【人工智能—课程论文 6000字】范文118
系统工程论文浅谈层次分析法的优缺点4600字电气安装技师论文电气安装工程论文:变电电气设备安装调试与运行维护技术分析2800字加强村级事务规范化,推行“阳光村务”工程论文2000字自动化电气工程论文2200字工程管理毕业论文范例25200字项目管理毕业论文范本19700字xxx大学
人工智能概论
课程论文
学院核自院
专业机械工程及自动化
班级机械x班
姓名xxx
学号xxx
导师朱x
课题人工智能原理与应用
201x年1x月2x日
人工智能的原理与应用
摘要:人工智能(AI)一直都处于计算机技术的最前沿,长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。不久前,著名导演斯蒂文斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。
关键词:人工智能;专家系统;模式识别
引言:
人工智能的发展已达到很高水平,电子计算机将更接近大脑的功能了,虽然计算机解决问题的能力从技术角度看目前还有很大局限性,计算机万能论者的理论依据也是有问题的。计算机暂时不能代替人我相信他预见的会成为现实,目前也有了很多技术突破,这就是人类-机器的结合体,他预见这是人类进化史上的一个飞跃。在这样一个结合体形式下,肯定超出目前的人的智能和人工智能,这个结合体中,人类的大脑将植入能和机器直接沟通的芯片,这个芯片是人机的桥梁,而人类-机器结合体将发挥出人与机器的各自优势。
一、什么是人工智能由于人工智能是一个边缘学科,是哲学、数学、电子工程、计算机科学、心理学等众多学科的混血儿。它的研究队伍由未自不同领域的学者组成,各自从事着自己感兴趣的工作,他们对人工智能是什么有不同的认识。
如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能支灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为、就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了,这样,人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。
除了上述的观点以外,人工智能领域中的心理学家、语言学家倾向于将重点放在用电脑去再现人脑思维的内部状态上.也就是要使电脑程产真正理解它所他的事情,就好保人脑一样去“思考问题”。
由于大家研究的内容与侧重点各不相同,因此对人工智能的认识也有一定的差异。但是,他们的认识又相互补充、相辅相成、共同构成了人工智能丰富多彩的研究层次与多样化的研究队伍。
(一)人工智能的理论于实践人工智能不仅仅是一个工程科目,同样也是一个科研主题,研究人员创立人工智能理论(人工智能程序能够做什么)并用数学分析和实验来验证。理论是可以通过数学抽象和定理证明来分析验证的,也可以通过开发程序、运行试验、分析结果进行经验性研究,这很像心理学家对接受实验者所做的实验,但复杂人工智能系统的行为是很难预测的。
人工智能的应用范围非常广泛。人们已经创建了人工智能程序,用于通过预测股市趋势来产生投资策略,诊断病人并给出治疗建议,以及控制工厂中的装配机器人。火星探测机器人的控制就采用了人工智能系统。
(二)人工智能概念著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
人工智能(ArtificialIntelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。
(三)人工智能的基础人类是通过自然语言来表达思想、知识、学习、交流等,为实现AI用机器模拟人的智能行为,显然,必须有适合于AI的知识获取、知识表示、知识推理的语言,编写相应的智能程序,以构成AI系统,即知识信息处理系统。自AI发展以来,由于AI应用领域的广泛性,已有十几种语言被应用,它们都是根据适用于所研究问题领域知识描述和处理而提出的。
二、人工智能原理(一)介绍人工智能的实现技术人工智能是实现具有智能的机器,尤其是具有智能的计算机程序的科学和工程技术。人工智能与用计算机理解人的智力的目标有一些关系,但它并不一定要使用生物学上的方法。
(二)人工智能的原理人工智能的科学研究要研究人的智慧的内部结构,相当于研究心理学的原理,这是一般人不大会去做的。大部分的人工智能研究集中在后者——工程实现上。知识:人的智能活动本质上就是获得和运用知识。知识是智能的基础,为了实现人工智能使机器具有智能就必须使它具有知识。表达:要采用适当的手段表达人的知识,然后才能存储到机器中去,这就是用知识表达要解决的问题。对知识进行表达就是把知识表示成便于计算机存储和利用的某种数据结构,知识表达方法又称为知识表示技术,其表示形式称为知识表示模式。
三、人工智能应用(一)人工智能的应用范围人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能的发展历史是和计算机科学与技术的发展史联系在一起的,人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
(二)人工智能中的机器翻译机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。虽然至今还没有一个实用、全面、高质量的自动翻译系统出现,不过也取得了很大的进展,特别是作为人们的辅助翻译工具,机器翻译已经得到大多数人的认可。
目前,国内的机器翻译软件不下百种,根据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和专业翻译类。在目前的情况下,计算机辅助翻译应该是一个比较好的实际选择。事实上,在很多领域中,计算机辅助人类工作的方式已经得到了广泛的应用,例如CAD软件。
机器翻译研究归根结底是一个知识处理问题,它涉及到有关语言内的知识、语言间的知识、以及语言外的世界知识,其中包括常识和相关领域的专门知识。随着因特网的普及与发展,机器翻译的应用前景十分广阔。作为人类探索自己智能和操作知识的机制的窗口,机器翻译的研究与应用将更加诱人。
(三)人工智能中的专家系统专家系统是一种模拟人类专家解决领域问题的计算机程序系统。专家系统内部含有大量的某个领域的专家水平的知识与经验,能够运用人类专家的知识和解决问题的方法进行推理和判断,模拟人类专家的决策过程,来解决该领域的复杂问题。
为了实现专家系统,必须要存储有该专门领域中经过事先总结、分析并按某种模式表示的专家知识(组成知识库),以及拥有类似于领域专家解决实际问题的推理机制(构成推理机)。
开发专家系统的关键是表示和运用专家知识,即来自领域专家的己被证明对解决有关领域内的典型问题有用的事实和过程。目前,专家系统主要采用基于规则的知识表示和推理技术。由于领域的知识更多是不精确或不确定的,因此,不确定的知识表示与知识推理是专家系统开发与研究的重要课题。
(四)人工智能模式识别模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。这里,我们把环境与客体统称为“模式”,随着计算机技术的发展,人类有可能研究复杂的信息处理过程。用计算机实现模式(文字、声音、人物、物体等)的自动识别,是开发智能机器的一个最关键的突破口,也为人类认识自身智能提供线索。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别系统(OCR)、语音识别系统等。计算机识别的显著特点是速度快、准确性和效率高。识别过程与人类的学习过程相似。
一个综合应用的例子,一汽集团公司与国防科技大学最近合作研制成功“红旗轿车自主驾驶系统”(即无人驾驶系统),它标志着我国研制高速智能汽车的能力已达到当今世界先进水平。汽车自主驾驶技术是集模式识别、智能控制、计算机学和汽车操纵动力学等多门学科于一体的综合性技术,代表着一个国家控制技术的水平。红旗车自主驾驶系统采用计算机视觉导航方式,并采用仿人控制,实现了对红旗车的操纵控制。首先,摄像机将车前方的道路和车辆行驶情况输入到图像处理和图像识别系统。该系统识别出道路状况、前方车辆的相对距离和相对车速。接着,路径规划系统根据这些信息规划出一条合适路径,即决定如何开车。然后,路径跟踪系统根据需跟踪的路径,结合车辆行驶状态参数和车辆驾驶动力学约束,形成控制命令,控制方向盘和油门开启机构产生相应动作,使汽车按照规划好的路径前进,即按自主驾驶系统的规划路径前进。
四、发展方向能够造出这样的具有人类智能的机器,是科学家们一直的理想。人工智能这个科学就是研究和模拟人类的思维,最终做出一台能够像人类一样思考的机器。人工智能科学中有一个很著名的标准,叫做“图灵测试”。用这个标准能够非常简单准确地测定一台机器是否具有人一样的智能。这个测试大概就是通过几个人与一台待测试的机器之间进行对话。当然人与人之间是不能互相看到对方的,人也不能看到哪个是人哪个是机器,之间只有通过对话来交流。然后人与机器之间互相进行对话,对话内容主要是随便问一些问题。到最后,如果对话的人,还分不清与他对话的几个人与机器当中,哪个是机器,哪个是人,那么就可以断定这台机器具备人一样的智能。
然而,直到今天,还没有任何一台机器可以通过这个测试。而且,离通过测试的差距还非常之大。这个测试对于机器,真正的困难就难在要像人一样回答问题。例如随便问一个问题:“12乘以7再加821等于多少”。这个问题就很容易让机器“中计”。因为对于机器来说,这种数学计算只需要花一秒不到的时间就能得出正确的结果。但是如果你发现对方可以这样快且准确地得出结果,你会相信他是人么?人毕竟有人特有的思维水平,人有感情,有各种各样的性格,这个就很难在机器上实现。
诚然,能够做出这样的机器,的确是人工智能的目标。不过人工智能的研究单纯就是为了这个么?我个人认为,能够做出像人一样聪明的机器是件好事,不过如果要求机器做到人的某些不好的特性,例如,懒惰、贪婪、罪恶等等,就不必了,做了也是自掘坟墓。人工智能应该可以为人类而服务,能够帮助人解决各种问题。
其实做到像人类一样思考的机器,这个只是人工智能科学的其中一个部分,绝不是全部。通过人工智能的研究,领略到智能科学的真谛,解决各种科学难题,促进其它学科的发展,这个才算人工智能的精华!
例如,人工智能的子学科专家系统,就曾帮助过医学、采矿等等多个学科,帮助这些学科解决了很多难题。这个时候,人工智能就在某一领域表现出比一般人更加卓越的能力。
据我所知,人工智能还有许多十分有趣的子学科,例如神经网络、进化计算等等。这些科学也是以模仿人类的思维为初衷发展起来。但是这些科学在发展过程中,却收获了很多其它的成果。神经网络、进化计算都曾经解决过许多数学上的难题,它们与专家系统一样,为其它各个学科起了很大的促进作用。神经网络还帮助过人类解决指纹识别、面相识别、汉字识别等的难题。
五、结语人工智能研究将是21世纪早期逻辑学发展的主要动力源泉。人工智能研究必须建立在归纳逻辑基础之上,从而达到多领域交叉合作来共同促进人工智能研究的广泛而深远的发展。我们现在所涉及的基于逻辑归纳的人工智能以及机器学习和归纳学习的系统研究还处于初级阶段。正如有人所说,在未来的计算机归纳学习或发现的研究中,将归纳逻辑的某些理论、方法或系统与机器学习、不确定性推理、神经网络中对归纳逻辑的研究适当“嫁接”起来,以改进并逐步革新现有的归纳学习系统,促使机器学习中归纳学习的基础理论形成,并进一步从事归纳学习的基础理论与系统的研究和开发,这是人工智能科学研究中的一项重大任务。
参考文献[1]毕家祥,人工智能模型于智能系统
[2]王士同,人工智能教程.2006年8月
[3]邢传鼎,人工智能原理及应用.2005年02月
[4][美]ThomasDeanJamesAllenYiannisAloimonos.2004年06月
[5]侯广坤,人工智能概论.1993年05月
[6][英国]C.J.哈里斯,人工智能的应用.1992年02月
[7]马宪民,人工智能的原理与方法.2002年
[8]张玉志,人工智能与社会进步.1990年03月
[9]孙雅明,人工智能基础.1995年05月
[10]米汉著,人工智能程序设计(第二版)
[11]傅京孙,人工智能及其应用.1987年09月
[12]胡俊,游戏开发中的人工智能研究于应用
[13]王万森,人工智能的原理及应用.2000年09月
[14]任巍,人工智能技术在计算机游戏软件中的应用.200602
[15]山东工业大学自动化研究所,人工智能浅说.1984年04月
12345第二篇:人工智能论文8400字
浅谈人工神经网络学习
1、简介
作为动态系统辨识、建模和控制的一种新的、令人感兴趣的工具,人工神经网络(ArtificialNeuralNetworks,ANN)提供了一种普遍而且实用的方法从样例中学习值为实数、离散值或向量的函数。像反向传播(BACKPROPAGATION)这样的算法,使用梯度下降下来调节网络参数以最佳拟合由输入—输出对组成的训练集合。ANN学习对于训练数据中的错误健壮性很好,且已被成功的应用到很多领域,例如视觉场景分析、语音识别以及机器人控制等。
神经网络学习方法对于逼近实数值、离散值或向量的目标函数提供的一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效的学习方法。例如,反向传播算法已在很多问题中取得了惊人的成功,比如学习识别手写字符、学习识别口语、学习识别人脸等。
1.1人工神经网络学习发展简史:
对人工神经网络的研究可以追溯到计算机科学的早期。McCulloch&Pitts(1943)提出了一个相当于感知器的神经元模型,20世纪60年代他们的大量工作探索了这个模型的很多变体。20世纪60年代早期Widrow&Hoff(1960)探索了感知器网络(他们称为“adelines”)和delta法则。Rosenblatt(1962)证明了感知器训练法则的收敛性。然而,直到20世纪60年代晚期,人们才开始清楚单层的感知器网络的表现能力很有限,而且找不到训练多层网络的有效方法。Minsky&Papert(1969)说明即使是像XOR这样简单的函数也不能用单层的感知器网络表示或学习,在整个20世纪70年代ANN的研究衰退了。
在20世纪80年代中期ANN的研究经历了一次复兴,主要是因为训练多层网络的反向传播算法的发明(Rumelhart&McClelland1986;Parker1985)。这些思想可以被追溯到有关的早期研究(例如,Werbos1975)。自从20世纪80年代,反向传播算法就成为应用最广泛的学习方法,而且人们也积极探索出了很多其他的ANN方法。在同一时期,计算机变得不在贵重,这允许人们试验那些在20世纪60年代不可能被完全探索的计算密集型的算法。
2、人工神经网络学习的国内外研究状况
随着人工神经网络20世纪80年代在世界范围内的复苏,国内也逐步掀起了研究热潮。l989年10月和11月分别在北京和广州召开了神经网络及其应用讨论会和第一届全国信号处理—神经网络学术会议;l990年2月由国内八个学会(中国电子学会、人工智能学会、自动化学会、通信学会、物理学会、生物物理学会和心理学会)联合在北京召开“中国神经网络首届学术会议”。这次大会以“八学会联盟,探智能奥秘为主题收到了300多篇学术论文,开创了中国人工神经网络及神经计算机方面科学研究的新纪元。经过十几年的发展,中国学术界和工程界在人工神经网络的理论研究和应用方面取得了丰硕成果,学术论文、应用成果和研究人员逐年增加.
在国际上,1987年,在美国加洲召开了第一届国际神经网络学会.此后每年召开两次国际联合神经网络大会(IJCNN).不久,该学会创办了刊物JournalNeuralNetworks,另有十几种国际著名的神经网络学术刊物相继问世,至此,神经网络理论研究在国际学术领域获得了其应有的地位。
作为人工神经网络学习的典型算法反向传播(BP)算法,近年来国内外学者对这一算法提出了一些改进。其中,由宋绍云、仲涛提出的BP人工神经网络网络的新算法解决了传统算法的局部极小及收敛速度慢的问题。该算法是在BP神经网络现有的基础上提出的一种新的算法,该算法的基本原理是任选一组自由权,通过解线性方程组求得隐层权,将选定的自由权与求得的权合在一起,就得到所需的学习权值。而BP人工神经网络自适应学习算法的建立则解决了BP神经网络结构参数、学习速率与初始权值的选取问题,并对传统的BP算法进行了改进,提出了BP神经网络自适应学习算法,又将其编制成计算机程序,使得输入节点、隐层节点和学习速率的选取全部动态实现,减少了人为因素的干预,改善了学习速率和网络的适应能力。计算结果表明:BP神经网络自适应学习算法较传统的方法优越,训练后的神经网络模型不仅能准确地拟合训练值,而且能较精确的预测未来趋势。基于遗传算法的人工神经网络学习避免了BP算法易陷入局部极小值、训练速度慢、误差函数必须可导、受网络结构的限制等缺陷。
人工神经网络的研究同样在实践中也有所发展。比如,基于人工神经网络的并行强化学习自适应路径规划,可以很好的应用于机器人蔽障系统。BP算法在雷达目标识别中的应用以及在超声检测中的应用等都是在BP算法改进的基础上实现的。
3、所选专题的研究意义与研究方法
从1946年第一台电子数字计算机问世以来直到现在,大多数信息处理都采用程序式计算方式。这种方式解题需要设计算法或规则,并正确的编制成软件,然后才能进行问题求解。这种解题方式必须考虑3个因素:
1问题的形式化;
2可进行计算的算法;
3计算的复杂性。
比较计算机和人的处理能力,其差别是惊人的。一方面,一个人能很容易识别面孔理解语言,而一台巨型机却很难识别出一棵树来。另一方面,用计算机进行计算,可以很快的得到答案,其计算能力大大超过了人。那么数字计算和辨识物体之间究竟有哪些差别呢?
辨识物体是不能简单明确的加以定义的。要识别一棵树,就必须给出树的全部定义。做出这样一种定义,等于要描述树的每一个可以想到的变量。这类问题构成了随机问题。所谓随机问题,就是那些需要具备某一系统的实际上每种可能状态的知识才能解答的问题。因此,为解决一个随机问题,就要求记忆所有可能的解答,当给定输入数据时,从所有可能的解答的集合中迅速的选出最合适的答案。而像数学一类的计算问题,其解答通常可以用一种算法简洁地表示出来,也就是说,可以用一个精确的指令系列来表示,该指令系列规定了如何处理输入数据以得到答案。
信息处理的一种新方法并不需要开发算法和规则,极大的减少了软件的工作量,这种方法称为神经网络。神经网络是一门崭新的信息处理学科,它从神经生理学和认知科学研究成果出发,应用数学方法研究并行分布的、非程序的、适应性的、大脑风格的信息处理的本质和能力。神经网络中主要的信息处理结构是人工神经网络。
神经信息处理是介于常规处理形式和人脑处理形式的中间处理形式。一方面,神经网络企图模仿人脑的功能,而另一方面许多实现技术又是常规的。表1-1给出了这3种信息处理范型的主要特点。神经信息处理许多特性与人脑相似,诸如联想、概括、并行搜索、学习和灵活性。
表1-13种信息处理范型
人脑处理信息的特点如下:
1大规模并行处理。人脑神经元之间传递神经冲动是以毫秒计的,比普通的电子计算机慢得多。但人们通常能在1ms内对外界事物作出判断和决策。这对传统的计算机或人工智能是做不到的。由此可知,人脑的“计算”必定是建立在大规模并行处理的基础上。人善于在复杂环境下作出判断,从整体上识别事物。神经网络的大规模并行处理与多处理机构成的并行系统是不同的。
2具有很强的容错性,善于联想、概括、类比和推广。每天有大量神经细胞正常死亡,但不影响大脑正常的功能;大脑局部损伤会引起某些功能衰退,但不是功能突然丧失。在计算机中,元器件的局部损坏,或者程序中的微小错误都可能引起严重的后果,即表现出极大的脆弱性。人脑与计算机信息处理的巨大差别在于对信息的记忆和处理方式不同。计算机的模式是信息局部储存,按程序提取有关的信息,送到运算器处理。大脑中信息的记忆,特别是长期记忆是通过改变突触的效能实现的,即信息存储在神经元间连接强度的分布上,信息的记忆和处理是合二为一的。这一点,神经网络与大脑信息处理方式及其相似。
3具有很强的自适应能力。人脑功能受先天因素制约,但后天因素,如经历、训练、学习等也起重要作用。这表明人脑具有很强的自适应性和自组织性。神经网络与符号处理不同,前者强调系统的自适应或学习过程,同一网络因学习方法及内容不同,可具有不同的功能;符号处理强调程序编写,系统的功能取决于编写者的知识和能力。
由上可知,脑是最复杂、最完美、最有效的一种信息处理装置,人们正以极大的兴趣研究它的结构和机理。这种研究与20世纪初的物理学和20世纪50年代的分子生物学一样,正酝酿着重大的突破,而这一突破将给整个科学的发展带来巨大而深远的影响。人们对大大脑的认识已深入到探索脑的核心问题,鉴定出了一系列涉及脑工作的重要分子,在感知、行为、学习和记忆方面都取得了重要进展。这表明人们将有可能最终揭开大脑这个人体最复杂系统的奥秘,为现代科技发展寻找新的道路。借助大脑工作原理,有可能使信息处理获得新的突破。
正因为如此,神经科学受到世界各发达国家的高度重视。美国国会通过决议将1990年1月5日开始的10年定为“脑的十年”。国际脑研究组织号召它的成员国将“脑的十年”变为全球行动。美国国防部高级研究计划局(DARPA)制定的8年研究计划中,神经网络是重要的方向。1986年日本政府提出了“人类前沿科学计划”(HFSP)研究计划,1992年提出“真实世界计算”(RWC)研究计划。德国人从1988年开始执行“神经信息论”的研究计划。
脑科学、神经生理学、病理学主要研究神经网络的生理机理,如神经元、突触、化学递质、脑组织等的构成和工作过程。而认知科学、计算机科学主要探索人脑信息处理的微结构理论,寻求新的途径,解决当前计算机和传统人工智能难以处理的问题。以此为背景,以人工神经网络为基础,形成了神经网络的新学科。
目前,对大脑思维的过程了解仍然很肤浅,人工神经网络模拟的研究还很不充分,人们面临的是一个充满未知的新领域。神经网络将在基本原理方面进行更深刻的探索。
神经网络的发展与神经科学、认知科学、计算机科学、人工智能、信息科学
机器人学、微电子学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。神经网络研究的主要目的如下:
1理解脑系统为何具有智能。这些计算与符号表示的形式操作处理不同,人脑是如何组织和实施这些计算的。
2研究各种强调“计算能力”的神经网络模型,并不着重于这些模型的生物学保真程度
3研究大规模并行自适应处理机理。
4研究神经计算机的体系结构和实现技术。
4、适合神经网络学习的问题
人工神经网络学习非常适合于这样的问题:训练集合为含有噪声的复杂传感器数据,例如来自摄像机和麦克风的数据。它也适用于需要较多符号表示的问题,例如决策树学习任务。这种情况下ANN和决策树学习经常产生精度大体相当的结果。反向传播算法是最常用的ANN学习技术。它适合具有以下特征的问题:
(1)实例是用很多“属性-值”对表示的:要学习的目标函数是定义在可以用向量描述的实例之上的,向量由由预先定义的特征组成。这些输入属性之间可以高度相关,也可以相互独立。输入值可以是任何实数。
目标函数的输出可能是离散值、实数值或者由若干实数属性或离散属性组成的向量:例如在ALVINN(Pomerleau(1993)的ALVINN系统是ANN学习的一个典型实例,这个系统使用一个学习到的ANN以正常的速度在高速公路上驾驶汽车。)
(2)系统中输出的是30属性向量,每一个分量对应一个建议的驾驶方向。每个输出值是0和1之间的某个实数,对应于在预测相应驾驶方向时的置信度。我们也可以训练一个单一网络,同时输出行驶方向和建议的加速度,这只要简单的把编码这两种输出预测的向量连接在一起就可以了。
(3)训练数据可能包含错误:ANN学习算法对于训练数据中的有非常好的健壮性。
(4)可容忍长时间的训练:网络训练算法通常比像决策树学习这样的算法需要更长的训练时间。训练时间可能从几秒到几小时,这要看网络中权值的数量、要考虑的训练实例的数量以及不同学习算法参数的设置等因素
(5)可能需要快速求出目标函数值:尽管ANN的学习时间相对较长,但对学习到的网络求值以便把网络应用到后续的实例通常是非常快速的。例如,Alvinn在车辆向前行驶时,每秒应用它的神经网络若干次,以不断的更新驾驶方向。
(6)人类能否理解学到的目标函数是不重要的:神经网络学习方法学习到得权值经常是人类难以解释的。学到的神经网络比学到的规则难以传达给人类。
5、我对人工神经网络学习研究的认识及观点
5.1人工神经网络学习的几种算法
1.有监督Hebb算法
2.单层感知器
3.梯度(LMS)算法
4.BP算法
这几种算法中,BP算法应用最为广泛。
5.2基于反向传播网络的学习
反向传播算法是一种计算单个权值变化引起网络性能变化值得较为简单的方法。由于BP算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为“反向传播”。
5.2.1反向传播网络的结构
鲁梅尔哈特(Rumelhart)和麦克莱兰(Meclelland)于1985年发展了BP网络学习算法,实现了明基斯的多层网络设想。BP网络不仅含有输入节点和输出节点,而且还含有一层或多层隐(层)节点,如图5.1所示输入信号首先向前传递到隐节点,经过作用后,再把隐节点的输出信息传递到输出节点,最后给出输出结果。节点的激发函数一般选用S型函数。
BP算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐单元层逐层处理后,传至输出层。每一层神经元的状态只影响下一层神经元的状态。如果在输出层得不到期望输出,那么就转为反向传播,把误差信号沿原连接路径返回,并通过修改各层神经元的权值,使误差信号最小。
图5.1BP网络
5.2.2反向传播学习算法
(1)选取比率参数r。
(2)进行下列过程直至性能满足要求为止。
1对于每一训练(采样)输入;
(a)计算所得输出,
(b)按下式计算输出节点的值
(c)按下式计算全部其他节点
(d)按下式计算全部权值变化
2对于所有训练(采样)输入,对权值变化求和,并修正各权值。
权值变化与输出误差成正比,作为训练目标输出只能逼近1和0两值,而绝不可能达到1和0值。因此,当采用1作为训练目标值作为训练时,所有输出实际上呈现出大于0.9的值;而当采用0作为目标值进行训练时,所有输出实际上呈现出小于0.1的值;这样的性能就被认为是满意的。
反向传播算法是一种很有效的学习算法,它已解决了不少问题,成为神经网络的重要模型之一。反向传播算法框图如图5.2所示。
图5.2反向传播算法框图
5.2.3反向传播算法性能分析
反向传播算法作为指导多层感知器训练的最流行的算法而出现,基本上,它是一个梯度(导数)的技术而不是一个最优化技术。其具有两个明显的性质:局部计算简单;可实现权值空间的随机梯度下降。多层感知器背景下的BP学习的这两个属性导致了它的优点和缺点。
1.BP网络的优点
1BP网络实质上实现了一个从输入到输出的映射功能,而数学理论已经证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题。当隐含神经元可以任意配置时,BP网络能记忆任意给定的学习样本,再现样本输入到样本输出的联想关系。BP网络的记忆容量与隐含神经元的数量相关,BP网络的记忆容量可通过增加隐含神经元而得到扩充。
2BP网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力。通过学习,BP网络能在任意精度范围内表达复杂的非线性映射。
3BP网络具有泛化能力,能从样本数据中学习知识,抽象一般性规律。BP网络的泛化能力既与自身记忆容量相关,又与学习样本具有的信息量相关。
2.BP网络的问题
传统的BP网络在诸多领域得到广泛应用,也取得一定的成效,但在实际应用中有时处理结果并不理想,还存在诸多问题。究其原因,主要是BP网络还存在许多固有的缺点,这不只是多层前向BP网络的问题。
1BP算法的学习速度很慢,其主要原因有:
•由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂因而必然会出现“锯齿形现象”,这使得BP算法低效。
•存在麻痹现象。由于优化的目标函数很复杂,它必然会在神经元输出接近0和1的情况下出现一些平坦区。在这些区域内,权值误差改变很小,使训练过程几乎停顿。
•为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,而这种方法将引起算法低效。
2网络训练失败的可能性较大,其原因有:
•从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此算法很有可能陷入局部极值,使训练失败。
•网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。
3难以解决应用问题的实例规模和网络规模间的矛盾。这涉及网络容量的可能性与可行性的关系问题,即学习复杂性问题。
4网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验决定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题。
5新加入的样本要影响已学习成功的网络,而且描述每个输入样本的特征的数目也必须相同。
6网络的预测能力(也称泛化能力)与训练能力(也称逼近能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,但是不能反映样本内含的规律。
6.小结
1、人工神经网络学习为学习实数值和向量值函数提供了一种实际的方法,对于连续的和离散值得属性都可以使用,并且对训练数据中的噪声具有很好的健壮性。反向传播算法是最常见的网络学习算法,这已经被成功应用在很多学习任务中,比如手写识别和机器人控制。
2、反向传播算法考虑的假设空间是固定连接的有权网络所能表示的所有函数的空间。包含三层单元的前馈网络能够以任意精度逼近任意函数,只要每一层有足够数量的单元。即使是一个实际大小的网络也能够表示很大范围的高度非线性函数,这使得前馈网络成为学习预先未知的一般形式的离散和连续函数的很好选择。
3、反向传播算法使用梯度下降方法搜索可能假设的空间,迭代减小网络的误差以拟合训练数据。梯度下降收敛到训练误差相对网络权值的局部极小值。通常,梯度下降是一种有应用潜力的方法,它可用来搜索很多连续参数的假设空间,只要训练误差是假设参数的可微函数。
4、反向传播算法最令人感兴趣的特征之一,是它能够创造出网络输入中没有明确出现的特征。确切的讲,多层网络的隐藏层能够表示对学习目标函数有用的但隐含在网络输入中的中间特征。
5、过度拟合训练是ANN学习中的一个重要问题。过度拟合导致网络泛化到新的数据时性能很差,尽管网络对于数据表现非常好。交叉验证方法可以用来估计梯度下降搜索的合适终止点,从而最小化过度拟合的风险。
任何新生事物的成长都不是一帆风顺的。人工神经网络学习也不例外。但是,经过长时间的研究发展,神经网络学习已经逐步成长起来了,在未来的发展中可能会遇到新的困难,甚至遭受较大的挫折。广大研究者也可能会为此承受巨大风险。但是作为科学研究者,我们应持有乐观的态度,为神经网络学习的发展做贡献。
参考文献:
【1】宋绍云,仲涛.BP人工神经网络的新型算法.人工智能及识别技术,2009,5(5)
【2】李晓峰,徐玖平,王荫清,贺昌政.BP人工神经网络自适应学习算法的建立及其应用.系统工程理论与实践.2004,5(5)
【3】李建珍.基于遗传算法的人工神经网络学习算法.西北师范大学学报(自然科学版).2002,38(2)
【4】耿晓龙,李长江.基于人工神经网络的并行强化学习自适应路径规划.科学技术与工程.2011,11(4)
【5】蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2010
【6】史忠植.神经网络.北京:高等教育出版社,2009
【7】(美)TomM.Mitchell.曾华军张银奎等译.机器学习.北京:机械工业出版社,2003
【8】涂序彦.人工智能:回顾与展望.中国人工智能学会.北京:科学出版社,2006
【9】朱福喜,朱三元,伍春香.人工智能基础教程.北京:清华大学出版社,2006
+更多类似范文┣ 工程测量论文4000字┣ 工程实习论文2900字┣ 铁道工程论文2300字┣ 工程测量论文2200字┣ 更多工程论文范文人工智能发展论文
人工智能发展论文
随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。以下是小编精心准备的人工智能发展论文,大家可以参考以下内容哦!
摘要:人工智能属于一门综合性的边缘学科。诞生时间为20世纪50年代左右,大概历经了四个时代,第一个时代为神经网络时代,第二个时代为弱方法时代,第三个时代为知识工程时代第四个时代为知识工业时代。它在发展过程中包含的基础有计算机科学,信息论,神经心理学,哲学,统计学等多种学科。至今为止,人工神经网络技术和遗传算法都已经应用于工业,军事等领域。
关键词:人工智能发展;识别率;人脸识别;遗传算法
1智能计算机的发展
1.1人工智能简述
人工智能[1](ArtificialIntelligence,简称AI)是计算机学科的一个分支,属于为世界三大尖端技术空间技术、能源技术、人工智能其中之一,最近几十年来,人工智能的发展非常的迅速,在很多的地方都得到了应用,尤其是在科学领域。
人工智能源自于对人的模仿,其最终目的是服务于人类,但是,就像世界上没有相同的两片叶子,也没有完全相同的两个人,也就像没有一家服务企业可以满足一个国家人的所有要求一样,人工智能产业中也会涌现许多实力强大的企业,一些企业也会在某个领域内形成自己的竞争优势,甚至会出现垄断型企业。人工智能产业在国内外都还是处于刚刚发展阶段,人工智能产业的竞争也会伴随不断增长变化的需求而演化,企业也会为了满足并提升社会大众越来的生活品质而不断进步,不断完善自身。
1.2人工智能研究的发展概况
未来,随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。在我们的日常生活中,人们对人工智能技术的期望一直都拥有着很高的热情和期盼,但是,在客观事实上,人工智能技术进步不但要考虑软件、硬件技术的限制,也还要考虑人们对自身能力理解程度的制约,因此未来人工智能技术将在不断限制的过程中不断突破不断成长,从而保持着逐步的发展。比如人脸识别技术,当该技术以一次问世时,人们对人工智能充满了信心,但当大多数人亲自使用时,却发现它对人脸的识别率还是不够高;
近年来,人脸识别技术得益于机器学习与大数据,又有了非常令人欣喜的进步,拥有足够的多的人力模型数据,计算机对具体提供的数量足够多的人脸模型数据进行针对性训练,就可以达到一个极高的识别正确率。但是对一个具体的个例可以做到百分百识别,并不能就此完全肯定对人群大众使用就都能达到同样级别的水平,对于大量的人脸数据依然需要不断地整理系统的统计,所以,距离完美的识别率人类还有很长的路要走。不仅是人脸识别,OCR、语音识别、机器翻译等人工智能技术在现实的应用中都会面临准确率的标准。也希望无论是企业还是社会群体大众,用一份积极包容的心态,为人工智能产业的发展营造一个优良的可持续发展环境。
人工智能应用研究有许许多多的可行性。专家系统内部含有大量的某个领域的专家水平的知识与经验,经过运用人类的知识和解决问题的途径进行推理、汇总、判断、解决,来处理某个领域的疑难棘手问题。人工智能系统在很多领域的应用也都在促进着人工智能的理论和技术的不断发展。专家系统也是人工智能应用研究最活跃和最广泛的应用领域之一,涉及社会各个方面,各种专家系统已遍布各个专业领域,取得很大的成功。人工智能在计算机领域内,得到了原来越多的重视。并在机器人等中得到了很多的实际应用。
人工智能是研究人类智能活动的可循规律,创建具有一定人类智能的电子系统,它主要是通过让计算机去完成原本是需要人类智慧才能去解决的问题,换而言之,就是研究如何应用计算机的软硬件来模拟人类智慧行为的基本理论、方法和技术。例如:繁重的科学工程和数学计算本来是要人脑来承担的,但是,现今,计算机不但能高效准确的完成这种计算,而且还能够比人脑做得更加的完美,因此,当今社会也不再把这种程度的计算看成是“需要人类智慧高强度才能完成的复杂任务”,由此可见,高强度复杂工作的定义随着人类社会时代的发展和科学技术的不断进步而不断变化,人工智能这门科学的具体目标也自然随着社会科学的.变化而发展。它一方面不断地通过科学技术获得新的进展,另一方面又勇敢的转向更有意义、更加困难的目标。
2人工智能的前沿
2.1智能信息检索技术
现今社会,智能信息检索技术的发展日新月异。而人工智能在信息检索技术中的应用,主要集中表现在网络信息的检索。网络信息检索,也即网络信息搜索,是指互联网用户在网络终端,通过特定的网络搜索工具或是通过浏览的方式,查找并获取信息的行为。运用人工智能技术,可以快速准确的在大数据的基础之上获得所需信息。
2.2遗传算法
遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程进行搜索找出最优解的方法。遗传算法是通过一类问题可能潜在的解集的其中一个集群开始的,而一个集群群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有本身特征的实体。比如,它决定了个体所要表现出的外部形状,如单眼皮,双眼皮的特征是由染色体中控制这一特征的某种基因组合决定的。由此可见,从一开始通过表象得到实际的基因的编码程序为一种算法。我们通常将基因的编码工作简单化,如二进制编码,在第一代种群产生之后,遵循适者生存,按照自然法则优胜劣汰,选择最优的结果,并借助交叉和变异,得到一种新的集合。这种办法会得到一种比以前更加优秀,更加适者生存的种群。
3结束语
人工智能对人类科学来说是一门极富挑战性的科研究,想要从事这项研究工作必须懂得计算机知识,心理学、统计学、哲学等等。人工智能是一种涵盖了非常广泛的知识的科学,它包含了很多不同的领域,如机器学习,计算机视觉、软件工程、操作系统等等,总而言之,人类科学对人工智能研究的一个主要目的是使机器通过一系列的操作能够胜任一些通常需要人类智能才能完成的复杂工作。在不同的时代、不同的社会环境、不同的人对这种“复杂”程度的理解是不一样的,每个时代的科学发展也是不同的,希望在科学不断发展的今天,人工智能的发展也会带来许许多多的惊喜。
参考文献:
[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008(9).
[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2013(9).
[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2013(7).
[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2014(7).
[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2011(5).
[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2015(7).
[7]曾雪峰.论人工智能的研究与发展[J].现代商贸工业,2009(8).
[8]王梓坤.论混沌与随机.北京师范大学学报,1994,30(2):199-202.
[9]陈明.基于进化遗传算法的优化计算[J].软件学报,2008,9(11):876-879.
[10]陈火旺.遗传程序设计(之一)[J].计算机科学,2005.22(6):12-15.
【人工智能发展论文】相关文章:
人工智能学术论文范文10-03
人工智能专家系统论文09-30
可持续性发展合作医疗论文08-09
人工智能时代作文(6篇)09-26
人工智能时代作文6篇09-25
【实用】人工智能作文五篇08-29
人工智能作文(集锦15篇)08-22
人工智能作文(合集15篇)08-22
人工智能作文(通用15篇)08-21
【推荐】人工智能作文10篇08-11
人工智能导论范文3000字共14篇
人工智能导论范文3000字第一篇摘要:为了提高“人工智能导论”课程的教学质量,协调好教与学的双边关系,结合教学实践,从教学体系、教学内容、教材、教学方法、考核方式等方面进行了探讨和总结。
关键词:人工智能;教学内容;教学方法
中图分类号:G642文献标识码:A
1引言
人工智能(AI)是二十世纪五十年代后期兴起的利用计算机模拟人类智能活动去求解问题的学科,与空间技术、原子能技术一起被誉为二十世纪三大科学技术成就,目前广泛应用于专家系统、机器翻译、语音识别、文字识别、计算机视觉、机器人、电子游戏等方面,已经成为计算机技术发展以及许多高新技术产品中的核心技术。
为了适应人工智能技术日益广泛的需要,国内外高校普遍开设了“人工智能”方面的课程,特别是作为计算机方面专业的核心课程之一。我校自从1993年开始为自动化专业本科生开设“智能控制”选修课,1996年为自动化、计算机、机械等专业本科生开设“人工智能导论”、“人工智能及其应用”课程。目前,我校软件学院、信息学院、机电学院都开设了“人工智能导论”课程,已经成为计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其目的是使学生了解人工智能的基本概念和基本原理,初步学习和掌握人工智能的基本技术和前沿内容,拓宽知识面,启发思路,为学生提供最基本的人工智能技术和有关问题的入门性知识,提高学生应用开发软件的能力和水平,为今后在相关领域的研究和应用奠定更为坚实的基础。因此,建设好“人工智能导论”课程具有重要意义和很广的受益面。
由于人工智能是交叉学科,涉及面广、内容抽象、不易理解,学生往往有望而生畏的感觉,在教学过程中,老师教、学生学都比较吃力。为了更好地实现上述教学目标,提高本课程的教学质量,协调好教与学的双边关系,使学生由望而生畏的感觉,变为有用有趣的感觉,根据已有人工智能课程在教学与实践方面的经验和方法,结合“人工智能导论”课程的近几年教学实践,对课程的教学体系、教学内容、教学方法、教学手段、考核方式等方面进行了探索总结。
2调整与优化教学体系和教学内容
“人工智能导论”是计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其研究领域及内容十分丰富,涉及的基础面广。因此如何选好教学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件重要而又困难的事情。
另外,在选择和确定教学内容时必须兼顾基础知识和新兴技术,注意与相关课程(如离散数学、数据结构、概率论、自动控制原理、Matlab系统仿真、面向对象的编程技术等)的链接,密切理论与实际的关系,通过课堂讲授和课外训练,注意学生能力培养,提高他们的学习效果和整体素质。
3加强课程立体化建设和系列教材研究
人工智能导论范文3000字第二篇一、人工智能的定义解读
人工智能(ArtificialIntelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。
二、人工智能的发展历程
事物的发展都是曲折的,人工智能的发展也是如此。人工智能的发展历程大致可以划分为以下五个阶段:
第一阶段:20世纪50年代,人工智能的兴起和冷落。人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
三、人工智能的多元应用
1、人工智能在管理系统中的应用
人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。
2、人工智能在工程领域中的应用
人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3、人工智能在技术研究中的应用
人工智能导论范文3000字第三篇摘要:时代是不断发展的,对于电气信息类专业的学生来说,社会岗位在综合素质和专业能力方面提出了对学生诸多新的要求。因此为了促进学生能够在毕业之后获得良好的发展,在电气信息类专业教育教学中,教师要对原有课程教育模式和课程教育手段进行有效的改革以及创新,从而促进学生专业能力的提高。为了使学生更加积极地进行知识内容的学习,教师要在电气信息类专业教育教学中充分的发挥人工智能的优势,提高课堂教学的效果。
关键词:人工智能;电气信息类;教学应用
教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。
一、人工智能时代的概述
其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业•2•本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。
二、人工智能对电气信息类专业人才需求的影响分析
三、人工智能给电气信息类专业提供的机遇
四、人工智能技术在电气信息类专业教育教学中的应用路径
(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。
(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。
(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。
(四)利用人工智能技术进行辅助性的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。
人工智能导论范文3000字第四篇摘要:针对普通高等院校学生和人工智能课程的特点,结合DBR(DesignBasedResearch)成果,提出一种
>>引入深度学习的人工智能类课程中西合璧的人工智能课程双语教学模式可调戏的人工智能生活中的人工智能不断超越的人工智能逐渐靠近的人工智能正在落地的人工智能2035年的人工智能航天类专业“人工智能”课程的教学探索林业院校人工智能课程教学的思考人工智能导论课程的兴趣教学法人工智能概论课程的教学思考“人工智能”课程教学的实践与探索游戏开发应用中的“人工智能”课程教学方法探讨人工智能的应用研究人工智能的日常应用人工智能的应用和发展浅析电气自动化控制中的人工智能应用分析继电保护中的人工智能技术及其应用电气自动化控制中的人工智能应用分析常见问题解答当前所在位置:l)。在情境创设时,教师根据学生特点提出了多种应用需求,例如化妆品销售咨询等。学生利用该工具,兴趣盎然地开发了自己的小型专家系统,不仅理解了专家系统的特点、作用、运行方式等,还具有强烈的成就感。
面向研究的情境创设
苏霍姆林斯基认为,研究型教学法应该充分体现学生的主体地位,激励、引导和帮助学生去主动发现问题、分析问题和解决问题,激发学生学习的内在兴趣和成就动机[4]。人工智能课程中包含了大量的前沿问题,研究型课题比比皆是,如何平衡这些研究课题与兴趣、实用的关系,是教学设计中重点考虑的内容。
下面以“规划”中的路径规划内容为例,详细分析以研究为导向的情境创设过程。表2给出了整个教学设计。
综合几次研究课题完成情况,班级中有1/3的学生通过广泛查阅资料和多次与教师讨论,提交了质量尚可的标准格式论文,并因此获得了学院的科研学分。除此之外,教师还组织这部分具备一定科研潜力的学生参加科研项目,进一步磨练科研技能,极大提高了学生的学习兴趣和能力。
3DBR驱动的教学过程
人工智能课程各单元内容相对独立,难以形成统一的联系,怎样验证各单元的学习效果?从提出问题到任务解决,每个单元的学习通常要跨越几节课甚至几周,怎样在此期间保持学生的兴趣和关注?
DBR是情境设计、实施、评价、再设计、理论形成等环节多次迭代循环的过程,柯林斯称之为“不断进步的修正”(ProgressiveRefinement),以检测设计的价值。因此,评价是教学过程中非常重要的一环。本课程教学主要做好两个环节,以驱动整个教学过程的推进。
1)实践环节。
通常的实践环节是课程结束后固定时间的实际任务,而本课程的实践却贯穿整个教学过程,是单元教学、教师、学生之间的粘合剂。实践包括应用型实践和研究型实践,一般在每个单元教学开始,提出问题后,实践任务就被布置下去,例如前面所述的“黑白棋”、“路径规划算法研究”等。学生接受任务后,带着问题搜索解决途径,在此期间需要教师提供方法指导及答疑(既可固定时间,也可通过E-mail等形式)。及时地交流,特别是针对实际问题的交流,不仅有效率,而且便于教师及时调整教学设计。
2)教学评价。
除了课程考核以外,每个教学单元结束时都有反馈和评价环节。评价方式包括单元测试、编写软件测试、研讨会等。具体采用何种形式,要根据前一阶段的反馈信息决定。这些来自学生反馈信息包括前一阶段学习的接受情况、兴趣点、其他课业繁忙情况等。在学期的不同时间点采用合适的评价方式,有助于加强学习刺激,总结和发现教学设计中的问题,及时调整。
通过上述两个环节的推动,精心设计的教学内容得以顺利实施并被学生欣然接受。2/3的学生在整个学期教学中都保持了积极的态度和充分的关注度,确实感受到人工智能的魅力,并能够从技术角度看待人工智能,消除了未学或初学时的神秘感。
4教学实施效果分析
1)正效果分析。
中原工学院计算机学院作为普通工科院校,以培养实用型人才为主,人工智能并非主干课程,学生重视程度不足。两年来,经过教师与学生的共同努力,教学改革成果逐步体现。人工智能类学生人数从过去的5%上升到15%,科研论文数量从1%上升到20%。有20%的学生接触过或正在从事人工智能类项目的研究与开发,考研选择人工智能科目的学生比例从0上升到15%,考研成功人数占毕业生总人数的20%。
人工智能导论范文3000字第五篇人工智能毕业论文_机械/仪表_工程科技_专业资料。人工智能的历史人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉......
人工智能的研究方向、领域和应用领域摘要:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能的研究方向、研究领域、应用领域值得我们关注和探讨。关键字:人工智能、研究方向、......
人工智能论文_理学_高等教育_教育专区人工智能一、什么是人工智能几个世纪以...
广告语言,又称广告词,有广义和狭义之分。以下是为大家整理的关于有趣的楼盘房地产广告语的文章3篇,欢迎品鉴!【篇一】有趣的楼盘房地产广告语1天鹅苑&bu
人工智能导论范文3000字第六篇〔摘要〕人工智能飞速发展,正在改变人类生活,推动人类进步。人工智能学者从认知科学、心灵哲学以及控制论等不同视角对人工智能进行研究,但对于人工智能哲学根源的追溯与厘清较少。古希腊毕达哥拉斯主义的数论思想、亚里士多德演绎逻辑系统与分析哲学中的逻辑分析与语言分析方法以及简单性哲学原则为人工智能研究纲领、研究框架以及研究方法等奠定了基础,哲学核心问题决定了人工智能的研究进路。只有对人工智能的哲学思想源流进行追溯与探究,才能理解人工智能的理论基础,以更好地把握人工智能的发展规律并合理预测人工智能的发展趋势。
〔关键词〕人工智能,数论,简单性原则
〔中图分类号〕N1〔文献标识码〕A〔文章编号〕1004-4175(2020)02-0005-06
人工智能发展如火如荼,学者除了对人工智能技术本质、人工智能社会影响、发展路径及伦理问题等进行研究之外,还关注人工智能中的哲学问题。对人工智能的研究不能仅仅局限于技术层面及科学基础层面的反思,也要涉及对人工智能的哲学思考。博登指出:“在科学家族中,没有一门学科比AI与哲学的关系更密切。”〔1〕3人工智能与哲学紧密联系,特别是心灵哲学与语言哲学,认知科学与认知心理学等学科也为人工智能发展奠定了科学基础。迄今为止,对于人工智能哲学的研究还没有形成完整的理论体系,学者多从哲学视角对人工智能中的问题进行探讨,从哲学思想源流挖掘人工智能基础的著述不多。笔者尝试从人工智能的数论基础、逻辑学、分析哲学基础以及简单性原则等视角分析人工智能的哲学思想根源。
一、数论哲学为人工智能提供质料基础
人工智能先驱西蒙与纽维尔作为人工智能符号主义(symbolicism)学派的代表,他们的研究着眼于计算机程序的逻辑结构、符号操作系统以及编程语言,这与古希腊哲学家毕达哥拉斯学派的“数论”思想一脉相承。在毕达哥拉斯看来,数是万物的本原,万物皆数。“按照普罗克洛在《欧几里德〈几何原理〉注释》中,‘数学’这个词也是毕达哥拉斯学派首先使用的”〔2〕268。毕达哥拉斯将科学研究的基础建构在数学的基础之上。毕达哥拉斯哲学思想的核心即“数”是万物的本原。按照毕达哥拉斯的数论思想,与其说水、火、土等都是万物的本原,不如用一个简单词“数”来解释万物的存在。
“数是万物的本原”包含着万物之中存在着某种数量关系的含义,不管是天体结构、音阶音律以及建筑結构等万物都存在数量关系。毕达哥拉斯学派认为数是宇宙的元素,科学研究就是寻找纷繁复杂现象之后的数量关系。例如,物理学是研究事物运动方面的数量关系,几何学是研究事物点、线、面、体之间的数量关系等。他们将事物的本质归结为数的规律,认为事物的本质就是数。按照亚里士多德“四因说”来看,毕达哥拉斯的“数”既是构成事物的形式因,又是构成事物的质料因。质料因指的是构成事物的原始质料,就好比建造房屋用的砖木石瓦,形式因即构成事物的样式和原型,就好比造房屋的图纸或建筑师头脑里的房屋原型。这样的思想家(毕达哥拉斯主义学派)认为数既是事物的质料、同时又是形成事物的变化和它们的不变状态的形式”〔3〕21-22。因此,数对于事物来说,既是质料因又是形式因。
毕达哥拉斯的哲学思想还表现在数的和谐论。他认为万物包括宇宙在内都由数构成,并且万物可以还原为数;他还认为宇宙是和谐的,并把和谐的宇宙称为“科斯摩斯”。科斯摩斯原意就是“秩序”的意思,认为世界存在内在秩序与内在规律,人类可以通过数量之间的关系找到世界的既定秩序。
毕达哥拉斯的“万物皆数,数之和谐”思想既具有本体论含义,也具有方法论意味。他的哲学思想影响了古希腊科学的发展,亚里士多德的逻辑学体系、欧几里德的几何学体系、托勒密的天文学体系、盖伦的医学体系这四大古希腊的科学成就皆受毕达哥拉斯主义哲学思想的影响。不但如此,毕达哥拉斯的哲学思想还影响了西方整个自然科学的发展。达芬奇、哥白尼、开普勒、伽利略、牛顿等人都自称是“毕达哥拉斯主义者”。达芬奇认为天体是一架服从确定自然法则的机器,自然界有确定的规律;15-16世纪带有毕达哥拉斯主义成分的新柏拉图主义者把自然事物的行为解释成数学结构;哥白尼日心说体系的理论基础也是依据毕达哥拉斯主义哲学理论来构造行星运动简单、和谐的天体几何学模型;开普勒认为自己是毕达哥拉斯主义者,他的目标就是追求造物主心中数的和谐;伽利略也是毕达哥拉斯主义的追随者,他认为“自然之书是用数学语言书写的”,自然的真理存在于数学事实中。毕达哥拉斯的数论思想还影响了莱布尼兹。莱布尼茨有一个梦想,就是给出一套理想符号系统或语言和确定的语言变换或演算规则,把日常问题转变成理想语言,利用演算规则清楚地求解问题的答案。在此基础上,莱布尼兹提出“通用机”的天才设想。莱布尼茨尝试发明人工智能通用机,他设计出一种二进制计算法,用二进制数代替原来的十进制数,二进制数即“1”和“0”。莱布尼兹虽然制作出了简单机器,但其只能进行简单的算术计算,还不是莱布尼兹设想的能够进行复杂数据处理的通用机。尽管如此,莱布尼兹思想还是影响了整个计算机系统的发展。
二、演绎逻辑与分析哲学成为搭建人与机器联系的桥梁
除了毕达哥拉斯的数论思想,古希腊亚里士多德的演绎逻辑系统也是人工智能的哲学思想源泉。人工智能符號主义学派也称为逻辑主义学派,可见逻辑思想在人工智能发展中的重要地位与作用。即使是深受胡塞尔后期的现象学、海德格尔的存在现象学和梅洛-庞蒂的知觉现象学影响的人工智能专家德雷福斯,也肯定演绎逻辑以及形式系统在人工智能发展中的作用。在德雷福斯看来,符号主义人工智能的基础是逻辑学,是哲学中的理性主义。人工智能的主要设想是可以运用计算机的逻辑运算来模拟人类思考的过程。图灵尝试依靠逻辑发明通用机,“我希望数字计算机能够最终激起人们对符号逻辑的极大兴趣……人与这些机器进行交流的语言……构成一种符号逻辑”〔5〕288。马丁·戴维斯直接把符号主义学派的源头追溯到亚里士多德,“把逻辑推理简化为形式的努力可以追溯到亚里士多德”〔6〕200。亚里士多德是逻辑学的创始人,他认为逻辑学是获得真正知识的重要工具,逻辑学是哲学的基础。亚里士多德注重演绎推理,特别重视三段论推理,他认为三段论推理是一切思维运动的基本形式。三段论是一种典型的演绎推理模式,它由普遍性公理和推理规则经过严密的逻辑论证得出必然性结论。图灵的通用机以及符号主义人工智能的根本基础,都可以归结为逻辑或者演绎推理。
集逻辑分析方法与语言分析方法于一体的分析哲学也是人工智能的思想源泉,分析哲学把逻辑学看作一切学科的基础,数学的基础也是逻辑学,数学也要用逻辑符号来表示。分析哲学产生于20世纪初,代表人物是石里克与卡尔纳普等人,其理论来源于英国的经验论者休谟、法国的实证主义者孔德、英国的逻辑主义者密尔和哲学家与心理学家马赫等人的观点。弗雷格的《算术基础》、罗素与怀特海合著的《数学原理》、石里克的《普通认识论》以及维特根斯坦的《逻辑哲学论》是分析哲学的代表著作。分析哲学的基本观点是:哲学的任务是对知识进行分析,强调通过对语言的逻辑分析来消除形而上学问题,认为一切综合命题都以经验为基础等。分析哲学家认为一切科学研究必须从经验出发,哲学的主要任务是运用现代数理逻辑和语言分析把复杂的概念分析为简单的概念,分析哲学家想通过对语言的逻辑分析澄清语句、语词的意义,通过语义上升,抛弃含混、模糊、有歧义的自然语言,把自然语言的语句转换成逻辑命题,通过分析逻辑命题的意义清除伪哲学问题,达到拒斥形而上学的目的。分析哲学注重逻辑分析与语言分析,强调语言分析的重要性,分析哲学把科学的任务界定为发现真理,而逻辑的任务在于识别真理的规律。罗素立足于把哲学建成严密的科学,哲学像科学一样可以获得真理性的知识。在罗素看来,哲学和科学只有程度之分,没有本质区别。哲学问题都是逻辑问题,逻辑问题就是科学问题。对科学问题进行分析还原之后,如果这个问题是逻辑问题,则它是哲学问题,否则就不是哲学问题。因此,逻辑是哲学的基础。通过逻辑分析进行还原涉及语言,那么,所有哲学问题命题都是语言表达式,语言结构是逻辑结构,是科学命题的真正的逻辑形式。
人工智能导论范文3000字第七篇《基于当前社会的人工智能初探》
本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。
弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。
人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。
第一,提高弱人工智能的运算速度,降低单位运算速度所需金钱。
人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难——上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。
第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?
以上所述,还可寻到根据,接下来的便只能是进行合乎逻辑的推理和大胆的设想了。
强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。
人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。
有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。
人工智能是一个很好的发展机遇,我们不应畏手畏脚。人工智能的未来是不可控的,但是人类的发展也同样是不可控的。走得太稳不见得能真地走得太远,试一次或许会有不一样的结果。
人工智能导论范文3000字第八篇2019新型冠状病毒国际病毒分类委员会,2019nCoV,世卫组织于2020年1月命名SARS-CoV-2,2020年2月11日。冠状病毒是一个大的病毒家族,
税务是税务的缩写。有广义和狭义之分。以下是为大家整理的关于2021党支部组织生活会个人对照检查材料的文章18篇,欢迎品鉴!第1篇:2021党支部组织生活会
党员领导干部要结合自己的工作和思想实际,进行深刻的自我反省,这有利于做好工作。以下是为大家整理的关于2022民主生活会党员领导干部个人对照检查材料的文章3篇
民主生活会是指党员和领导干部开展批评和自我批评的组织活动制度。以下是为大家整理的关于党史生活会意见征求表的文章5篇,欢迎品鉴!第1篇:党史生活会意见征求表
评估是汉语词汇,拼音是Kǎohé它意味着检查、检查和验证。严家训&米德省事&ldquo有一位彬彬有礼的官员对此感到羞耻,想留下来并进行了评估。以下
对比为汉语单词,拼音为Du-igravezhào、它意味着两个不同的、对立的和相关的事物,或者同一事物的两个不同的、对立的和相对的方面,被比较在一
意见是上级领导机关规划下级机关工作,指导下级机关工作活动的原则、步骤和方法的一种文体。以下是为大家整理的关于乡党委党史学习教育专题民主生活会征求意见的文章6篇
诚实,一个中国词,最早出现在《楚辞》中战国时期伟大诗人屈原的感悟:我年轻清白,不为正义所倾倒。”东汉著名学者王毅在《楚辞·章句》中评论道:如果你不接受它,你将是
门店经理是连锁经营企业指定管理单独门店的经理职位的名称。它也可以是独立商店所有者的头衔。它是商品经济浪潮中的一个新词。以下是为大家整理的关于店长的工作流程及工
人工智能导论范文3000字第九篇摘要:大作业的设置对学生深入理解课程内容,提高求解问题的能力具有很大的帮助。文章在笔者多年从事人工智能教学的基础上,探讨人工智能导论课的大作业设置问题,提出大作业应具备的基本条件,说明选择四子棋作为大作业的理由,给出四子棋大作业的评分规则,并对学生的大作业总体情况进行分析,验证选择四子棋作为大作业题目的合理性。
关键词:人工智能;作业;博弈
现在很多课程都设置了大作业,这对学生深入理解课程内容,提高求解问题的能力以及调动学生学习的积极性有很大的帮助。多年来,我们在人工智能导论课上一直设有大作业,受到了同学们较好的评价。下面就如何设置大作业问题,谈一点我们的体会,与各位同行进行交流[1-2]。
1大作业应具备的条件
在以往的教学实践中,我们曾经选择过不同类型的题目作为大作业,比如五子棋程序、基于拼音的整句输入法、基于归结的问题回答系统等。这些题目虽然也起到了很好的效果,但存在着一些不足。比如五子棋程序,如果采用一般的简单规则,则存在先手必胜的策略,而正式比赛规则又过于复杂;而且五子棋是一个比较大众的游戏,有的同学下棋水平比较高,而有的同学则不熟悉,这样大家不在同一个起点上,对于不熟悉的同学存在着不公平。基于拼音的整句输入法、基于归结的问题回答系统等,则缺乏趣味性,少了同学之间的“竞争”,不利于调动同学们学习的积极性。
经过思考,我们认为一个好的大作业,应该具备以下几个条件:
1)与课程学习内容紧密结合。
2)趣味性强,能调动同学们学习的积极性。
3)背景知识简单易懂,以便让学生集中在与课程有关的内容中,而不是把大量的精力花费在背景知识上。
4)规模适中,不需要花费大量精力处理诸如程序的存储空间问题等。
5)尽可能对所有同学都是公平的,不存在部分同学熟悉,部分同学不熟悉的情况。
经过认真的总结和思考,最终我们选择了四子棋作为大作业的题目,并对传统的四子棋规则加以改良,使其尽可能地符合上述基本条件。大作业的最终要求是,用程序实现一个四子棋程序,并通过比赛的方式评判大作业的成绩。
2为什么选择四子棋
在说明我们为什么选择四子棋作为大作业之前,首先我们介绍一下什么是四子棋。图1是一个四子棋的棋盘,由M行N列组成。游戏双方分别持不同颜色的棋子,设A持白子,B持黑子,以某一方为先手依次落子。假设为A为先手,落子规则如下:在M行N列的棋盘中,棋手每次只能在每一列当前的最底部落子,如图中的红点处所示,如果某一列已经落满,则不能在该列中落子。棋手的目标是在横向、纵向、两个斜向共四个方向中的任意一个方向上,使自己的棋子连成四个(或四个以上),并阻止对方达到同样的企图。先形成四连子的一方获胜,如果直到棋盘落满双方都没能达到目标,则为平局。
那么,我们为什么选择四子棋作为大作业题目呢?
首先,四子棋规则简单,几句话就能说明其比赛规则;其次,四子棋的规模适中,每一步的可落子点不多;第三,四子棋是一个博弈类的游戏,趣味性强;第四,可以用博弈树搜索等方法求解,与课程内容联系密切;第五,四子棋虽然简单,但是几乎所有同学以前都没有遇到过,所以对大家都是公平的。这些都能很好地满足我们前面提到的大作业应具备的几个条件。
3对四子棋的改进
为了更好地适应大作业的要求,我们对传统的四子棋游戏规则做了一些扩展,以更利于程序求解,避免存在必胜策略,使得同学们集中在求解策略的设计上。改进的目的一是为了更好地体现算法的作用,二是尽可能减少人为的必胜策略的影响。为此,我们对传统的四子棋规则做了如下的改进。
1)棋盘大小不固定,双方博弈时,在一定的范围内,随机地产生棋盘的大小。
2)随机地增加一些不可落子点。
比如在图2所示的棋盘中,“红叉”点就是一个不可落子点。当“红叉”点的下面落满了棋子时,只能在“红叉”点的上面落子,而不能在“红叉”点出落子。
对四子棋这样的两点改进,主要是为了避免静态的必胜策略的使用,引导大家更多的关注动态策略的使用,根据当前局势,实时地计算最佳的落子策略。
图2不可落子点的说明
4大作业评判规则
如何评判大作业的成绩对学生会起到一定的引导作用,为此我们提出了“赛会制”和“探索制”两种评判机制。
所谓的赛会制,就是建立一个比赛平台,所有同学的程序提交到平台上,按照以下规则参加比赛。
1)正确性验证。要求同学们针对四子棋问题实现一个α-β剪枝程序[3],给定一些特定的节点,判断剪枝是否正确。通过正确性验证者获得基本分。
2)全体同学采用大循环的方式进行比赛,任何两个程序之间进行两局比赛,先手后手各赛一局。
3)要求5秒内必须完成一次走步。
4)胜者获得2分,负者获得0分。
5)平局时,用时少者获得1+x分,用时多者获得1-x分。
6)按照获得的总分数进行排名。
7)要求就大作业内容写一篇小论文,根据排名和论文情况给出总成绩。
为了鼓励同学创新,探索新的方法,除了“赛会制”外,我们还设立了一个“探索制”供学生选择。选择探索制的同学,要求在方法上有所创新。比如采用机器学习的方法,寻找评判局面优劣的方法、权重系数等。要求写出一篇论文,对所用方法进行介绍,对不同方法进行比较,通过实验等验证方法的可行性和有效性。选择探索制的同学,虽然也参加比赛,但是最终成绩主要体现在论文的完整性和水平上,不看具体的成绩排名。这样就可以使得学生有更多的发挥空间,对于一些优秀的同学比较有吸引力。
5结果分析
在先期少数同学实验的基础上,我们从2010年开始全面在人工智能导论课上实施四子棋大作业,共有160名同学选择了“赛会制”的方式完成了四子棋大作业。为了验证该大作业的合理性,我们对大作业总体情况做了一个简单的分析,结果如下:
1)全部同学都通过了正确性测试。这是因为我们事先给出了一些测试样例用于学生自测,通过了这些样例后再提交基本就没有问题了。通过对部分同学的调查,也确实发现一些同学在做正确性测试之前,对α-β剪枝算法理解有误,通过写程序并测试程序的正确性发现了理解上的问题。这也可以看出正确性验证在这里的重要性。
2)全部160个学生的程序中,无一人全胜,也无一人全败,即便是总成绩第一名也失败了22局,而最后一名也取得了18局的胜利。
3)平局数很少,在全部比赛中,只有176局平局,仅占全部比赛的,平均人均平局数为局,平局数少也是我们希望看到的结果。
4)先手后手胜负比较均衡,经统计,先手胜与后手胜的局数之比为10:9,虽然后手稍微劣势一点,但总的来说变化不大,再加上任何两组程序都是先手后手各赛一次,总体上可以消除先手后手所带来的影响。
通过以上分析,以四子棋作为人工智能导论课的大作业是可行的、合理的,尤其是经过了改良之后的四子棋,在各个方面都是很均衡的,适合作为大作业使用。
6结语
以四子棋作为大作业,是我们对人工智能导论课的一次尝试,通过各方面的分析可知,这次尝试是成功的,有利于提高学生学习人工智能课程的兴趣,并将所学内容应用于解决实际问题之中。在做大作业的过程中,同学们阅读了大量的论文,对有关博弈问题,甚至是人工智能问题有了更加深入的思考和理解,从中学到了很多课本上学不到的知识。在今后的教学实践中,我们将进一步总结经验,改进大作业的设置,进一步提高人工智能课程的教学水平。
参考文献:
[1]吴文虎.精心铸精品理念须先行[J].计算机教育,2008(13):46-49.
[2]张彦航,孙大烈,战德臣.通过大作业促进大学计算机基础课程教学[J].计算机教育,2007(7):24-26.
[3]马少平,朱小燕.人工智能[M].北京:清华大学出版社,2004.
[4]应宏,刘福明,熊江,等.计算机课程作业改革的实践探索[J].计算机教育,2009(2):47-48.
ExplorationonProjectDesigninIntroductiontoArtificialIntelligence
HUANGYu1,MAShaoping2
(ofComputerandInformationTechnology,BeijingJiaotongUniversity,Beijing100044,China;ofComputerScienceandTechnology,TsinghuaUniversity,Beijing100084,China)
Abstract:Courseprojecthelpsalotforthestudentstounderstandtheknowledgethoroughly,andtoimprovetheircapabilityofproblemsolving,algorithmdesignandsystemimplementation.Basedontheteachingexperienceonrelatedcoursesformanyyears,thispaperexplorestheprojectdesignforthecourseofintroductiontoArtificialIntelligence(AI),andproposesseveralessentialprerequisitestosetupacourseproject.Siziqi,whichisasimilarbutsimplerchessgametoGobang,isdesignedasthecourseprojectwithspecifiedreasonsandevaluationrules.Observationsandanalysesarefurthermadeonthestudents’solutions,whichshowthatitisfeasibletotakeSiziqiasaprojectforAI.
Keywords:ArtificialIntelligence;courseproject;game
人工智能导论范文3000字第十篇《电脑人工智能日趋成熟》
电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。
现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。
舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。
舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。
人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”
舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。
舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测xxx维的能力。
舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?
讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。
一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。
换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”
微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。
舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。
从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。
显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”
在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。
舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。
目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。
日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。
除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。
舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。
人工智能导论范文3000字第十一篇摘要:崔政博士的新著《科学技术知识的政治经济学研究》以马克思的“劳动”概念为中心,提供了一个划定人工智能替代人类劳动的边界框架。该书区分了重复性劳动与创造性劳动,提出创造性劳动是人类劳动的本质也是人工智能不可替代的。但需要进一步指出的是,机器学习已经在认识实践中表现出对人类认知劳动的极大辅助作用,包括:人工智能能够提升科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。以上原因使得我们在创造性劳动中很难将人工智能排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。
关键词:人工智能;创造性劳动;科学知识;默会知识;机器知识
中图分类号:TP18文献标识码:A文章编号:CN61-1487-(2020)01-0154-03
产业科学出现以来,科技创新对经济增长的驱动作用已经成为全球性的共识。崔政博士的新著——《科学技术知识的政治经济学研究》,试图以“劳动”概念的历史分析为切入点,讨论科学技术在当代资本主义经济中所扮演的角色,进而以一种动态的劳动价值论表明当代社会经济运行的内在动因[1]2。该书以马克思的“劳动”概念为核心构建了一个哲学空间,将科学知识、技术创新、资本运行纳入其中,完整地阐述了科学技术对经济社会的塑造作用。该书的叙事方式表达了两个理论取向:第一,对科技创新的分析不同于传统技术创新理论仅关注经济“增长”,而是从更为基础的社会分工出发关注经济“发展”;第二,将科学知识的生产还原到马克思的“科学劳动”概念,实际上已经使用了一种扩展了的“科学”概念,蕴含着当代科学知识生产所具有的实践性、情境化、多主体等特征。
一、人工智能能够提升科学知识生产效率
机器学习的广泛使用可以提升科学知识生产的效率,主要表现在文献研究和实验室研究两个方面。人工智能系统可以通过自然语言理解获取、阅读和总结所有相关文献。例如,一个叫做Iris的人工智能系统的运行方式是:从某个研究主题的演讲切入,先使用自然语言处理算法分析演講的脚本,挖掘从开放渠道获取的研究文献,然后将相关研究文献分组并进行可视化,再通过人工标注文献使机器匹配精度增加,当机器能够理解文献的内容和结构时,可以帮助科研人员总结出该研究主题下的所有研究问题、假设、实验结果等,从而将前人工作完整呈现。此外,机器学习的使用还能够加快实验研究的进程。例如,2016年5月,澳大利亚国立大学的研究团队使用机器学习重复了物质的玻色—爱因斯坦凝聚态的实验室发现过程,从反复设置调整实验设备的各种参数到产生凝聚态物质,机器学习只用了一个小时,而凭借这一发现获得诺贝尔奖的三位科学家是在直觉的基础上经过多年实验才制造出了物质的凝聚态。由此可见,作为技术的人工智能的进步已经开始反向促进作为基础研究的科学知识的生产。
二、人工智能擅于提取和传递默会知识
三、人工智能可以产生某种机器知识
如果说默会知识还是“可意会而不可言传”的知识,那么AlphaGoZero在围棋上的表现已经表明人工智能系统产生了某种既无法“意会”也无法“言传”的机器知识。AlphaGoZero在没有人类以往的经验或指导、不提供基本规则以外的任何领域知识的情况下,就使用机器学习在短时间内探索了大量人类从未尝试过的走法。机器发现的知识不仅完全超出了人类的经验,也超出了人类的理性,成为人类几乎无法理解的知识。由此,产生了讨论某种“机器认识论”的可能性,GregoryWheeler在《MachineEpistemologyandBigData》一文中提出:机器学习对事物间隐蔽的相关性的发现和掌握已经远超人类,因此机器知识更多的是一种相关性知识。[3]321董春雨教授在《机器认识论何以可能?》一文中也指出:“人类必须正视机器在其擅长的领域,通过特殊的认识方式所获得和积累的知识。”[4]
机器知识与科学知识或默会知识的核心差别在于:机器知识依赖数据,科学知识或默会知识依赖信息。信息是事物可观察的表征,或者说信息是事物的外在表现。任何一个物体的信息量都非常大,要精确描述一个物体,就需要将其中所有基本粒子的形态以及它们之间的关系都描述出来,同时还要将该物体与周围环境的关系都描述出来。而数据是已经描述出来的部分信息,关于一个物体的数据通常要比信息少得多,例如只包含它的形状、重量、颜色和种属关系等。只有当信息经过适当的处理,当它被用来进行比较、得出结论和建立联系时,它才會转化为知识。而知识可以理解为伴随着经验、判断、直觉和价值的信息,作为认知主体的人在其中扮演了关键角色。
人工智能导论范文3000字第十二篇【摘要】STEM教育已经成为世界发达国家基础教育研究的热点,通过加强科学、技术、工程、数学等学科之间的联系,打通学科壁垒,采取更加灵活的学习方式,让学习者在真实情景下开展深度学习,有利于创新人才和高水平技术人才的培养。
【关键词】STEM教育;人工智能;机器人;编程创新
随着现代信息技术的迅猛发展,人工智能这个“技术英豪”已在全世界如火如荼地“跑马圈地”,迅速跻身技术创新的第一梯队。未来十年,我们将进入不可想象的智能化社会。智能机器人是信息技术发展的前沿领域,智能机器人教育具有实践性强、探索性强和综合性强的特点,有利于学生迅速接触前沿研究,打开思路,拓宽视野,开展智能机器人教学研究活动,让小学生从小触摸人工智能,感受它的非凡魅力,是小学阶段实现STEM教育理念、提高学生动手能力、培养学生创新精神的最好途径。
一、开展人工智能教育的背景
xxx在2017年印发的《新一代人工智能发展规划》宣布:举全国之力,在2030年一定要抢占人工智能全球制高点!人工智能正式上升为国家战略。2018年7月,中国第二届STEM大会在深圳福田召开,大会邀请了国内外著名的专家学者开设主题讲座,介绍最新的STEM教学理论和实践成果,掀起了福田STEM教育的热潮。在新一轮的教育规划中,福田区加快教育综合改革,以“智能教育”作为未来的发展方向,建立与中心区匹配的智能教育服务体系。STEM是用科学、数学知识和先进技术,以工程思维解决现实世界的问题。其教育的核心是:发现问题—设计解决方法—利用科学、技术、数学知识实施解决方法—将解决方法传达给大家。基于学校学科融合的办学理念,我校积极探索STEM教育的模式,开设机器人STEM课程,开展教师的课题研究和学生的探究性小课题研究、积极组织学生参与区、市级机器人创客比赛活动,积极投身人工智能的教学研究行列,培养学生的STEM素养。
二、以课程建设为核心,提升学生的STEM素养
机器人STEM课程是一门激发学生学习人工智能知识兴趣、培养学生综合能力、挖掘学生潜能为统领,以设计、组装、编程、运行机器人为主要学习内容,以培养学生观察能力、分析能力、想象力、逻辑思维能力、动手能力和提升学生的信息技术核心素养为主要目标的课程。机器人配备了各种功能的零件:如砖、轴、轮子等机械部分,大型电机、中型电机等动力部分,光电、触碰、红外等传感器,还有机器人的核心部件——控制器。学生通过动手创作,发挥自己的想象力和创造力,将零件组装整合,搭建各种具有实用功能的机器人。在搭建各种主题作品的过程中,锻炼了学生的动手能力,培养了学生的逻辑思维和解决问题的能力。他们在做中学、在玩中学、在学中玩,享受人工智能带来的无穷乐趣。
如果没有给机器人赋予运行的程序,机器人就是一堆塑料。因此,编程是机器人STEM课程的核心。在编写程序的过程中,学生需要把一个复杂的大问题,分解成一个个可以解决的小问题,循序渐进,逐步解决整个问题。在编写程序的过程中,学生首先要要清楚机器人的搭建结构和运行原理,其次还要清楚各种传感器的功能,通过编写程序来控制各种传感器,使机器人感知外界的环境信息,并对感知到的信息做出决策和响应,以使机器人能够顺利完成指定的任务。
以笔者执教的《走进人工智能》一课为例,该课伊始,笔者激趣导入,播放了特奥机器人飞速弹奏《野蜂飞舞》的精彩视频,勾起了学生学习人工智能知识的好奇心,产生探究科学的勇气,让学生对机器人技术有强烈求知的欲望。接着,采用任务驱动法教学,让学生通过微课程学习EV3编程技术,循序渐进地完成两个任务:1.让乐高机器人沿直线匀速运动;2.让乐高机器人沿直线匀速运动并且到达指定地点;最后的终极挑战环节,笔者让学生用乐高的配件搭建机械臂,编写程序,让乐高机器人模拟宇航员调整太阳能电池板,学生在設计、编程、调试中学得开心,玩得快乐,创意飞扬。
三、以课题研究为引领,推动师生专业化成长
课题研究是学校发展的源动力,是促进师生专业成长的重要途径。机器人教育作为一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,如何为学生学习的“思维体操”提供了一个崭新的“表演舞台”,使教学取得“效率高、印象深、氛围雅、感受新”的明显效应,一直是我们在进行机器人教学研究中最为关注的问题。为此,我校信息技术教师申请了福田区教育科学“十三五”规划课题《基于STEM教育理念下的机器人搭建与编程教学研究》,学生申请了2018年深圳市中小学生探究性小课题《乐高机器人的搭建与编程》,师生在研究中努力学习,敢于实践,勇于创新,取得了很大的进步。
以学生的探究性小课题为例,学生采用PBL项目式学习方式开展小课题研究,学生的学习方式由过去的像容器一样被“满堂灌”转变为学生间“合作、交流、探究”式学习,掌握了隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力。在研究的过程中,学生保持开放的心态,敢于尝试新鲜事物,从失败和成功中汲取经验教训,养成追求真理、锲而不舍的科学态度,在课题研究中不断优化算法和改进搭建模型,设计实用的机械臂,进一步提升机器人的稳定性和完成任务的数量和质量。团队成员在研究中不断碰撞出智慧的火花,通过小组合作解决一个个课题研究过程中遇到的困难,掌握了科研活动的过程与方法,在探究中催生宝贵的创新意识。
四、以参加机器人赛事为驱动,搭建学生个性成长的平台
雄鹰只有经过千百次的历练,才能够在蔚蓝的天空中展翅翱翔。机器人比赛让学生接轨前沿科技,开阔眼界,培养学生综合素养,让其在同龄人中迅速脱颖而出。通过参加机器人比赛活动,为学生搭建个性成长的平台,创设真实的解决问题的情景,让学生严格按照规则进行实战对抗比赛,不断修改机器人的设计,并对机器人重新进行编程,以期在合乎规则的情况下,取得尽可能好的成绩,品尝成功的快乐。
通过参与各级各类机器人比赛,挖掘了学生的潜能,张扬了学生的个性,丰富了学生的学习生活,培养了学生的核心素养,促进学生人格的健全发展。队员贾壹方谈到参加机器人创意赛时,感触良多:参加了机器人创意赛后,我受益无穷。我学到了许多关于编程、搭建的知识,更重要的是:我认识到了团体合作的重要性,一开始我们总是各执己见,可是,在陈秀老师的带领下,我们认真地听取他人意见,齐心协力地克服了一个又一个困难,感谢福民小学为我们提供了这样一个学习和进步的机会。
未来,我们将继续带领学生行走在人工智能校本课程的探索和实践道路上,完善课程内容,认真参与课题实验,带领学生参与各种展示活动,为学生探索科技搭建更完美的平台,培养人工智能时代的信息技术精英。
参考文献:
[1]中国STEM教育白皮书.中国教育科学研究院,2017,6,20.
[2]戴玉梅,王健潼,彭青青等.基于核心素养的小学机器人创客课程实践研究[J].中国教育信息化,2018,1.
人工智能导论范文3000字第十三篇关于人工智能的论文_兵器/核科学_工程科技_专业资料。关于人工智能的论文人工智能(ArtificialIntelligence,AI)是20世纪50年代中期兴起的一门新兴边缘科学,它既是计算机科学的一个分支,又是计算机科学、控制论、信息论、语言学......
有关人工智能的论文三篇人工智能论文1500精品文档,仅供参考有关人工智能的论文三篇人工智能论文1500随着计算机技术的快速发展和广泛应用,人工智能的思想和技术会对人类产生巨大的影响,可以应用于所有的学科领域,它的影响涉及......
人工智能综述(原创论文)人工智能及其发展***201000445模式识别与智能系统(***科技大学信息工程学院)摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。本文从人工智能的概摘要念出发,首先介绍了人工智能研究......