2023年人工智能领域发展七大趋势
2022年人工智能领域发展七大趋势
有望在网络安全和智能驾驶等领域“大显身手”
人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。
美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。
增强人类的劳动技能
人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。
比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。
总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。
更大更好的语言建模
语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。
2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。
众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。
网络安全领域的人工智能
今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。
随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。
人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。
人工智能与元宇宙
元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。
人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。
低代码和无代码人工智能
2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。
美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。
自动驾驶交通工具
数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。
特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。
此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。
创造性人工智能
在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。
2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)
【纠错】【责任编辑:吴咏玲】人工智能主要应用的七大领域
人工智能研究的内容大致有:机器学习与知识获取、知识表示、自然语言理解、自动推理与搜索方法、智能机器人、知识处理系统、计算机视觉、自动编程等方面。人工智能未来的发展前景非常广阔。人工智能的应用主要包括:零售、医疗、交通、教育、家居、物流、安防等七大领域。1、零售 人工智能在零售业的应用非常广泛:客流统计、智能供应链、无人便利店、无人仓库/无人车等都是热点方向。京东自主开发的无人仓库采用大量智能物流机器人进行协调配合,通过人工智能、深度学习、图像智能识别、大数据应用等技术,让工业机器人能够进行自主判断和行为,完成各种复杂任务,在商品分拣、运输、仓库等环节实现自动化。图谱技术将人工智能技术应用于客流统计。通过基于人脸识别的客流统计功能,商店可以从性别、年龄、表情、新老顾客、停留时间等维度建立客流的用户人像,为调整经营策略提供数据基础,帮助商店从匹配实际的角度进行经营,提高转化率。2、医疗 目前,在垂直图像算法和自然语言处理技术领域,可以基本满足医疗行业的需求,市场上有许多技术提供商,如德商云兴、人工智能细胞识别医疗诊断系统的研发,提供智能辅助诊断服务平台,如水医疗、统计和医疗数据处理等。虽然智能医疗在辅助诊断与治疗、疾病预测、医学影像辅助诊断、药物开发等方面发挥着重要作用,但由于医院间医学影像数据与电子病历的不循环,企业与医院之间的合作不透明,使得技术发展与数据供应存在矛盾。3、交通 智能发展交通网络系统是通信、信息和控制企业技术在交通安全系统中集成应用的产物。ITS应用最广泛的地区是日本,其次是美国、欧洲等地区。目前,我国在ITS方面的应用主要是可以通过对交通中的车辆流量、行车速度问题进行数据采集和分析,可以对交通方式进行研究实施过程监控和调度,有效方法提高通行能力、简化交通资源管理、降低社会环境造成污染等。4、教育 iFlytek和普通教育等公司已经开始探索人工智能在教育领域的应用。通过图像识别,可以通过机器对试卷进行校正和答题,通过语音识别提高发音,人机交互可以在线答题。人工智能与教育的结合可以在一定程度上改善教育部门教师分布的不平衡和高成本,从工具层面为教师和学生提供更有效的学习方法。然而,它不能对教育内容产生更实质性的影响。5、家居 智能家居基于物联网(IoT)技术,由智能硬件、软件和云计算平台构成完整的家居生态系统。用户可以远程控制设备,设备可以互联,自主学习,优化家庭环境的安全性、节能性、便利性等。值得一提的是,近两年来,随着智能语音技术的发展,智能扬声器已经成为一个亮点。天猫、小米等公司推出了自己的智能音箱,不仅成功打开了家居市场,也培养了用户未来购买更多智能家居产品的习惯。然而,目前国内市场上智能产品的种类很多,如何突破这些产品之间的通信障碍,为智能家居建立一个安全可靠的服务环境是业界下一个关注的焦点。6、物流 物流业通过运用智能搜索、推理规划、计算机视觉和智能机器人技术,在运输、仓储、配送、装卸过程中实现了自动化,基本上可以实现无人操作。例如,利用大数据对货物的智能配送进行规划,优化物流供应配置,需求匹配,物流资源配置。目前,物流行业的大部分人力资源都分布在“最后一英里”的配送环节,京东、苏宁、新秀赛车等开发无人驾驶飞行器、无人驾驶飞行器,以努力抓住市场机遇。7、安防 近年来,我国安全监控行业发展迅速,视频监控的数量不断增加,在公共场景和个人场景中安装的监控摄像头总数已超过1.75亿台。此外,在一些一线城市,视频监控已实现全面覆盖。然而,与国外相比,中国的安全监测领域仍有很大的增长空间。安防监控行业的发展中国经历了四个经济发展研究阶段,分别为模拟监控、数字监控、网络高清、和智能监控数据时代。每一次行业变革,都得益于算法、芯片和零组件的技术企业创新,以及由此带动的成本不断下降。因而,产业链上游的技术产品创新与成本会计控制自己成为安防监控系统主要功能结构升级、产业市场规模增长的关键,也成为一个产业可持续健康发展的重要理论基础。
更多人工智能:https://pan.baidu.com/s/1brJVbjPK4kacncAsQtgrmA 提取码:1234
人工智能技术应用的领域主要有哪些
随着智能家电、穿戴设备、智能机器人等产物的出现和普及,人工智能技术已经进入到生活的各个领域,引发越来越多的关注。那么,人工智能目前都应用在哪些领域,运用了怎样的技术原理呢?
什么是人工智能?人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。曾经有很多人戏称,人工智能就像一列火车,你苦苦期盼,它终于来了,然后它呼啸而过,把你抛在身后。虽然这是一种笑谈,但也反应了人工智能技术发展的迅速和无法想象的快,可能一个不小心,你就被远远甩在身后。
##人工智能技术的细分领域有哪些?人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。
1、深度学习深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。
深度学习的技术原理:
1.构建一个网络并且随机初始化所有连接的权重;2.将大量的数据情况输出到这个网络中;3.网络处理这些动作并且进行学习;4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;5.系统通过如上过程调整权重;6.在成千上万次的学习之后,超过人类的表现;
2、计算机视觉计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……
计算机视觉的技术原理:
计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。
3、语音识别语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。
语音识别技术原理:
1、对声音进行处理,使用移动窗函数对声音进行分帧;2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态;3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;
4、虚拟个人助理说到虚拟个人助理,可能大家脑子里还没有具体的概念。但是说到Siri,你肯定就能立马明白什么是虚拟个人助理。除了Siri之外,Windows10的Cortana也是典型代表。
虚拟个人助理技术原理:(以Siri为例)
1、用户对着Siri说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息;2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器;3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。总而言之,Siri等虚拟助理软件的工作原理就是“本地语音识别+云计算服务”。
5、语言处理自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言通信。
语言处理技术原理:
1、汉字编码词法分析;2、句法分析;3、语义分析;4、文本生成;5、语音识别;
6、智能机器人智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。
智能机器人技术原理:
人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。
智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。7、引擎推荐不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。
Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。
引擎推荐技术原理:
推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。
关于人工智能的展望除了上面的应用之外,人工智能技术肯定会朝着越来越多的分支领域发展。医疗、教育、金融、衣食住行等等涉及人类生活的各个方面都会有所渗透。
当然,人工智能的迅速发展必然会带来一些问题。比如有人鼓吹人工智能万能、也有人说人工智能会对人类造成威胁,或者受市场利益和趋势的驱动,涌现大量跟人工智能沾边的公司,但却没有实际应用场景,过分吹嘘概念。
转自:http://www.arduino.cn/thread-45848-1-1.html
人工智能 领域六大分类
1)深度学习
深度学习是基于现有的数据进行学习操作,是机器学习研究中的一个新的领域,机在于建立、模拟人脑进行分析学习的神经网
络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。
2)自然语言处理
自然语言处理是用自然语言同计算机进行通讯的一种技术。人工智能的分支学科,研究用电子计算机模拟人的语言交际过程,
使计算机能理解和运用人类社会的自然语言如汉语、英语等,实现人机之间的自然语言通信,以代替人的部分脑力劳动,
包括查询资料、解答问题、摘录文献、汇编资料以及一切有关自然语言信息的加工处理。例如生活中的电话机器人的核心技术
之一就是自然语言处理
3)计算机视觉
计算机视觉是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适
合人眼观察或传送给仪器检测的图像。计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完
成处理和解释。计算机视觉的最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力。
计算机视觉应用的实例有很多,包括用于控制过程、导航、自动检测等方面。
4)智能机器人
如今我们的身边逐渐开始出现很多智能机器人,他们具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、
嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这些机器人都离不开人工智能的技术支持。
科学家们认为,智能机器人的研发方向是,给机器人装上“大脑芯片”,从而使其智能性更强,在认知学习、自动组织、对模糊信
息的综合处理等方面将会前进一大步。
5)自动程序设计
自动程序设计是指根据给定问题的原始描述,自动生成满足要求的程序。它是软件工程和人工智能相结合的研究课题。自动程序
设计主要包含程序综合和程序验证两方面内容。前者实现自动编程,即用户只需告知机器“做什么”,无须告诉“怎么做”,这后一步
的工作由机器自动完成;后者是程序的自动验证,自动完成正确性的检查。其目的是提高软件生产率和软件产品质量。
自动程序设计的任务是设计一个程序系统,接受关于所设计的程序要求实现某个目标非常高级描述作为其输入,然后自动生成一
个能完成这个目标的具体程序。该研究的重大贡献之一是把程序调试的概念作为问题求解的策略来使用。
6)数据挖掘
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。它通常与计算机科学有关,并通过统计、在线分析处
理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的分析方法包括:分
类、估计、预测、相关性分组或关联规则、聚类和复杂数据类型挖掘。