎所有已知的蛋白质。

“干湿结合”成为生物学趋势

既然人工智能系统可以准确预测蛋白质结构,那么结构生物学家是否会面临“失业”困境?

据介绍,结构生物学是一门研究生物大分子的三维空间结构、动态过程和生物学功能的交叉性学科。解析各种蛋白质的三维结构,是结构生物学家的一项主业。作为国际知名的结构生物学家,颜宁曾在清华大学、普林斯顿大学工作,是美国国家科学院外籍院士、美国艺术与科学院院士。

对于网传说法,颜宁通过微博回应:在她研究的电压门控钠离子和钙离子通道领域,“阿尔法折叠2”学习了她带领团队解析的多个生物结构后,去年的预测精度达到颜宁团队2017年的水平,今年则没有进步。“AI团队做预测,我们做实验,测试新型小分子与蛋白的相互作用,迄今为止预测无一正确。”

马剑鹏表示,“阿尔法折叠2”远没有达到取代结构生物学家的能力。目前,它只能预测单链蛋白质的结构,基本不具备预测多链蛋白质结构的功能。而且在单链蛋白质预测方面,由于人工智能预测基于对已知蛋白质结构的比对学习,它对与其同源的蛋白质结构预测是比较准确的,然而面对拥有“孤儿序列”(氨基酸序列独一无二)的蛋白质时,“阿尔法折叠2”往往就无法准确预测了。

另外,在蛋白质侧链预测方面,“阿尔法折叠2”也有较大的提升空间。2021年,复旦大学复杂体系多尺度研究院在英国《生物信息学简报》上发表论文,报告他们开发的“作品折叠”在蛋白质侧链预测精度上,比“阿尔法折叠2”高。据介绍,蛋白质三维结构由主链和侧链搭建而成。药物分子与蛋白质的结合大多通过与氨基酸侧链相互作用来实现,所以人工智能系统对侧链结构的精准预测,对新药研发具有重要价值。

由此可见,人工智能并不会让结构生物学家“失业”,两者不是取代关系,而是互补关系。“AlphaFold2对颜宁这样的一流实验结构生物学家来说,有百利而无一害。”马剑鹏说,实验结构生物学家也是要用计算机建模的,AlphaFold2、OPUS-Fold这类软件可以加快建模速度,提高蛋白质结构解析的效率。

如今,“干湿结合”已成为结构生物学研究的趋势。长期以来,开展计算生物学研究的“干实验室”是生物学的配角。随着人工智能的兴起,这个配角已逐渐成长为主角,与实验生物学家工作的“湿实验室”更紧密地结合在一起,共同探索生命分子结构的奥秘。

“真正的研究者都乐于拥抱技术进步,善于用各种技术去探寻、解答自己感兴趣的问题。”颜宁表示,期待AI越来越强大。

【编辑:刘阳禾】

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇