【人工智能】人工智能与人类智能的关系
1.基本概念界定
1.1人工智能
人工智能是在20世纪中期以后产生的学科,人工智能就是用机器模拟人类的智能活动,从而用机器代替人类行使某些方面的职能。人工智能是通过探索人的感觉和思维的规律来模拟人的智能活动,电子计算机是人工智能的媒介和基础。阿伦·图灵说:“如果一台计算机能骗过人,使人相信它是人而不是机器,那么它就应当被称作有智能。”如果以此为标准来界定机器的智能,那么人工智能的发展之路仍然任重道远。
1.2人类智能
智能简单地说就是智慧与能力,是综合、复杂的精神活动功能,是人运用自己已有的知识和经验来学习新知识、新概念并且把知识和概念转化为解决问题的能力。智能活动往往和记忆力、感知力、思维、判断、联想、意志等有密切的联系,人类的智能表现在能够进行归纳总结和逻辑演绎,人类对视觉和听觉的感知以及处理都是条件反射式的,大脑皮层的神经网络对各种情况的处理是下意识的反应。
1.3什么是思维
思维是事物的一般属性和内在联系在人脑中的间接的、概括的反映。思维的形式包括概念、理解、判断、推理等。思维往往借助于语言来表达,由直接的感受即感性思维转化为理性,透过现象看到事物的本质,发现普适性的规律。芒福德说人类是“精神的制造者”而不仅仅是“工具的制造者”,因为人类具备思维能力。
2.基于“技术元素”视角下的人工智能
“技术元素”这一说法是凯文·凯利提出的,技术元素就是从人类意识中涌现出的一切东西,包括技术具象的工具,也包括文化、法律、社会机构和一切智能创造物。凯文·凯利说:“科技是人类的发明,也是生命的产物。”居所是动物的技术,是动物的延伸部分,人类的延伸部分是技术元素,科技发明是我们基因创造的躯体的外延。
2.1人工智能是技术进化的成果
凯文·凯利认为人类的延伸由思维产生,因为思维具有创造力,才促使了技术的进步,才创造出了以往没有创造出的东西,所以,“如果说科技是人类的延伸,那也与基因无关,而是思维的延伸。因此科技是观念的延伸躯体”。技术元素伴随着语言、工具的诞生成为人类不可或缺的伙伴,从古至今,除了极少的例外,各种技术都没有消失,而是进化成不同形态的技术。人工智能作为一种科技物种,随着技术的进步而产生发展,是技术进化的成果。
2.2人类与技术共同进步
一切生物都有天然的借助外力的本领,从钻木取火到航空航天,人类经历了漫长的发展,或者说是进化,技术作为一种手段、一种工具从来都与人类相伴相生。“技术元素”赋予技术以生命,人是技术进化的动力,而技术的进化也促进了人类社会的发展,二者是密不可分的。科技与人类正在逐渐融合,或者说人类已经成为科技最适合的载体;“技术元素”的发展虽然具有一定程度的自主性,但是它的发展轨迹从某种意义上来说也是人类意志的体现。人作为技术发展的动力之一与“技术元素”同步运动。
3.人工智能能否超越人类
对于这个问题人们有两种极端的看法:一是认为人工智能必将取代人类,不久的将来人类会沦为机器的奴隶;二是对人类的主体地位有着极度的自信,认为机器始终都是被人控制。前者的依据是人工智能的发展极其快速,超越了人类智能的进化速度,人工智能取代人类只是时间问题。后者的依据是人工智能不具有生命特征,无法融入生物圈从而和自然发生联系,只能作为人类活动的工具而存在。我更偏向于第二种观点,是基于以下几个原因:
3.1缺乏创造性的“特长生”
人工智能开发出的机器可能是某一个领域的“特长生”却不是全才。比如AlphaGO是围棋特长生却不能唱歌,计算器是数字计算的天才却不能陪人聊天,情感机器人负责陪伴和情感安慰却不能真正懂得人类的喜怒哀乐,如此等等,它们按照既定的程序运行,各司其职、各得其所,不会偏离轨道也不懂得创造。塞缪尔说:“机器不能输出任何未经输入的东西。”目前最先进的机器人也是依赖于软件运行,软件是通过人来完成更新升级,人工智能实际上是人类智能的外在表现。人体是一个复杂而庞大的系统,人有特定的背景和生活习惯,人脑的发育会受到所经历的事件和社会环境的影响,能够灵活运用,组合所接受的信息,具备综合分析问题的能力。人脑的控制系统复杂和精密程度远远超过智能机器人,因此,人工智能在技术上不及人类智能,它依赖人类智能而进化,能够胜任人类制定的任务,却缺乏人类智能的创造性。
3.2不能思维的人工智能
在回答“机器能否思维”的时候,我们首先应该对思维进行界定,思维是人脑特有的功能。人脑是一个高度发达的系统,是人类意识活动的物质载体。“电脑思维”在功能上会向人脑思维不断接近,但是两者之间存在不可消除的界限,“电脑思维”是一个简单的逻辑过程,模拟人脑思维功能和思维信息过程,它在本质上区别于人类思维。人脑思维除了能够接受外部信息以外,还能对信息进行主观的加工。人们已经能制造出类人机器人,可是它不能和人一样思维吗,因为思维不仅仅是人脑的生理机能,离开社会实践和人际交往是不能产生思维的。
3.3是辅助而非替代
人工智能简单明了地说就是人类用来改造世界的技术手段,是辅助性的工具,而不是对人类的替代。人工智能出现的历史并不久远,前文说到了技术和人类的共同进化,当人类有能力利用工具来处理复杂繁琐的工作时,这是人类的进化,也是工具的进化。人工智能被用于帮助人类进行某项工作,才能解放人力,人类智能才可以更好发挥主动性和创造性。人工智能承担了人类活动中基础的、不可或缺的、复杂的工作,从而使人类智能转向更核心的科研创造以及思维和判断上来。在人与人工智能的关系上,二者是相辅相成、相互补充的,而不是互相排斥、完全替代。
4.总结
人工智能与人类智能的关系是互为补充、相互制约的,人与技术的融合是必然的。目前人工智能的更新升级必须依赖与人类智能,人类智能的进化程度关系到人工智能的先进程度“技术元素”的进化也要受到社会条件的制约。人工智能可能在某一方面出强大的功能,但是它缺乏思维和创造性,这一点是致命的缺陷,工具作为人类器官的延长,是人类智能的外化之物,被人类智能的发展程度所局限。
艾瑞:2023年中国人工智能行业发展观察
导语:2021年,中国人工智能产业继续大踏步前进,计算机视觉核心产品市场规模接近千亿元,智能语音市场亦保持高速增长。
导语:自2010年人工智能在语音和视觉两个领域产生突破性进展以来,技术突破工业红线就成为社会的共同期待。经过了近年来的高速发展,中国人工智能产品技术已经广泛出现在决定企业产生经济效益的各个环节,推动传统行业启动效率变革、动能转换之路。人工智能作为创业企业标签的属性在变弱,而越来越成为千行百业的经营主体都在积极尝试和运用的生产要素。2021年,中国人工智能产业继续大踏步前进,计算机视觉核心产品市场规模接近千亿元,智能语音市场亦保持高速增长。在未来的发展中,如何像人类一样将多模态信息融合分析、突破依赖数据输入的局限、与知识和常识结合解决高层次问题以及主动感知与适应复杂变化等都将是人工智能技术可期待的下一次拐点。
一、2021年中国人工智能发展概述
1.人工智能将成为数字经济时代的核心生产力
数字经济是以数据为关键生产要素、以现代信息网络为重要载体、以数字技术应用为主要特征的经济形态。发展数字经济,微观上可能重塑传统的企业经营模式和经营理念;宏观上,数据作为生产要素的重要性不断提升,将对现有基于要素比较优势而形成的国际分工格局带来影响。近年来,我国数字经济发展迅速,2020年我国数字经济规模为39.2万亿元,占GDP比重达到38.6%,较2019年提升2.4个百分点,对整体经济产值的影响进一步加大。发展数字经济,将打通供应链上下游、产业链的不同环节与服务链的各个节点,通过产业的数字化升级,实现效率变革、动力变革、质量变革,助力新发展格局的形成与发展。2021年3月我国十四五规划纲要出台,提出“打造数字经济新优势”的建设方针并强调了人工智能等新兴数字产业在提高国家竞争力上的重要价值。人工智能作为关键性的新型信息基础设施,被视为拉动我国数字经济发展的新动能。
2.人工智能于各环节提升经济生产活动效能
人工智能技术及产品在企业设计、生产、管理、营销、销售多个环节中均有渗透且成熟度不断提升。同时,随着新技术模型出现、各行业应用场景价值打磨与海量数据积累下的产品效果提升,人工智能应用已从消费、互联网等泛C端领域,向制造、能源、电力等传统行业辐射。以计算机视觉技术主导的人脸识别、光学字符识别(OCR)、商品识别、医学影像识别和以对话式AI技术主导的对话机器人、智能外呼等产品的商业价值已得到市场充分认可;且除感知智能技术外,机器学习、知识图谱、自然语言处理等技术主导的决策智能类产品也在客户触达、管理调度、决策支持等企业业务核心环节体现价值。
3.资本回暖,过会企业二级市场融资通道即将打开
经过2020年新冠疫情的行业洗牌后,2021年以来,资本回暖,资金流入更为成熟的企业(C轮及以后)的同时,也流入了众多A+轮及以前的初创企业,投资者重拾对人工智能创业回报的信心。此外,多家AI企业集中进行IPO使得行业融资实现了跨越,云从科技、旷视科技、格林深瞳、云天励飞均顺利过会,并拟在科创板上市,其人工智能融资即将打开二级市场的通道。
二、中国计算机视觉赛道发展现状及发展趋势
1.市场规模:市场规模接近千亿元,计算机视觉赛道仍是AI商业化主阵地
自人工智能第三次浪潮兴起以来,计算机视觉一直是商业化落地进程最快的赛道,近年来,在深度学习算法的加持与带动下,计算机视觉技术及软硬件产品在泛安防、金融、互联网、医疗、工业、政务等领域得到广泛应用。通过对下游行业需求统计测算,2021年,中国计算机视觉核心产品的市场规模达到990亿元,已接近千亿元大关。此外,与计算机视觉相关的计算机通信设备销售、工程建设、传统业务效益转化等带动相关产业规模超过3000亿元。
2.投融资市场:随着赛道逐渐趋于成熟,投融资热度出现下滑
2017年至2021年11月,计算机视觉类相关融资事件共计282起,涉及融资总金额达820亿元。2018年是计算机视觉赛道的融资爆发期,融资金额高达273亿元。而2019年以来,受疫情影响以及市场饱和度不断提升,赛道融资热度有所降低,融资轮次与金额再未达到2018年的水平。2021年,计算机视觉赛道融资金额下滑至75亿元,但融资次数较2020年明显提升。计算机视觉头部厂商在部分应用领域深耕多年,市场格局趋于稳定,留给初创企业的机会逐渐减少,因此新进入厂商尝试进入工业、医疗等想象空间大且技术成熟度相对较低的市场,预计新一轮的融资热潮有望在未来2-3年到来。
3.发展特征:工业与医疗成为近年来计算机视觉最受关注领域
2017年至2021年11月,国内共有198家计算机视觉企业获得投资,其业务领域遍布公安、交通、金融、工业、医疗等各行各业。近年来,计算机视觉产品技术在工业与医疗领域的应用受到极大关注,制造业是国民经济的支柱,对计算机视觉的使用包括智慧现场安监、智能辅助运输、工业视觉质检以及智能工业机器人等方向,链条长且场景多样,孕育了一批新兴AI企业;医疗领域,以计算机视觉为核心技术的医学影像辅助诊断产品已经由实验室走进各大医院之中,AI医学影像辅助诊断的普及对于减轻医生负担、提升基层医疗机构诊断水平有着重要意义与价值,也是近期资本市场关注的焦点。
4.发展趋势:多模态信息融合分析以及主动感知将是计算机视觉实现飞跃的下个关口
计算机视觉作为商业化程度最高、应用场景最广的人工智能赛道,从技术层面来看,在分类、定位、检测、分割等基本语义感知研究任务上已经取得很好的表现,在真实场景中也能够较好应对实战考验。在未来的发展中,如何像人类一样将多模态信息融合分析、适应三维世界、突破依赖数据输入的局限、与知识和常识结合解决高层次问题以及主动感知与适应复杂变化等都将是计算机视觉技术可期待的下一次拐点。
从未来市场发展来看,通用技术的平台化输出以及公安、金融等具备明确政策支持且产品普及度已经较高的领域目前已基本被互联网巨头、安防头部企业以及AI上市企业或独角兽等玩家占据,市场格局已逐步明朗;而工业、医疗和能源等极具战略意义的新兴领域还拥有极大的发展空间,但对于上述或陷入长审批周期、或限于审慎性难以快速释放需求的行业,计算机视觉企业的主要机遇则在于抢先打通产品进入行业生态圈的渠道和链条,以及谋划通过政府、行业生态圈的核心集团企业等途径,积极参与公共服务平台建设,建立从上向下拓展的先发优势,抢先获得大量训练数据与场景理解,形成产品提升的护城河。
三、中国智能语音赛道发展现状及发展趋势
1.市场规模:垂类语音核心产品规模近60亿,AI语音助手算法产值约24亿
智能语音技术可通过声音信号的前端处理、语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)等形成完整的人机语音交互。智能语音技术落地分为三类应用场景,分别为以语音识别、语音合成和语音转写为主的垂类应用、消费级智能硬件中加载的语音助手和ChatBot对话机器人产品。2020年,垂类语音核心产品规模约为58亿,AI语音助手算法产值约为24亿。未来随着疫情催化和产业的数智化转型加速,垂类语音应用在教育、公安和医疗等领域加速场景落地,且智能硬件搭载AI语音助手的功能性定位让其随着智能终端的规模扩大具备强需求增长动能。两类智能语音应用未来增长态势趋显,2021年至2026年的五年CAGR将分别达到21.3%和35.4%。
2.投融资市场:资本市场回归平稳,2021年垂类初创企业较为活跃
2018年至2021年11月,智能语音类相关融资事件共计120起,涉及融资总金额达153亿元。从融资热度来看,智能语音赛道在2018年进入快速发展期,2019年进入融资爆发期,而后进入平稳发展阶段。从融资轮次来看,智能语音企业融资阶段多集中在A+轮及以前和PreB到B+轮,两者占比高达72%。2021年,切分垂类场景的智能语音初创企业较为活跃,新进入厂商纷纷瞄准以医疗、招聘、工业等为代表的智能语音市场,期望获取行业经验和细分场景加成下的竞争性优势。
3.发展特征:智能语音与语义理解、知识图谱、行业应用的创新发展
在技术侧,智能语音行业发展仍然面临着声纹识别的不稳定性、语音识别的鲁棒性以及训练场景的长尾性的落地挑战;而在应用侧,智能语音技术已逐步从纯技术形式应用,转向“语音+AI技术+行业“的创新式发展。受供给侧的业务增长突破和需求侧的客户诉求推动,智能语音技术调用不仅是单纯为转写“人说了什么”或者输出“机器要说什么”,而是正逐步与语义理解、知识图谱等AI技术融合,让使用智能语音技术的机器本体更加具备认知性和行业关联性,结合行业Know和甲方需求输出整体性、结果导向性的实用解决方案。
4.发展趋势:智能语音加速产业落地融合,硬件中语音交互入口的功能性定位带来强需求增长动能
目前,智能语音的语音识别、语音合成和语音转写能力已落地应用在互联网、医疗健康、司法、教育和工业等多行业领域。基于智能语音技术实现文本到语音、语音到文本的快速转换,在各产业应用中实现语音文本的信息同步,让资料整理和信息检索都更加方便快捷,让机器与人类的交互更加快速直接。从规模占比来看,互联网、司法和教育仍占据三大头部应用领域。从业务增长性来看,国家颁布教育“双减”政策,课后服务学生的自主阅读学习给智能语音应用产品带来较大市场;另外在医疗信息化背景下,医疗加速智能应用体系建设,以语音应用为入口切入电子语音病历、导诊机器人、辅助诊断治疗等领域,已从三甲医院逐步向下渗透。未来,消费级硬件所搭载的AI语音算法将成为硬件智能化的基础标配门槛,随着物联网和5G的技术发展,智能硬件带来强大增长动能,AI语音助手的算法产值也将不断升高。
四、中国AI企业典型案例解析
1.易道博识:聚焦文字、人脸与图像识别的AI技术研究与应用开发服务商,以一站式机器学习训练平台为底座,打造高效的AI模型应用
易道博识由来自中科院、清华大学、北京大学等的多名顶尖人工智能专家共同组建,是国家级高新技术企业及专精特新企业,拥有发明专利、实用新型专利50余项,计算机软件著作权35项,商标知识产权30余个。公司致力于人工智能领域的技术研究与应用开发,基于自主研发的赛博(CyberBot)机器学习平台,实现文字识别、人脸识别、图像识别三大核心技术功能,为证券、银行、保险、互联网、汽车金融、地产多个行业量身打造AI+智能OCR识别解决方案,现已与600多家知名企业和机构建立合作。
赛博(CyberBot)学习平台是易道博识自主研发的一站式机器学习训练平台,集智能数据管理、数据标注、模型训练和模型部署应用功能于一身,提供计算机视觉、OCR和NLP等领域数据驱动模型应用的高效解决方案。该平台可有效缓解B端、G端逐渐增长的、从感知到认知多类型的AI应用模型开发、训练到部署的完整需求,输出AI技术服务能力,提高AI应用模型在各行业的渗透速率与价值空间。赛博平台可以根据客户需求整体部署到客户的私有化环境里,实现内部循环,一方面保证了数据安全性,一方面大大降低了编程工作量和使用门槛、节约了AI开发时间、减轻了对专业数据科学家与算法工程师的依赖,按需柔性匹配生产。
2.慧算账:以平台为内部开发管理工具,对外提供AI智慧财税服务,助力客户实现数字化转型
慧算账致力于使用AI工具为中小微企业提供AI智慧财税服务,以改善并解决数字经济背景下国内财税服务市场面临的业务痛点即中小企业需记账报税、但外聘会计成本高,部分代理记账公司数字化程度低且记账服务专业性差等问题。慧算账SaaS财税服务平台集成了记账报税、知识库、智能客服与CRM等模块,采用了RPA的自动化技术与OCR、ML、KG、NLP等AI技术,针对财税服务市场的业务痛点做通用与定制化的应用开发,目前已开发出票据识别、智能记账等应用。从服务模式看,慧算账以SaaS财税服务平台为内部开发管理工具,对外输出AI智慧财税服务与工具,助力记账报税的自动化、释放人力,为中小微企业的数字化与智能化转型提供了便捷灵活的创新型财税服务。
以票据识别与记账、智能会计核算、知识图谱问答为例,慧算账提供了便捷高效的AI智慧财税服务。票据识别方面,可实现自动化的格式统一与图像质量矫正,识别出票据类型(发票、回单、交通票、费用票等),并自动导入数据信息。智能会计核算方面,可自动将文字转化为词向量、实现数据归一,并根据输入信息搭建业务模型,输出指定的结果。知识图谱方面,可自动提取问题中的关键词,更新知识存储,基于知识库回答会计问题,提升记账的专业性。从效果上看,慧算账为下游的中小企业提供的智慧财税服务覆盖数百个科目、近千个业务场景,业务自动化能力超95%,助力客户实现数字化转型;同时,慧算账也为其他代理记账公司提供AI工具,提升其记账服务的数字化与智能化水平。
(本文为艾瑞网独家原创稿件转载请注明出处)如何培养人工智能时代劳动者
浙江大学校长吴朝晖在国际人工智能与教育大会的发言中,描绘了一幅未来人工智能时代的全景图像。那时,人工智能也将具备感知、记忆、推理能力,不仅人类的体力劳动被机器替代,部分脑力劳动也将被替代。
那么,未来哪些职业将面临风险,哪些新职业又将出现?今天的教育与培训系统如何预测这些变化,如何精准应对人工智能时代的技能需要?
在国际人工智能与教育大会上,这些关于人工智能时代生活、工作以及人类未来所需的能力等问题,成为与会者讨论的焦点。
人工智能将引发颠覆性转变
教育应密切关注和适应未来劳动力市场变化
“每一次技术变革都会带来社会变革。”英国牛津大学经济学家卡尔·贝内迪克·弗雷说。
未来,在以人工智能为标志的第四次工业革命到来时,人类也将面临同样问题。据联合国教科文组织预测,伴随着新职业的增长以及低技能任务实现自动化,人工智能的渗透所引发的失业率会急剧上升,造成社会和政治紧张,同时带来收入不平等日益加剧的风险。
最近,一项全球评估显示,到2030年,30%的“工作活动”可以实现自动化。不但普通工人的工作会受到严重影响,“白领”雇员和管理者以及部分艺术产业的工作者也将被波及。
“人工智能将越来越彰显颠覆意义。”根据研究,吴朝晖预测,人工智能的发展将产生超级智能、融合智能等形态,深刻改变物理世界、虚拟信息世界的生产力和生产关系,引发社会对智能机器道德伦理等问题的全新思考,人的智能将引入并作为智能系统的重要组成部分。
发挥人机各自优长 实现人机和谐共处
教育应在培养人类特有能力上下功夫
人工智能时代,劳动者需要具备哪些能力?
欧洲职业培训发展中心对欧洲企业岗位和技能要求进行大数据分析后发现,目前有56%的工作需要高技能人才,同时对低技能人才仍有大量需求。人工智能时代,技能人才将被划分为技术的创造者、使用者和协作者。对于技术的创造者来说,需要具备计算思维和数字能力,需要拥有数字学科、技术科学和自然科学、人文科学的跨学科能力;对于技术的使用者来说,需要信息技术、数据分析处理、内容开发、信息技术使用等方面的能力,需要利用信息技术解决面临的各种问题。
国际电信联盟亚太地区办事处高级顾问萨默尔·夏尔马说:“信息技术能力和人工智能技能,可能不是最重要的,却是未来工作必不可少的。与此同时,人类自身特有的能力将在未来显得格外重要。”
随着人工智能及其他前沿技术的应用,需要利用人类特有的创造能力、社会情感能力和人际互动的高技能工作数量将不断增加。
落实《北京共识》做好教育规划
积极审慎地走好人工智能与教育“未来的路”
习近平主席在致本次大会的贺信中强调,把握全球人工智能发展态势,找准突破口和主攻方向,培养大批具有创新能力和合作精神的人工智能高端人才,是教育的重要使命。
教育,是人工智能的孵化器,同时受到人工智能的挑战,但也是人工智能的受益者。大会通过的《北京共识》提出,各国要制定相应政策,推动人工智能与教育、教学和学习的系统性融合。
中国教育部部长陈宝生在5月16日部长论坛发表主旨发言时强调,中国高度关注人工智能对教育带来的巨大影响,密切关注人工智能对教育带来的问题和挑战,要秉持积极审慎的态度,思考如何走好“未来的路”。
那么,今天的教育该如何改革,才能精准培养人工智能时代的人才?
首先,加强关于人工智能与教育的战略规划。为实现联合国2030教育议程可持续发展目标,为人工智能时代培养各种人才不断探索。
其次,加强人工智能专业人员的培养。北京师范大学教授黄荣怀建议,通过人工智能专业建设、人工智能学院建设等方式,培养能够设计、编码、开发人工智能系统的专业人员,从而加强人工智能人才储备,提高国际竞争力。将“人工智能能力”纳入教育计划,即将人工智能融入中小学教育、高等教育、职业教育和社会培训。
再其次,加强教育评价体系改革。西安交通大学副校长郑庆华建议,应该利用信息化与人工智能等手段,建立过程性的、个性化的、德智体美劳全面关注的评价体系。(本报记者 张东 黄蔚)
什么是人工智能 (AI)
虽然在过去数十年中,人工智能(AI)的一些定义不断出现,但JohnMcCarthy在2004年的文章 (PDF,127KB)(链接位于IBM外部)中给出了以下定义:"它是制造智能机器,特别是智能计算机程序的科学和工程。AI与使用计算机了解人类智能的类似任务有关,但不必局限于生物可观察的方法"。
然而,在这个定义出现之前数十年,人工智能对话的诞生要追溯到艾伦·图灵(AlanTuring)于1950年出版的开创性作品"计算机器与智能"(PDF,89.8KB)(链接位于IBM外部)。在这篇论文中,通常被称为“计算机科学之父”的图灵提出了以下问题:“机器能思考吗?” 他在这篇文章中提供了一个测试,即著名的“图灵测试”,在这个测试中,人类询问者试图区哪些文本响应是计算机做出的、哪些是人类做出的。虽然该测试自发表之后经过了大量的审查,但它仍然是AI历史的重要组成部分,也是一种在哲学中不断发展的概念,因为它利用了有关语言学的想法。
StuartRussell和PeterNorvig随后继续发表了“人工智能:一种现代方法 ”(链接位于IBM外部),成为AI研究方面的重要教材之一。在这本书中,他们深入探讨了AI的四个潜在目标或定义,基于理性、思考和行动来区分计算机系统:
人类方法:
像人类一样思考的系统像人类一样行动的系统理想方法:
理性思考的系统理性行动的系统艾伦·图灵的定义可归入"像人类一样行动的系统"类别。
以最简单的形式而言,人工智能是结合了计算机科学和强大数据集的领域,能够实现问题解决。它还包括机器学习和深度学习等子领域,这些子领域经常与人工智能一起提及。这些学科由AI算法组成,这些算法旨在创建基于输入数据进行预测或分类的专家系统。
目前,仍有许多围绕AI发展的炒作,市场上任何新技术的出现都会引发热议。正如Gartner在其hypecycle技术成熟度曲线(链接位于IBM外部)中指出的那样,自动驾驶汽车和个人助理等产品创新遵循“一个典型的创新周期,从欲望膨胀到期望幻灭、到最终了解创新在市场或领域中的相关性和作用。”正如LexFridman在2019年麻省理工学院演讲中指出的那样(01:08:15)(链接位于IBM外部),我们正处于欲望膨胀高峰期,接近幻灭的谷底期。
随着对话围绕AI的伦理道德展开,我们可以开始看到幻灭谷底初见端倪。如想了解更多关于IBM在AI伦理对话中的立场,请阅读这里了解更多信息。