人工智能论文3000字【十篇】
人工智能论文3000字【十篇】其他免费论文|时间:
2022-05-14
|推荐访问
研究人工智能的论文人工智能总结报告【www.stokuaidi.com--其他免费论文】
论文一般由标题、作者、摘要、关键词、正文、参考文献和附录组成,其中一些部分如附录是可选的。以下是为大家整理的关于人工智能论文3000字的文章10篇,欢迎品鉴!
第1篇:人工智能论文3000字《基于当前社会的人工智能初探》
本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。
弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。
人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。
第一,提高弱人工智能的运算速度,降低单位运算速度所需金钱。
人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难——上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。
第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?
以上所述,还可寻到根据,接下来的便只能是进行合乎逻辑的推理和大胆的设想了。
强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。
人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。
有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。
人工智能是一个很好的发展机遇,我们不应畏手畏脚。人工智能的未来是不可控的,但是人类的发展也同样是不可控的。走得太稳不见得能真地走得太远,试一次或许会有不一样的结果。
第2篇:人工智能论文3000字摘要:随着社会的飞速发展,科学技术不断进步,工业领域生产模式发生变化,人工智能时代势不可挡,尤其是机器人得到更大范围的推广与应用。工业机器人的突出优势是精准度较高,工作效率高,能够承受较大工作强度,为整个工业领域产量的提升以及质量的提高创造更加优质的条件。由此可见,工业机器人已成为现代工业发展的趋势与方向。文章基于行业发展,详细阐述了工业机器人的特征,探讨其未来发展趋势与方向,以期为整个工业行业的持续性发展提供更大的技术支撑。
关键词:人工智能时代;工业机器人;趋势;
Abstract:
Withtherapiddevelopmentofsociety,thecontinuousprogressofscienceandtechnology,industrialproductionmodechanges,theeraofartificialintelligenceisunstoppable,especiallytherobothasbeenmorewidelypromotedandapplied.Theoutstandingadvantagesofindustrialrobotsarehighaccuracy,highworkefficiency,abletowithstandagreaterintensityofwork,fortheentireindustrialfieldofproductionandqualityimprovementtocreatemorehigh-qualityconditions.Thusitcanbeseenthatindustrialrobothasbecomethetrendanddirectionofmodernindustrialdevelopment.Basedonthedevelopmentoftheindustry,thispaperexpoundsthecharacteristicsoftheindustrialrobotindetail,anddiscussesitsfuturedevelopmenttrendanddirection,inordertoprovidegreatertechnicalsupportforthesustainabledevelopmentoftheentireindustrialindustry.
Keyword:
eraofartificialintelligence;industrialrobot;trend;
随着人工智能时代的到来,互联网技术取得巨大突破,大数据技术成为核心,为工业机器人产品性能的提升提供更加先进的技术支持。在工业机器人发展进程中,其操作趋于简易化,精准度更高,能够广泛应用在诸多领域,投入成本呈现不断降低的趋势。立足工业领域,机器人应用于产品检测、焊接以及搬运等环节。工业机器人的出现强化对人力应用的缓解,在优势上主要体现为较高的生产效率与较高品质的操作,同时,操作持久性更加突出。
1工业机器人的构成以及类型
从构成上分析,工业机器人主要包含三个部分,即本体、驱动以及控制三个系统。从功能上分析,一种机器人的作用体现在对人类手、手臂的模仿。另外一种更具智能化,有效发挥仿生学的特征,能力更显多样化,自由度更高。在当前的工业领域,之所以选择工业机器人,主要源于其较低的单机价格,便于维修,应用效率较高。
2人工智能时代工业机器人核心技术分析
2.1工业机器人以高精度减速机为核心构成,涉及多种技术类型,要求较高
在工业机器人中,关键性结构组成为高精度减速机,涉及多种技术类型。首先,材料成型控制技术十分关键,尤其对减速机减速齿轮的耐磨性与刚性提出更高要求,目的是保证运行的高精度标准。在材料构成方面,要强化对金相组织、材料化学元素以及含量的科学控制。其次,加工技术不容忽视。在减速器中,非标特殊轴承是必不可少的组成部分,结构极具特殊性,需要减速器零件加工尺寸来确认间隙标准,工人技术要求更高。
2.2以电机与高精度伺服驱动器为核心,实现对工业机器人的全方位控制
对于工业机器人的控制,电机与高精度伺服驱动器作用突出,强化对控制系统的管理,尤其是在瞬间力、功率输出方面面临更高的标准。首先,快响应伺服控制技术能实现对位置环、电流环以及速度的有序控制,合理运用干扰观测以及前馈补偿算法。具体讲,要采用指标预测法来构建内部预测模型,达到闭环优化的目的。其次,为了保证工业机器人能够有效发挥识别功能,要依托在线参数自整定技术,强化转动惯量以及PID参数的在线优化,达到参数的精准判定。另外,在线惯量辨识算法明确伺服驱动器的实际工况,强化参数的智能化控制,以现场实际为要求,合理进行参数的调整。
2.3以实时性为要求,强化控制操作系统的稳定性与精确性
在工业机器人中,运动学控制系统对实时性要求较高。目前,机器人运动控制卡以定制方式为主,同时,强调与操作系统的密切配合,强化数据传输、数据精确性以及稳定性的实现,尤其是对于操作系统的消息处理机制,更要关注稳定性与快速响应的需要,增强实时性,为机器人产业化道路的发展创造条件。
3结合工业机器人应用实际准确掌握发展趋势与方向
3.1工业机器人的发展更显系统性特征,整体性能增强,适用范围更广
立足新时期的发展,工业领域的机器人更显多样性,如焊接机器人、清洁机器人等逐渐投入使用,工程自动化程度显著增强。随着技术水平的不断提升,机器人的造价呈现下降的趋势,但是,性能却不断增强。例如,对于工业领域的机械手,其主要原理是进行人手及手臂的模仿,实现灵活抓取以及搬运的功能,满足自动化操作的目标。纵观当前,机械手应用最为广泛的领域是工业制造业、包装业等。机械手能够在既定的时间内较为准确与高效地完成操作动作,这也成为工业机器人发展的主要方向。目前,信息技术发展迅速,尤其是人工智能技术影响力不断扩大,加之互联网技术的支持,工业机器人发展更显系统性特征,强化在控制系统、诊断系统以及维护系统功能的提升。同时,依托仿真模拟化程序设计,切实增强智能化与自动化水平,整体性能不断提升,在应用方面更显可靠性,适用范围更广。
3.2以工业发展需求为基础,更显生物性与仿生性特点,强化不良工作环境生产效率的提升
立足工业生产,很多环节与环境保护相矛盾,对从业者身心健康产生不利影响,有些操作人类很难完成,这也成为工业机器人得以推广应用的重要因素。例如,对于真空机器人,其之所以在工业中应用,主要原因是半导体工业中,真空传输晶圆这一环节人类无法完成,而真空机器人的引进实现这一问题的解决。另外,在一些恶劣环境中,如适应无阻运动的蛇形机器人,满足水下作业的仿生鱼机器人等,都处于不断研发之中,备受瞩目。也就是说,在工业机器人的发展进程中,更加关注其仿生性与生物性的特征,能够有效实现对人类行为的模仿与替代,成为新时期工业机器人研发的新动向。
3.3基于不断升级与更新的计算机信息技术,工业机器人控制系统更加完善,加快统一化与标准化的实现
在机器人内部,核心构成为控制系统,是发挥功能的重要保障,强化对记忆、示教、通信连接以及坐标设置功能的支持。当前,计算机技术不断升级更新,为工业机器人控制系统的优化与完善提供强大动力,整体控制水平显著提升。具体讲,在控制器方面,由专用封闭式发展为开放式。也就是说,计算机水平的提升使得工业机器人的控制系统突破专供的束缚,更显统一化与标准化的趋势,网络化特征明显。基于此,工业机器人的操作更显便捷性,具备简单的操作常识即可,无需投入人力物力进行培训,在很短的时间内就可以对机器人进行模块功能调整,在根本上使机器人的使用更加方便与快捷,维护管理工作也易于进行。
3.4综合传感器融合配置技术日趋成熟与完善,实现对人类思维与神经的多功能仿生
立足信息时代,人工智能的发展势不可挡,智能化成为工业机器人在未来的发展方向。智能化的机器人,即强调机器人对人类模仿的更高层次,需要具备更高层级的仿生,既要能够模仿人类的动作行为,同时,还需要具有人类的思维与神经。基于此,传感器成为智能工业机器人的重要构成部分,尤其是视觉、力觉、触觉传感器的出现,加快工业机器人智能化的发展速度。例如,对于从事电弧焊接的机器人,采用多传感器融合配置,融电弧传感器、视觉传感器以及机器传感器于一体。在视觉传感器的支持下,机器人能够凭借激光视觉扫描功能,获取焊接过程中所需要的焊炬等数据信息,保证电弧焊接的精准性。另外,远距离遥控机器人的出现代表了综合性传感器融合配置技术上了新的台阶。这种技术在机器人未来发展中将得到更大范围的推广与应用,处于不断完善与成熟中。
4我国工业机器人发展存在的不足与凸显的问题
首先,我国工业机器人起步较晚,发展时间较短,资金投入方面彰显不足,在技术与经验方面彰显无力性,处于不断摸索与提升阶段,研发力度亟待增强。其次,对于我国机器人的发展,在生产技术与可靠性方面相对薄弱,尤其是机器人很多关键部件需要进口,生产成本大幅增加,机器人市场仍需不断扩大,尤其是过高的成本支出,使得工业机器人在生产研发方面缺乏较高的积极性。再次,工业机器人标准化生产的实现需要以规模优势为前提,但是,我国在生产与研发方面的投入尚未达标,给推广与应用造成巨大阻力。
5如何推动人工智能时代工业机器人的快速发展
随着时代的不断进步,智能机器人技术处于不断创新升级中,因此,工业智能机器人在未来的发展要集中做好如下几个方面的工作。首先,从理论研究方面分析,要重视加强指挥制造技术的探究,尤其是针对机器人中相关零部件的生产,要切实提升产品生产质量,有效应对生产难题,借助新型制造技术与制造模式,缩短机器人生产与推广时间。其次,要结合社会需求,合理增加智能机器人科研项目资金投入,设置专项资金,尤其是面对工业转型发展的新阶段,要扩大对机器人及相关产业的投资量,在根本上为工业智能机器人技术的进步创造条件。再次,立足新时期,要对工业机器人相关条例、规则等进行完善,加快核心技术研发速度,同时,做好研发技术与成功经验的总结分析,推动智能机器人工业化发展进程的加快,构建更加完善的标准体系,强化对人机交互准则的合理优化。
6结束语
综上,工业机器人是多学科相互融合与发展的产物,对工业行业的发展意义巨大。因此,要立足信息时代,在人工智能技术的支撑下,准确掌握工业机器人发展趋势,明确技术特征,促使工业机器人生产制造成本的不断降低,性能逐步增强。同时,要重视仿生学在工业机器人领域的研究与应用,强化控制系统功能的不断升级改造,加快多传感器融合配置技术的发展,大幅提升工业机器人的智能化水平,推动整个行业标准化与统一化建设,拓展机器人应用领域,以便更好发挥工业机器人在人工智能时代的价值。
参考文献
[1]谭文君,董桂才,张斌儒.我国工业机器人行业的发展现状及启示[J].宏观经济管理,2018(04):42-47.
[2]王浩.工业机器人技术的发展与应用综述[J].中国新技术新产品,2018(03):109-110.
[3]蔡济云.工业机器人在自动化控制中的应用研究[J].科技与创新,2018(01):144-145.
第3篇:人工智能论文3000字[摘要]经济全球化形势下,英语教学需求增长,尤其对于高校教育机构而言,传统英语教学模式的局限性弊端已逐渐显露,新型教学技术的引入与应用成为大势所趋。人工智能技术作为现代科技的重要产物,于近年来开始被尝试应用于教学工作当中,在语言类教学课堂中发挥着尤为重要的辅助作用。基于高校英语教学的现实需求,如何构建有益于提升教学实效性的教学模式,并由此实现人工智能技术在英语教学课堂中的有效利用,成为亟待解决的关键问题。现由人工智能视野出发,尝试在高校英语教学中拟建混合式课堂,以期实现教学效率及质量的优化。
[关键词]人工智能;高校英语;混合式教学;构建策略
从高校教育阶段的英语教学目的来看,其核心主要在于语言应用能力的培养,要达成这一目标,仅仅依靠单一的课堂内教学远远不够,在缺乏课外训练的情况下容易导致学生出现语义理解、口语表达方面的短板,不利于全面应用能力的构建。因此,以“线上+线下”为特征的混合式教学模式在高校英语课堂逐渐兴起,在很大程度上弥补了以往单一性教学模式的不足,也更有利于为人工智能等现代教学技术的引入与应用扩大空间。但由于长期受传统教学模式影响,人工智能与混合式教学模式在高校英语课堂中的融合构建容易受阻,需要以科学合理的策略加以推进,现提出相应方案。
一、人工智能与混合式教学模式的相关理论概述
(一)人工智能的概念及主要功能人工智能技术是建立在计算机信息处理基础上的一种智能化技术,能够对人类行为逻辑、方式及习惯做出相应的解析与模仿,使机器的运作能够在智能程序的驱使下更贴合人类的交互需求[1]。基于这一应用方向,人工智能技术主要由理论研究与工程研究两个方面共同推进完整体系的构建,其中,理论研究工作旨在为后续工程研究的实践奠定基础,重点一般放在对现有技术经验的总结探索、对相关理论体系的整合提炼等方向;工程研究工作则旨在利用现有人工智能技术独立完成产品的开发与设计,重点一般放在人工智能系统与设备的应用、新产品的研发实验与调整改进等。从人工智能目前的主要功能来看,大致可分为以下三类:一是通过智能系统完成信息的存储、提取及内部处理;二是通过智能化能力完成信息的符号化处理;三是建立与人类行为逻辑相近的程序逻辑,并利用这一能力对人类提出的问题予以解答或处理[2]。从语言学习的视角来看,人工智能的功能呈现更为具体,如语言解析技术、语言识别技术、语言翻译技术等均较为常见,随着人工智能普及率的增长,这些技术在语言教学课堂中的利用也更为广泛,且目前仍处于不断升级的进程当中,为语言教育方式的革新转变带来了巨大的契机。
(二)混合式教学模式的应用价值结合混合式教学模式在高校英语教学中的应用现状来看,其教学价值大致体现在以下两个方面:一是优势整合价值。语言学习中,传统课堂与网络信息课堂所能够提供的支持效果各不相同,且各有优势与短板。通过应用混合式教学模式能够有效提取并整合两种教学状态下的主要优势,使其相互补充、相互作用,进而发挥“1+1>2”的更优教学效果。二是范围拓展价值。语言类科目不仅对基础知识体系具有较高要求,同时也有着明显的实践需求,而单一的课堂教学模式很难将教学范围进行有效拓展[3]。在混合式教学模式支持下,这一问题得以解决,通过利用庞大的线上资源来突破线下教学范围的局限性,能够达到开辟新渠道、巩固认知结构的教学目的,有助于为学生跨文化交际能力的提升奠定基础。三是推进教学改革。混合式教学模式的深入开展,有助于实现教学方式的多元化和丰富性。充分借助于线上教学与线下教学的优势,综合运用多样化的教学手段,根据不同教学内容的要求来选择合适的混合式教学手法,这不仅可以为学生的学习活动提供良好的支持,同时还有助于调节课堂教学氛围,让教学实效性得以大大增强。
二、人工智能视野下高校英语混合式教学模式的应用路径
(一)听力训练———应用语料库完成自动化资源匹配及交互听力训练属于英语教学中的基础性部分,对于学生英语应用能力的构建有着决定性影响,且听力资源的广度及与学习需求的匹配度在很大程度上决定着学习效果。因此,在构建高校英语混合式教学模式时,可将人工智能技术作为打开听力训练资源广度的关键渠道,借助其特有的语料库储备来完成自动化匹配、交互,使学生能够快速在庞大的英语听力素材中获取与自身学习需求相符的听力资料,并根据资料内容,与人工智能设备展开具有针对性的自动化练习[4]。首先,学生可在线上人工智能系统中录入自己的年龄、学段、英语听力基础、重点训练方向等基本资料,由系统根据数据资料自动筛选、匹配相应的听力材料,从而省略手动搜集资料的繁琐工序。另外,为进一步增强线下课堂学习与情境的交互性,还可进一步利用人工智能的自动识别功能,由学生根据学习需求,随机选取某物体进行扫描,再由系统根据识别出的物品类别筛选出相关的听力练习资料,使学生能够在自动且随机的语言场景中获得更良好的学习体验。例如,当学生选择“手机”这一物品进行识别后,语料库便可自动筛选出与“手机”有关的听力材料,整理出类似主题:Therelevanceofmobilephonesandmodernlife,学生再根据听力内容展开自主练习,从而规避千篇一律的重复训练。
(二)写作指导———应用自动批改功能完成查漏补缺英语教学中,写作是用于锻炼学生词句表述水平、语法运用水平的重要环节,但传统英语写作教学课堂常受困于题材范围狭窄、批改过于主观等因素,既不利于学生创造能力的发挥,也容易导致学生对于自身英语写作的优缺点难以客观把握[5]。因此,在利用人工智能技术展开英语写作指导时,同样可由线上、线下两个不同角度出发,分别借助框架搭建功能与自动批改功能完成的自我审视与查漏补缺,进一步夯实英语书面表述能力。线上教学中,首先可由教师向学生布置以某一话题或某一词汇为主题的写作任务,如“Economicglobalization”,学生根据自身思路,在人工智能技术支持下的作文系统中进行写作,系统则由此发挥框架搭建功能,结合主题与基本思路提供大致的框架模板,以及用作参考的相关词汇、句式,使学生能够跟随框架的指导,形成更为清晰的写作逻辑链条,达到深化表达的训练目的。线下教学中,首先可针对经过系统自动批改后的写作内容与批改意见进行回顾,找出系统评测下的亮点与不足所在,梳理出写作过程中的存疑之处,通过与他人交流和询问教师的形式找出解决办法,并于课堂上完成习作修改,最后由教师根据写作主题,给出主观意见,从而达到主客观相结合的综合评定目的,使反馈成果更具辅助改进意义。
(三)翻译练习———应用云平台技术实现重难点突破英语翻译是以足够的词句积累、听力练习为基础的语言转换过程,对于学习者的语法运用水平、实时解析能力、组织表达能力都具有较高要求,因此学习过程中的重、难点也相对更多,如何提高翻译精准性成为教学过程中的重要问题[6]。人工智能支持下的云平台应用能够为英语翻译教学带来新的渠道,一方面可通过创设翻译情境来使学生快速投入到语言环境当中,另一方面也可透过知识模块拆分功能来理顺语句间的联系,从而使得翻译精确性提升。首先,可在线下课堂当中借助人工智能技术来营造身临其境的语言氛围,如通过追踪文本内容,自动化匹配并呈现与之相关的场景,给人以身临其境之感,如在进行“Foratime,theweatherchangedsud-denly,heavyrainandthunder,pedestriansontheroadwerelookingforeavestoavoid.”一句的翻译时,系统可自动提取“Thunderstorm”这一关键词,并在设备中播放关于“暴雨雷鸣”的音像,将学生引入语言情境当中[7]。在情景背景下完成翻译练习后,学生可各自将翻译成果上传至线上云平台,由云平台根据翻译内容,出具动态的评价链条,对翻译结果进行量化评定,使学生更快地从中厘清重点、难点,并结合不同的知识模块展开针对性补充练习。
(四)口语对话———应用人工智能机器人展开一对一对话高校教育阶段,英语教学的最终诉求在于实际语言应用能力的构建,因此,口语对话练习成为贯穿教学始终的必要环节,关系着学生最终能否将课堂学习成果转化为语言应用基础。人工智能技术的出现,在很大程度上打破了以往英语课堂中对话组织困难的僵局,学生可通过与人工智能机器人建立起一对一的对话关系,来解决师资有限而同学指导能力不足的问题,同时取得训练成效与查漏补缺成效。学生在进行线上自主练习时,可根据想要练习的方向设置关键词或主题,再将人工智能机器人作为对话对象,围绕主题展开聊天式对话,从而达到口语训练目的,同时还可避免与真人对话时羞于启齿的情况,有助于在放松状态下激发出更良好的表达水平[8]。线下课堂教学中,同样可利用人工智能机器人来催化练习效果,例如,在组织小组口语练习时,为避免话题匮乏、接话困难的情况,可利用智能机器人来提供一些固定的框架或句式搭配,并根据不同成员的薄弱点,对对话的层级与难度进行适当智能化调整,从而实现对话练习效果的提升。
三、人工智能视野下完善高校英语混合式教学模式的主要策略
(一)完善教学管理系统,拓宽混合式教学范围无论是人工智能技术还是混合式教学模式的利用,都需要以完善的教学管理系统作为依托,才能够最大限度发挥其价值与成效,真正在教育工作中起到支持作用。因此,在构建高校英语混合式教学模式的同时,还需要紧密结合内部教学需求与教学现状,组织校内各部门共同参与到教学管理工作中来,积极发挥监督与合作职能,在寻求改革发展契机的同时进一步拓宽混合式教学的应用范围[9]。一方面,打造以融入人工智能技术为核心的混合式教学方案,将其应用于英语教学工作当中,动态化观察各阶段教学成果,并用作后期修改教学管理方向的依据,同时积极举办教学比赛及教学研讨会议,以便及时发现方案中的问题所在;另一方面,将混合教学范围逐步扩大,如尝试通过校外拓展实践来探索人工智能的新应用渠道,同时建立综合线上、线下两个教学环节评价指标的教学反馈体系,以便于及时由反馈体系当中获取新的教学动向,并由此探索更利于发展的新模式。可以说,人工智能背景下的英语混合式教学,是以完善的教学管理系统为先导的,必须要不断地对教学管理系统进行完善,有效地拓展并延伸混合教学范围,才能够最大化地提升混合式英语教学的实际意义,真正促进教学质量的提升,为学生的成长和发展奠定坚实的基础。
(二)优化课件制作体系,突出合作互动功能除混合式教学方法的应用外,英语教学课件的制作也直接影响着最终教学成效。为突出人工智能技术的教学优势,在后期英语混合式教学课件的制作中,可进一步强调学习过程中的合作与互动,通过留置更大的交互空间来激发个体的主观能动性,从而达到强化训练效果的目的。一方面,高校可组建精于网课制作的教师队伍,在分析人工智能教学数据、总结以往经验的基础上,尽可能地丰富素材、去粗取精,使学生在线上学习中获得更优体验;积极打造线上精品网课,带给学生专业化的网络课程内容,使之可以从中收获知识的积累和能力的提升,此外还可以将精品网课作为范本在其他高校进行推广,这既可以进行课程推广还能够实现学术交流,以此来更好地强化课件制作效果;另一方面,在线下课件的制作中,更多地增加由学生作为主导的实践板块,如互动对话环节、实时翻译环节等,从根源上提高学生在混合式课堂中的参与度[10]。总而言之,在人工智能背景下,积极开展英语混合式教学,必须要以优质课件制作体系为先导,以课件优势来促进学生对于知识的吸收,这样有助于最大化发挥混合式英语教学的意义,强化教学实效性。
(三)重建教学评价制度,设置多元考核指标在混合式教学模式践行基础上,可通过重建教学评价制度、设置多元化考核指标来进一步倒逼教学质量的提升。例如,除了平时表现,期末考试成绩作为基础考核以外,可另外增加线上教学评价板块,即将学生在线资源学习情况、线上线下课堂活跃度以及师生互动情况等都纳入评价考核范围。借助人工智能技术及网络平台,将学生的学习情况细化为多个考核内容,如听、说、读、写能力的构建情况等,从而保证考核结果更加公正、有效,能够真实反映学生的学习情况以及英语应用水平,并帮助学生完成针对性改进。此外,为了进一步延伸教学评价效果,可以通过线上师生互评、学生互评、小组评价、学生自我评价等方式来实施多元化评价,这样通过多维度、多元化的混合式评价,有助于实现最真实、最客观、最全面的教学评价,能够全面衡量教学质量和教学效果,以便于为后续的教学改进创造基础。
参考文献:
[1]刘凡.高校英语教学线上+线下混合式模式的构建研究[J].吉林广播电视大学学报,2019(9):62-63.
[2]安琦.民族高校英语专业课程混合式教学模式初探———以内蒙古民族大学为例[J].民族高等教育研究,2019,7(5):90-92.
[3]郭玺平.混合式教学模式下的高校英语演讲课程设计与实践———以内蒙古师范大学为例[J].内蒙古师范大学学报(教育科学版),2018,31(3):87-90.
[4]陈洁.混合式教学法在高校英语专业《基础英语》课程中的应用[J].黑河学院学报,2020,11(2):107-109.
[5]贺红艳.混合式教学模式下课堂评价体系改革对高校英语教师评价素养的挑战[J].国际公关,2020(5):41-42.
[6]毛为慧,余庆泽.基于AI语音识别平台的英语混合式教学模式探讨[J].河南教育(职成教),2020(3):28-30.
[7]王艳红.人工智能背景下英语写作教学中混合式教学模式的应用[J].西部素质教育,2020,6(12):122-123.
[8]阚常娟.多模态视域下的英语教学云平台建设研究[J].江西电力职业技术学院学报,2020,33(3):37-38.
[9]王璐.浅议人工智能背景下的大学英语口语教学与评价[C].外语教育与翻译发展创新研究(第九卷).四川西部文献编译研究中心,2020:44-46.
[10]季燕.5G+人工智能视角下的英语教学创新探索[J].创新创业理论研究与实践,2020,3(7):67-68.
作者:王欣单位:陕西警官职业学院
第4篇:人工智能论文3000字一、人工智能的定义解读
人工智能(ArtificialIntelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。
二、人工智能的发展历程
事物的发展都是曲折的,人工智能的发展也是如此。人工智能的发展历程大致可以划分为以下五个阶段:
第一阶段:20世纪50年代,人工智能的兴起和冷落。人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展,。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。
三、人工智能的多元应用
1、人工智能在管理系统中的应用
人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。
2、人工智能在工程领域中的应用
人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3、人工智能在技术研究中的应用
人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全已经成了人们关心的重点,因此必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级的AI通用与专用语言和应用环境以及开发专用机器,而人工智能技术则为其提供了一定的可能。
四、人工智能的未来思考
人工智能的近期研究目标在于建造智能计算机,用以代替人类去从事各种复杂的脑力劳动。正是根据这一近期研究目标,人们才把人工智能理解为计算机科学的一个分支。当然,人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。如今,人工智能已经进入了21世纪,其必将为发展国民经济和改善人类生活做出更大的贡献。但是,从人工智能目前的发展现状来看,其研究也存在一定的问题,这些主要表现在以下三个方面:
1、宏观与微观隔离
一方面是哲学、认知科学、思维科学和心理学等学科所研究的智能层次太高、太抽象;另一方面是人工智能逻辑符号、神经网络和行为主义所研究的智能层次太低。这两方面之间相距太远,中间还有许多层次尚待研究,目前还无法把宏观与微观有机地结合起来和相互渗透。
2、全局与局部割裂
人工智能是脑系统的整体效应,有着丰富的层次和多个侧面。但是,符号主义只抓住人脑的抽象思维特性;连接主义只模仿人的形象思维特性;行为主义则着眼于人类智能行为特性及其进化过程。这就导致了三者之间存在着明显的局限性。因此,必须从多层次、多因素、多维和全局观点来研究人工智能,才能克服上述局限。
3、理论与实际脱节
大脑的实际工作,在宏观上已知道不少;但是智能的千姿百态,变幻莫测,复杂的难以理出头绪。在微观上,我们对大脑的工作机制知之甚少,似是而非,这也使我们难以找出规律。在这种背景下提出的各种人工智能理论,只是部分人的主观猜想,能在某些方面表现出“智能”就已经算是相当的成功。
五、结语
人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术的发展方向。人工智能研究与应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。因此,要想从根本上了解人脑的结构和功能,完成人工智能的研究任务,就必须去寻找和建立更新的人工智能框架和理论体系,进而为人工智能的进一步发展奠定坚实的理论基础。我们坚信在不久的将来,人工智能技术的应用与发展必将会给人们的生活、工作和教育等带来更大的影响。
第5篇:人工智能论文3000字【摘要】STEM教育已经成为世界发达国家基础教育研究的热点,通过加强科学、技术、工程、数学等学科之间的联系,打通学科壁垒,采取更加灵活的学习方式,让学习者在真实情景下开展深度学习,有利于创新人才和高水平技术人才的培养。
【关键词】STEM教育;人工智能;机器人;编程创新
随着现代信息技术的迅猛发展,人工智能这个“技术英豪”已在全世界如火如荼地“跑马圈地”,迅速跻身技术创新的第一梯队。未来十年,我们将进入不可想象的智能化社会。智能机器人是信息技术发展的前沿领域,智能机器人教育具有实践性强、探索性强和综合性强的特点,有利于学生迅速接触前沿研究,打开思路,拓宽视野,开展智能机器人教学研究活动,让小学生从小触摸人工智能,感受它的非凡魅力,是小学阶段实现STEM教育理念、提高学生动手能力、培养学生创新精神的最好途径。
一、开展人工智能教育的背景
国务院在2017年印发的《新一代人工智能发展规划》宣布:举全国之力,在2030年一定要抢占人工智能全球制高点!人工智能正式上升为国家战略。2018年7月,中国第二届STEM大会在深圳福田召开,大会邀请了国内外著名的专家学者开设主题讲座,介绍最新的STEM教学理论和实践成果,掀起了福田STEM教育的热潮。在新一轮的教育规划中,福田区加快教育综合改革,以“智能教育”作为未来的发展方向,建立与中心区匹配的智能教育服务体系。STEM是用科学、数学知识和先进技术,以工程思维解决现实世界的问题。其教育的核心是:发现问题—设计解决方法—利用科学、技术、数学知识实施解决方法—将解决方法传达给大家。基于学校学科融合的办学理念,我校积极探索STEM教育的模式,开设机器人STEM课程,开展教师的课题研究和学生的探究性小课题研究、积极组织学生参与区、市级机器人创客比赛活动,积极投身人工智能的教学研究行列,培养学生的STEM素养。
二、以课程建设为核心,提升学生的STEM素养
机器人STEM课程是一门激发学生学习人工智能知识兴趣、培养学生综合能力、挖掘学生潜能为统领,以设计、组装、编程、运行机器人为主要学习内容,以培养学生观察能力、分析能力、想象力、逻辑思维能力、动手能力和提升学生的信息技术核心素养为主要目标的课程。机器人配备了各种功能的零件:如砖、轴、轮子等机械部分,大型电机、中型电机等动力部分,光电、触碰、红外等传感器,还有机器人的核心部件——控制器。学生通过动手创作,发挥自己的想象力和创造力,将零件组装整合,搭建各种具有实用功能的机器人。在搭建各种主题作品的过程中,锻炼了学生的动手能力,培养了学生的逻辑思维和解决问题的能力。他们在做中学、在玩中学、在学中玩,享受人工智能带来的无穷乐趣。
如果没有给机器人赋予运行的程序,机器人就是一堆塑料。因此,编程是机器人STEM课程的核心。在编写程序的过程中,学生需要把一个复杂的大问题,分解成一个个可以解决的小问题,循序渐进,逐步解决整个问题。在编写程序的过程中,学生首先要要清楚机器人的搭建结构和运行原理,其次还要清楚各种传感器的功能,通过编写程序来控制各种传感器,使机器人感知外界的环境信息,并对感知到的信息做出决策和响应,以使机器人能够顺利完成指定的任务。
以笔者执教的《走进人工智能》一课为例,该课伊始,笔者激趣导入,播放了特奥机器人飞速弹奏《野蜂飞舞》的精彩视频,勾起了学生学习人工智能知识的好奇心,产生探究科学的勇气,让学生对机器人技术有强烈求知的欲望。接着,采用任务驱动法教学,让学生通过微课程学习EV3编程技术,循序渐进地完成两个任务:1.让乐高机器人沿直线匀速运动;2.让乐高机器人沿直线匀速运动并且到达指定地点;最后的终极挑战环节,笔者让学生用乐高的配件搭建机械臂,编写程序,让乐高机器人模拟宇航员调整太阳能电池板,学生在設计、编程、调试中学得开心,玩得快乐,创意飞扬。
三、以课题研究为引领,推动师生专业化成长
课题研究是学校发展的源动力,是促进师生专业成长的重要途径。机器人教育作为一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,如何为学生学习的“思维体操”提供了一个崭新的“表演舞台”,使教学取得“效率高、印象深、氛围雅、感受新”的明显效应,一直是我们在进行机器人教学研究中最为关注的问题。为此,我校信息技术教师申请了福田区教育科学“十三五”规划课题《基于STEM教育理念下的机器人搭建与编程教学研究》,学生申请了2018年深圳市中小学生探究性小课题《乐高机器人的搭建与编程》,师生在研究中努力学习,敢于实践,勇于创新,取得了很大的进步。
以学生的探究性小课题为例,学生采用PBL项目式学习方式开展小课题研究,学生的学习方式由过去的像容器一样被“满堂灌”转变为学生间“合作、交流、探究”式学习,掌握了隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力。在研究的过程中,学生保持开放的心态,敢于尝试新鲜事物,从失败和成功中汲取经验教训,养成追求真理、锲而不舍的科学态度,在课题研究中不断优化算法和改进搭建模型,设计实用的机械臂,进一步提升机器人的稳定性和完成任务的数量和质量。团队成员在研究中不断碰撞出智慧的火花,通过小组合作解决一个个课题研究过程中遇到的困难,掌握了科研活动的过程与方法,在探究中催生宝贵的创新意识。
四、以参加机器人赛事为驱动,搭建学生个性成长的平台
雄鹰只有经过千百次的历练,才能够在蔚蓝的天空中展翅翱翔。机器人比赛让学生接轨前沿科技,开阔眼界,培养学生综合素养,让其在同龄人中迅速脱颖而出。通过参加机器人比赛活动,为学生搭建个性成长的平台,创设真实的解决问题的情景,让学生严格按照规则进行实战对抗比赛,不断修改机器人的设计,并对机器人重新进行编程,以期在合乎规则的情况下,取得尽可能好的成绩,品尝成功的快乐。
通过参与各级各类机器人比赛,挖掘了学生的潜能,张扬了学生的个性,丰富了学生的学习生活,培养了学生的核心素养,促进学生人格的健全发展。队员贾壹方谈到参加机器人创意赛时,感触良多:参加了机器人创意赛后,我受益无穷。我学到了许多关于编程、搭建的知识,更重要的是:我认识到了团体合作的重要性,一开始我们总是各执己见,可是,在陈秀老师的带领下,我们认真地听取他人意见,齐心协力地克服了一个又一个困难,感谢福民小学为我们提供了这样一个学习和进步的机会。
未来,我们将继续带领学生行走在人工智能校本课程的探索和实践道路上,完善课程内容,认真参与课题实验,带领学生参与各种展示活动,为学生探索科技搭建更完美的平台,培养人工智能时代的信息技术精英。
参考文献:
[1]中国STEM教育白皮书.中国教育科学研究院,2017,6,20.
[2]戴玉梅,王健潼,彭青青等.基于核心素养的小学机器人创客课程实践研究[J].中国教育信息化,2018,1.
第6篇:人工智能论文3000字《电脑人工智能日趋成熟》
电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。
现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。
舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。
一本书的书名是《第二自我—电脑和人类精神》,另一本书是最近出版的,书的题目是《电脑屏幕上的生活—因特网时代的特征》。舍科尔教授现在是麻省理工学院科学技术和社会项目的教授。从70年代开始到80年代初期,舍科尔教授开始研究人和电脑的关系。
舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。
人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”
舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。
舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测性息维的能力。
舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?
讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。
一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。
换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”
微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。
舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。
从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。
显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”
在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。
舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。
目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。
日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。
除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。
舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。
第7篇:人工智能论文3000字摘要:时代是不断发展的,对于电气信息类专业的学生来说,社会岗位在综合素质和专业能力方面提出了对学生诸多新的要求。因此为了促进学生能够在毕业之后获得良好的发展,在电气信息类专业教育教学中,教师要对原有课程教育模式和课程教育手段进行有效的改革以及创新,从而促进学生专业能力的提高。为了使学生更加积极地进行知识内容的学习,教师要在电气信息类专业教育教学中充分的发挥人工智能的优势,提高课堂教学的效果。
关键词:人工智能;电气信息类;教学应用
教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。
一、人工智能时代的概述
人工智能(ArtificialIntelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligentagent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰•麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯•卡普兰(AndreasKaplan)和迈克尔•海恩莱因(MichaelHaenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是十分广泛的科学,它由不同的领域组成,它是哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等多种学科互相渗透而发展起来的一门综合性学科。在人工智能时代下进行电气信息类专业教育改革的过程中,需要对人工智能时代的含义和发展背景进行深入的分析和研究,这样才可以给电气信息类专业教育改革指明一个正确的方向,保证后续工作的科学性和有效性。在2016年的世界经济报告中,人工智能被预测为第4次工业革命的主要技术代表,人工智能的发展将从宏观到微观的各个角度进行相互的渗透以及融合,从而符合各个领域对于智能化技术的新要求和新需求。在人工智能技术发展的过程中,产生了大量的新技术和新产品,也形成了新的产业核心的发展模式[1]。我国经济结构在人工智能时代下发生了重大的变革,由于人工智能技术独特的技术形式和技术模式,深刻地改变着人们的生活方式和生活模式。在一定程度上不仅可以推动我国社会生产力的提高,还有助于推动科学技术水平逐渐朝着智能化和数字化的方向而发展,从中可以看出人工智能技术的发展是时代发展的必然趋势,并且发展前景是比较广阔的。人工智能技术主要是指将多个学科技术进行有效的整合,其中涵盖了计算机学科、语言学科和心理学科,智能化特征是比较明显的。在实际应用的过程中,由于融合了各种尖端的技术,能够将技术能力和技术思维进行有机的结合,模仿人的工作行为和思维,在当前时代下人工智能技术得到了蓬勃的发展,但是人工智能技术的发展也需要一定的时间和精力。首先,在实际用的过程中相关工作人员进行了机器人的研发,机器人可以在复杂的环境中对信息进行有效的替代和处理,模仿人类的思维进行日常的工作。在后续工作的过程中,相关工作人员进行了数据系统的开发,可以自动化和智能化的对计算机数据进行有效的处理以及分析,在较短时间内提取出有效的信息,完成整个工作流程[1]。随着我国当前科学技术的不断发展,一些工作人员纷纷加强了对人工智能技术的研发力度和开发力度,不仅可以提高计算机的使用效果,还可以及时的发现在计算机系统日常运行过程中所存在的故障。在当前时代下人工智能技术的使用范围在不断的扩展,并且人工智能技术的发展前景是非常广阔的,在计算机网络技术中发挥着独特性的作用和决定性的重要影响的作用。
其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业•2•本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。
二、人工智能对电气信息类专业人才需求的影响分析
人工智能主要是利用计算机对人脑功能进行模拟,具备一定程度的人类认知和分析问题的能力,人工智能是人类所制造的智能化技术,也是机器智能化发展的主要载体。在人工智能发展的过程中,由于是计算机科学领域的一个分支,所以在人工智能研究的过程中,涉及有关语言识别和图像识别方面的功能。在当前时代下,人工智能所形成的热点效应是比较广阔的,人工智能技术的应用,使得各行各业朝着智能化的方向而发展,对于电气信息类专业人才需求来说,也逐渐朝着智能化的方向而发展。电气信息类的教学,主要是为了让学生能够在班级学习的过程中,将理论和实践进行有机的结合,提高学生的实践能力和操作能力,实践性是比较强的。在电气信息类专业发展的过程中各种新兴的技术被应用其中,扩展了电气信息类专业的发展实力,并且人工智能和电气信息类专业进行了有机的融合和渗透。人们在互联网思维的影响下已经形成了互联网思维的发展理念,随着人工智能技术的广泛运用再加上云技术和算法技术的普遍化,这又给电气信息类专业的发展提供了重要的支撑。在相互融合的技术背景下,电气信息类专业也即将进入到人工智能发展的领域中[2]。因此对于电气信息类专业行业的工作人员来说,要了解人工智能时代下先进的信息技术,并且还要结合电气信息类专业在人工智能背景下的新特点,树立新的工作模式和工作理念,从而使得电气信息类专业能够在人工智能技术背景下得到广泛的发展。对于人才需求方面,要求高校要对原有课堂教学模式和课程教学重点进行深入的改革和创新,融入人工智能方面的内容,对学生的综合素质和专业能力进行良好的培育,高校要正确地理解人工智能对电气信息类专业教学的影响,从而使得电气信息类专业能够朝着生态化和持续性的方向而发展。
三、人工智能给电气信息类专业提供的机遇
在人工智能技术中,所涵盖的技术内容相对来说是较为丰富的,这在一定程度上有助于提高电气信息类专业的教学水平和教学质量。从中可以看出在当前时代下的电气信息类专业教育教学中,教师要充分地把握人工智能技术所带来的机遇,从而提高课堂教学的效果和质量。在人工智能技术中包含着语言识别技术和图像辨认技术,也可以对一些语言进行有效的处理和研究。在课堂教学的过程中,教师要充分的发挥人工智能技术的优势,让学生了解当前电气信息领域的发展方向和主要的发展特点[3]。由于电气信息类专业所涵盖的内容是相对来说较为复杂的,学生在日常学习的过程中,需要进行多个学科知识内容的学习,这给学生日常学习和教师的课堂教学带来了诸多的挑战,教师要结合课程教学的内容,对课堂教学模式和流程进行精心的安排。在实际工作过程中,要以计算机作为主要的辅助手段兼容,并且充分利用其他专业领域的技术来开展日常的教学。在课堂教学过程中,教师要充分的利用人工智能技术,对原有课堂教学模式进行深入的改革以及研究,并且结合新一代人工智能发展规划的这一大背景,对原有课程教育模式进行创新和调整,从而给学生提供更加广阔的发展空间。首先,在实际工作的过程中,人工智能技术重新构造了电气信息专业的课程,由于电气信息类的实用性是比较强的,在人工智能的技术下能够取得不一样的教学效果。将语言识别技术和图像辨认技术进行了有机的结合,教师可以充分发挥这些专业技术的优势,提高课堂教学的效果。另外在课堂教学情景中,教师可以利用人工智能技术来实现网络化的教学,并且为学生打造智能化的工厂开展虚拟实验室,从而对学生的专业能力和操作水平进行良好的培育。其次,在电气信息类专业教学中人工智能技术的应用能够对传统课程教育模式进行有效的转型和升级。在以往课程教学中,由于电气信息类专业所涉及的知识学科是相对来说较为丰富的,这给教师的日常教学带来了诸多的问题。比如在实际教学的过程中很难实现课程的有效统一,也无法为学生打造标准化的课程教育体系,在进行个性化和独特性课程教学方面的力度还是不足的,甚至也没有完善的教育体系进行主要的支撑,这给实际的教学工作带来了诸多的问题。随着人工智能技术的应用,在课程教育的过程中,教师可以充分的发挥人工智能技术的优势,对相关信息进行有效的总结和收集。从而为学生打造个性化的教学课堂,并且运用人工智能技术,还可以对不同学生的学习需求进行分析和研究,提高课堂教学的针对性,从而使学生可以更加积极地进行知识内容的学习,实现快乐学习的效果[4]。在专业教育中教师要充分的发挥人工智能技术的优势,提高人工智能技术的应用性效果,对学生的知识需求进行深入的挖掘以及研究,从而使学生的学习质量能够得到有效的提高。与此同时,在课程教育的过程中,教师还可以进行课堂情景的构建,通过网络化的教学为学生再现一些生活中的真实案例,为学生全面素质的提高奠定坚实的基础。
四、人工智能技术在电气信息类专业教育教学中的应用路径
(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。
(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。
(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。
(四)利用人工智能技术进行辅助性的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。
(五)在电气设备故障诊断中的应用在电气设备故障诊断中,人工智能技术中的模糊理论、人工神经网络和专家系统的应用比较广泛。以前我们常常面临的问题是,当电气设备出现问题或故障时,总是表现出比较复杂的症状,采用传统处理手法难以对问题做出准确判断和查找,人工智能技术则很好地解决了上述问题。比如发电机的设备故障具有非线性、不确定和复杂性的特征,传统论断方法准确率非常低,而通过人工智能技术中模糊理论和专家系统的综合应用,能大大提高故障论断的准确率。
五、结束语
在电气信息专业教学课程中,开展人工智能技术的教学方法是非常重要的,教师要加强对这一问题的重视程度,充分的发挥人工智能技术的优势。在原有课程育人目标的基础上,制定信息化人才培养目标,并且对原有课程教育体系进行不断的完善和优化,从而使得电气信息类专业教学课堂和教学效果能够在人工智能的运用下得到有效的改善,促进学生专业素质的提高。
参考文献:
[1]周利.人工智能与中国高校教育的冲击和应对对策[J].教育现代化,2019(9):185-186.
[2]黄天元.人工智能时代的高等教育与变革分析[J].复旦教育论坛,2019(4):18-22.
[3]杨洋.人工智能技术的发展及其在教学中的运用[J].软件导刊,2018(10):86-88.
[4]潘克明.利用人工智能技术推进信息技术与教育教学的融合创新[J].教育信息技术,2018(2):13-15.
第8篇:人工智能论文3000字摘要:崔政博士的新著《科学技术知识的政治经济学研究》以马克思的“劳动”概念为中心,提供了一个划定人工智能替代人类劳动的边界框架。该书区分了重复性劳动与创造性劳动,提出创造性劳动是人类劳动的本质也是人工智能不可替代的。但需要进一步指出的是,机器学习已经在认识实践中表现出对人类认知劳动的极大辅助作用,包括:人工智能能够提升科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。以上原因使得我们在创造性劳动中很难将人工智能排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。
关键词:人工智能;创造性劳动;科学知识;默会知识;机器知识
中图分类号:TP18文献标识码:A文章编号:CN61-1487-(2020)01-0154-03
产业科学出现以来,科技创新对经济增长的驱动作用已经成为全球性的共识。崔政博士的新著——《科学技术知识的政治经济学研究》,试图以“劳动”概念的历史分析为切入点,讨论科学技术在当代资本主义经济中所扮演的角色,进而以一种动态的劳动价值论表明当代社会经济运行的内在动因[1]2。该书以马克思的“劳动”概念为核心构建了一个哲学空间,将科学知识、技术创新、资本运行纳入其中,完整地阐述了科学技术对经济社会的塑造作用。该书的叙事方式表达了两个理论取向:第一,对科技创新的分析不同于传统技术创新理论仅关注经济“增长”,而是从更为基础的社会分工出发关注经济“发展”;第二,将科学知识的生产还原到马克思的“科学劳动”概念,实际上已经使用了一种扩展了的“科学”概念,蕴含着当代科学知识生产所具有的实践性、情境化、多主体等特征。
该书更为重要的贡献在于讨论了人工智能技术对于社会生产方式的挑战和变革作用。书中提出:“人工智能的替代效应是建立在对人类劳动数据化和逻辑化的基础上的,探索自在自然的创造性劳动是不可数据化和逻辑化的。因此,人工智能只能围绕既有的对象进行重复性生产,替代重复性劳动;而人类则能够探索自在自然,从而摸索新技术、建构新对象,进行创造性劳动。也就是说,机器所不能替代的人类劳动的‘硬核’是探索自在自然的劳动,是创造对象和掌握技术的‘创造性劳动’。”[1]25作者将马克思的“劳动”概念区分为“重复性劳动”和“创造性劳动”,进而指出人工智能是对机器大工业的否定,它将替代人类劳动中可以重复、可以数据化的部分,但创造性劳动是人类劳动的本质,是人工智能所不能替代的。
作者提出:“人工智能可以在将重复性劳动数据化的基础上,对人类劳动进行模仿,从而取代任何形式的重复性劳动。但人工智能却不能取代人类的创造性劳动,创造性劳动是通过探索自在自然,经过反复的摸索与实验、征服反常和偶然、掌握技术、创造对象、实现对象从无到有的过程的劳动,这是一种原生性的劳动。”[1]27作者认为,创造性劳动是对马克思的“自在自然”的探索,“自在自然”是在人类的现有认知能力之外,却以反常和失败等形式向人类显现其自身。然而,在认知实践当中,机器学习已经可以帮助人类探索认知能力之外的“自然”,当然这种“自然”并不以反常或失败的形式存在。作者也指出:“尤其是在大数据和云计算的背景之下,机器学习的速度远超人类的认知极限,甚至可能在数据中找到人尚未发现的方法和规则。”[1]35因此,在认知劳动方面,我们可以在作者的概念框架下进一步区分出人工智能对人类“创造性劳动”的辅助作用,具体表现为三个方面:人工智能提高科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。
一、人工智能能够提升科学知识生产效率
机器学习的广泛使用可以提升科学知识生产的效率,主要表现在文献研究和实验室研究两个方面。人工智能系统可以通过自然语言理解获取、阅读和总结所有相关文献。例如,一个叫做Iris的人工智能系统的运行方式是:从某个研究主题的演讲切入,先使用自然语言处理算法分析演講的脚本,挖掘从开放渠道获取的研究文献,然后将相关研究文献分组并进行可视化,再通过人工标注文献使机器匹配精度增加,当机器能够理解文献的内容和结构时,可以帮助科研人员总结出该研究主题下的所有研究问题、假设、实验结果等,从而将前人工作完整呈现。此外,机器学习的使用还能够加快实验研究的进程。例如,2016年5月,澳大利亚国立大学的研究团队使用机器学习重复了物质的玻色—爱因斯坦凝聚态的实验室发现过程,从反复设置调整实验设备的各种参数到产生凝聚态物质,机器学习只用了一个小时,而凭借这一发现获得诺贝尔奖的三位科学家是在直觉的基础上经过多年实验才制造出了物质的凝聚态。由此可见,作为技术的人工智能的进步已经开始反向促进作为基础研究的科学知识的生产。
二、人工智能擅于提取和传递默会知识
波兰尼(MichaelPolyani)提出了默会知识(tacitknowledge)的概念,以区别于可以明述的知识(explicitknowledge),明述知识是用语言文字来表达的知识,如科学知识,默会知识则是我们知道但通常不加言述或者不能充分言述的知识[2]。默会知识具有以下几个特点:难以用语言文字描述,不易传播、记录和积累;获取默会知识主要依靠亲身体验;默会知识呈分布式存在,难以整合。这些特点导致我们很难有效运用默会知识,而机器学习的大规模运用使得人工智能系统非常擅于处理默会知识。作者敏锐地意识到了这一特点——“以往我们所说的‘默会知识’、手工技艺技巧,以及复杂程度远超人类认知能力之外的一些潜在规则,也都不再是一个个‘黑箱’,机器可以基于将人类劳动的过程还原成物理量和数据,再通过机器学习找到其内在的规律,从而取代人类劳动。”[1]56
在当前人类社会所有已经产生的信息中,文字只占极少的比例,大量的信息以图片和视频方式呈现,其中蕴含了大量需要通过亲身体验才能获取的默会知识。如果有办法将事物状态用图片或视频记录下来,就有可能使用机器学习从中萃取出知识。很多电影公司已经使用人工智能系统观看大量人类历史上的影视作品,从而归纳提取出经典桥段,创作出新的配乐、台词和预告片以供人类借鉴。更为重要的是,由人工智能系统获取的默会知识是以神经网络参数集的形式存在的,这对人类而言仍然不可描述,也难以在人类之间传递,但却非常易于在人工智能系统间传播。例如,一台掌握驾驶技能的自动驾驶汽车只要将参数集分享出来就可以快速让所有汽车学会这项技能,而且可以实现机器间的协同行动。
三、人工智能可以产生某种机器知识
如果说默会知识还是“可意会而不可言传”的知识,那么AlphaGoZero在围棋上的表现已经表明人工智能系统产生了某种既无法“意会”也无法“言传”的机器知识。AlphaGoZero在没有人类以往的经验或指导、不提供基本规则以外的任何领域知识的情况下,就使用机器学习在短时间内探索了大量人类从未尝试过的走法。机器发现的知识不仅完全超出了人类的经验,也超出了人类的理性,成为人类几乎无法理解的知识。由此,产生了讨论某种“机器认识论”的可能性,GregoryWheeler在《MachineEpistemologyandBigData》一文中提出:机器学习对事物间隐蔽的相关性的发现和掌握已经远超人类,因此机器知识更多的是一种相关性知识。[3]321董春雨教授在《机器认识论何以可能?》一文中也指出:“人类必须正视机器在其擅长的领域,通过特殊的认识方式所获得和积累的知识。”[4]
机器知识与科学知识或默会知识的核心差别在于:机器知识依赖数据,科学知识或默会知识依赖信息。信息是事物可观察的表征,或者说信息是事物的外在表现。任何一个物体的信息量都非常大,要精确描述一个物体,就需要将其中所有基本粒子的形态以及它们之间的关系都描述出来,同时还要将该物体与周围环境的关系都描述出来。而数据是已经描述出来的部分信息,关于一个物体的数据通常要比信息少得多,例如只包含它的形状、重量、颜色和种属关系等。只有当信息经过适当的处理,当它被用来进行比较、得出结论和建立联系时,它才會转化为知识。而知识可以理解为伴随着经验、判断、直觉和价值的信息,作为认知主体的人在其中扮演了关键角色。
相较之下,机器知识可以被刻画为数据在时空中的关系,这些关系表现为某种模式,对模式的识别就是认知,识别出来的模式就是知识,用模式去预测就是知识的应用。这些数据在时空中的关系只在少数情况下才能用数学工具进行表达,而多数情况下知识表现为数据间的相关性的集合,这些相关性只有一小部分可以被人类感知和理解。这源于人类感受能力的局限性:人类只能感受部分外界信息,人类的感官经验局限在三维的物理空间和一维的时间。因此,当数据无法被感知,它们之间的关系又无法用数学工具表达时,这些数据间的关系就超出了人类的理解能力之外而属于机器知识。当前机器学习的主流形式——人工神经网络的最大特点就是发现并记忆数据中的相关性,例如在看了很多汽车图片后会发现汽车都有四个轮胎,人类对图片这类直观的数据间的相关性也能发现并记忆一部分,这就是默会知识。但当数据量很大且不直观时,例如股票市场的数据或者核电站的内部数据,人类就无法应对了。而随着人工神经网络层级和数量的增加,人工智能系统能够处理大规模的复杂数据,这就是机器知识。机器知识当前的主要表现形式类似于AlphaGoZero中的神经网络的全部参数。
概言之,科学知识和默会知识多是基于信息的因果性知识,而机器知识多是基于数据的相关性知识。此外,科学知识是易于记录、易于陈述、易于传递的;默会知识是难以记录、难以陈述、可传递的;机器知识则是可记录、不可陈述、易于在机器间传递的。
四、人工智能发展的局限性
当然,基于人工神经网络的机器学习仍有两个核心的局限性导致人工智能系统还不足以承担创造性劳动。第一个局限是,人工神经网络需要依赖特定领域的先验知识,也就是需要特定场景下的训练,这是因为人工神经网络的学习本质上是对相关性的记忆,人工神经网络将训练数据中相关性最高的因素作为判断标准。这个问题在自动驾驶汽车中表现的非常突出,鉴于道路交通情境的复杂性和交通标示的多样性,自动驾驶系统难以避免很多交通事故。第二个局限是,人工神经网络无法解释产生某个结果的原因,这种不可解释性在许多涉及安全和公共政策的领域显现的比较突出,例如在智能医疗中,人工神经网络在影像识别和辅助诊断中都对其结果缺乏医学上的解释性,都需要专业医生的复核。
基于人工神经网络的人工智能系统在记忆和识别这两个基础智能方面超越了人类,但在推理、想象等高级智能方面还相差较远。与人类相比,人工智能无法承担创造性劳动的原因还不止于以上的局限性,还包括:人工智能没有常识和物理世界的模型;人工智能没有自主和自发的通用语言能力;人工智能没有想象力,需要大量常识、反事实假设和推理能力;最重要的是人工智能没有自我意识。自我意识的缺乏导致能够产生机器知识的人工智能系统仍然无法被视为认知主体,其知识的“创造性劳动”是一种无意识认识活动。
五、结语
人工智能系统在提升科学知识生产效率、处理默会知识以及产生机器知识方面的优势,使得我们在创造性劳动中很难将其排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。脑机接口(brain-computerinterface)是当前一个重要的人机协作研究方向,而其中最激进的方式是马斯克提出的Neuralink,即通过柔性电极对接在人脑的神经网络上,Neuralink要解决的是人类的信号输入与输出,但其问题在于人类的高级思维(如逻辑推理或描述场景)必须依赖语言,而目前基于人工神经网络的机器学习能力主要是对环境的识别能力,还远没有达到语言和逻辑推理,但人类智能通过语言进行沟通。这背后就隐含了人类的科学知识与人工智能系统的机器知识之间的不可通约,以上例子也表明基于人机协作的创造性劳动还有很大的技术障碍需要克服。
参考文献:
[1]崔政.科学技术知识的政治经济学研究[M].石家庄:河北人民出版社,2019.
[2]郁振华.当代英美认识论的困境及出路——基于默会知识维度[J].中国社会科学,2018(7).
[3]GregoryWheeler.Machineepistemologyandbigdata[A].inMcIntyre,Lee,andAlexRosenberg,eds.TheRoutledgeCompaniontoPhilosophyofSocialScience[C].Taylor&Francis,2016.
[4]董春雨,薛永红.机器认识论何以可能?[J].自然辩证法研究,2019(8).
第9篇:人工智能论文3000字《电脑人工智能日趋成熟》
电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。
现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。
舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。
一本书的书名是《第二自我—电脑和人类精神》,另一本书是最近出版的,书的题目是《电脑屏幕上的生活—因特网时代的特征》。舍科尔教授现在是麻省理工学院科学技术和社会项目的教授。从70年代开始到80年代初期,舍科尔教授开始研究人和电脑的关系。
舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。
人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”
舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。
舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测性息维的能力。
舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?
讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。
一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。
换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”
微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。
舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。
从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。
显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”
在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。
舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。
目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。
日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。
除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。
舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。
第10篇:人工智能论文3000字【摘要】随着现代信息技术的飞速发展,我们迎来了伟大的人工智能时代。人工智能的伟大在于给各行各业都带来了巨大的冲击,对会计行业而言,运用了越來越多的人工智能技术,科技的进步,使人工智能不仅正逐步取代部分会计人员的一些低技能的低端工作,它还可以完成人类大部分的工作。本文将从了解人工智能出发,结合人工智能时代下会计行业的发展变化分析人工智能给会计行业带来的诸多机遇与挑战。
【关键词】人工智能会计发展机遇和挑战
一、人工智能概述
(一)人工智能的发展
1950年,艾伦,麦席森,图灵发表了一篇划时代之作《制作机器会思考吗?》里面提出了测试机器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。约翰,麦卡锡在1956年的达特茅斯学术会议上,第一次提出人工智能(ArtificialIntelligence,AI)。1997年,IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。2017年7月,国务院印发了《新一代人工智能发展规划》,这是我国首个面向2030年的人工智能技术的战略发展蓝图,也表现出我国对发展人工智能技术的重视与支持,同时,人工智能人选“2017年度中国媒体十大流行语”。
人工智能是计算机科学的一个分支,可以对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
(二)人工智能的意义
人工智能的出现代表我国经济正在快速的发展,科技水平不断的提高,同时人工智能也慢慢的融入并改变着我们的生活,推动时代的发展。人工智能现在正朝着教育、金融、服务、医疗、信贷等诸多领域发展,比如经济领域、空间技术、主动控制、计算机规划和制作,其首要运用领域是制作主动化工厂、医疗、物流和家庭效能;在商业领域中,无人驾驶轿车在机器人工作中占有智能轿车技术的主导地位;在金融领域,有了人工智能的监督和把关,那些企图利用系统或其他漏洞进行金融犯罪的不法之徒将无处藏身:那么,人工智能对会计行业的发展又有那些意义呢?
二、人工智能时代下会计的发展变化
人工智能在会计、审计、税务等行业的广泛运用,使得传统、简单、重复性的基础会计工作岗位将面临被智能化取代,人工智能已成为促进会计行业转型发展的重要推手。近三年来,德勤、普华永道、安永、毕马威4大国际会计师事务所通过利用财务机器人进行会计、审计等工作,使得数据的准确性、工作效率、管理决策水平等明显提升,由此可见,人工智能早已潜移默化的影响到了会计工作的方方面面。
(一)会计工作效率提高了。人工智能技术与财务管理系统的对接,实现了系统自动识别票据、生成会计记账凭证、记录明细账户以及生成总账和各类报表。作业过程中系统按时间顺序记录每笔业务,对每一笔账务进行核实和验证。财务机器人还实现了信息的语音、扫描录入,财务软件可自动生成证、帐、表,这将更加高效准确地完成基础会计核算工作,提高此项工作的效率,会计人员因此节省了大量用于基础核算工作的时间,从而能将更多的精力投入在企业内部管理型的工作上,同时又提高了管理工作的效率。
(二)会计信息质量提高了。受自身能力、专业素质以及外部环境等因素的影响,会计信息数据的滞后性和人为失误在所难免。人工智能将会计模型和方法程序化,它既减少了人为失误又极大地提升了数据处理能力,工作重心逐渐转向数据的挖掘、分析等重要环节和高附加值工作中,同时,会计档案由纸质变成电子档案更便于信息系统的管理、流程化的管理和监控,避免了人工作业的失误以及造假的可能,数据信息和记录的真实性和精准度得到保证。
(三)会计职能重心转移了。人工智能虽然可以替人做一些简单、繁冗、重复性的基础会计工作,但并不能完全替代会计人员,随着人工智能与会计信息系统的不断结合,从事简单记账工作的初级会计人员将会越来越少,而中高级会计人员将会集中于行业中涉及分析、预测和统筹的领域。因而会计职能的重心将向预测、决策、规划、控制、评价等目前人工智能无法取代的管理会计的职能转移。
(四)会计人员从业压力加大了。随着人工智能被引入到会计行业中,一方面,简单的会计核算工作将被智能化财务软件逐步替代,普通核算类型工作的岗位势必减少,基层会计人员面临失业的压力:另一方面,由于财务软件能够高效完成基础财务工作,企业更需要财会人员发挥管理会计的职能,会计从业人员需要将工作重心转移到决策分析和经营管理上,使其有从财务会计到管理会计转型的压力。
三、认清挑战,抓住机遇
人工智能的发展与应用是社会经济发展过程中的必然产物,它的到来就像一把双刃剑,虽然可以对会计行业整体工作效率与工作方式带来提升,但是人工智是不能完全代替会计人员的工作的。比如,智能化的设备无法完全替代充满人情味的服务。李开复也指出,社交能力强、应变能力强、协商能力强的人,永远不会被人工智能取代。人类的感情,想象、创造等特质也是人工智能所无法企及的。所以,对于会计从业人员而言,人工智能只是一种行业对于自身的探索以及进步,顺应这种变化,会计人员应当认清挑战,抓住机遇。
一方面,会计从业人员应调整好心态,快速适应行业的变革,重新找回自己的价值。努力提升自己的专业分析能力和管理能力,成为人工智能代替不了的高级会计工作者。比如:财务战略制定,纳税筹划,风险控制,合理避税、财务分析等。同时,向复合型人才发展。正如任正非所说,称职的CFO应随时可以接任CEO。会计人员应当开阔眼界,放大格局,不能只着眼于本职工作,还应该了解工作其他岗位的工作内容,比如销售类、生产类等部门的业务,提高自己的企业价值以及行业地位,做一名复合型人才。
另一方面,人工智能技术在财会领域的突破离不开懂会计知识的专业人员的配合,财务人员要努力学习新技能,加强计算机、信息技术的知识储备,协助人工智能会计信息系统的研发,担当人工智能会计系统的设计者和监督者。
参考文献:
[1]闰钰.企业人工智能时代下对会计行业的思考[J].商场现代化.2018(1Z)
[2]杨秀琴.浅议人工智能时代财务会计与管理会计的融合发展趋势[J].现代商业.2018(18)
[3]李牧阳,沈舒航.AI运用给会计行业带来的问题和思考[J],中国管理信息化.2019(42)
本文来源:https://www.stokuaidi.com/mianfeilunwen/199713.html上一篇:谈文化自信1500字论文文化自信论文2000字【三篇】下一篇:大学军事理论论文(通用4篇)看过《人工智能论文3000字【十篇】》的人还看了以下文章
大国工匠观后感4篇2022-06-052021年观看新时代好少年直播观后感六篇2022-06-052021年《榜样6》观后感范文(通用15篇)2022-06-05看过2021年央视《新时代好少年》观后感范文(通用3篇)2022-06-052022年《我们的冬奥》电影观后感范文(精选15篇)2022-06-05公祭日观后感集合16篇2022-06-05央视《冬奥来了》优秀观后感3篇2022-06-05榜样5观后感【五篇】2022-06-04古田军号观后感4篇2022-06-04国行公祭观后感范文(精选13篇)2022-06-042021年《新时代好少年》节目观后感六篇2022-06-04学习《生命重于泰山-习近平总书记安全生产的重要论述》观后感范文三篇2022-06-04延伸阅读抗美援朝议论文范文九篇抗美援朝战争,又称抗美援朝运动或抗美援朝战争,是20世纪50年代初爆发的朝鲜战争的一部分。它只指中国人民志愿军参战的阶段,也包括中国人民支持朝鲜人民抵抗美国侵略[db:tag]2022-06-12关于乡村振兴战略论文【九篇】***以下是为大家整理的关于乡村振兴战略论文的文章9篇,欢迎品鉴!第1篇:乡村振兴战略论文近年来,农村发展问题受到党和政府的日益重视,从过去的建设社会[db:tag]2022-06-122020年大学生形势与政策论文4篇以下是为大家整理的关于2020年大学生形势与政策论文的文章4篇,欢迎大家参考查阅!【篇1】2020年大学生形势与政策论文作为21世纪的大学生,一方面我们[db:tag]2022-06-11美丽乡村建设论文(通用6篇)***十九大报告指出,农业和农村农民问题是关系国计民生的根本问题,必须始终加以解决农业、农村和农民实施农村振兴战略,是全党工作的重中之重。以下是为大家整理的关[db:tag]2022-06-11军事管理论文3篇纸是一个中文单词,拼音是Lù西北和埃库特n、“论文”一词在古典文学中常用,意思是对话修辞或思想交流。以下是为大家整理的关于军事管理论文的文章3篇[db:tag]2022-06-10大学生职业生涯论文范文五篇纸是一个中文单词,拼音是Lù西北和埃库特n、“论文”一词在古典文学中常用,意思是对话修辞或思想交流。现在,论文常常被用来指在各个学术领域进行研究并[db:tag]2022-06-10大学生军事理论论文范文三篇在信息化战争中,提高经济动员效率在未来信息化战争中具有重要意义。以下是为大家整理的关于大学生军事理论论文的文章3篇,欢迎品鉴!【篇一】大学生军事理论论文[db:tag]2022-06-10舞蹈论文赏析范文(精选6篇)纸是一个中文单词,拼音是Lù西北和埃库特n、“论文”一词在古典文学中常用,意思是对话修辞或思想交流。以下是为大家整理的关于舞蹈论文赏析的文章6篇[db:tag]2022-06-06计量经济学论文【六篇】计量经济学是以一定的经济理论和统计数据为基础,运用数学、统计方法和计算机技术,以建立计量经济模型为主要手段,定量分析和研究具有随机特征的经济变量之间关系的经济学[db:tag]2022-06-06新时代大学生使命担当论文9篇大学生是指没有从基础高等教育和职业高等教育毕业或者已经从高等教育毕业进入社会的群体。以下是为大家整理的关于新时代大学生使命担当论文的文章9篇,欢迎品鉴!【篇[db:tag]2022-06-06其他免费论文>>【人工智能—课程论文 6000字】范文118
系统工程论文浅谈层次分析法的优缺点4600字电气安装技师论文电气安装工程论文:变电电气设备安装调试与运行维护技术分析2800字加强村级事务规范化,推行“阳光村务”工程论文2000字自动化电气工程论文2200字工程管理毕业论文范例25200字项目管理毕业论文范本19700字xxx大学
人工智能概论
课程论文
学院核自院
专业机械工程及自动化
班级机械x班
姓名xxx
学号xxx
导师朱x
课题人工智能原理与应用
201x年1x月2x日
人工智能的原理与应用
摘要:人工智能(AI)一直都处于计算机技术的最前沿,长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。不久前,著名导演斯蒂文斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。
关键词:人工智能;专家系统;模式识别
引言:
人工智能的发展已达到很高水平,电子计算机将更接近大脑的功能了,虽然计算机解决问题的能力从技术角度看目前还有很大局限性,计算机万能论者的理论依据也是有问题的。计算机暂时不能代替人我相信他预见的会成为现实,目前也有了很多技术突破,这就是人类-机器的结合体,他预见这是人类进化史上的一个飞跃。在这样一个结合体形式下,肯定超出目前的人的智能和人工智能,这个结合体中,人类的大脑将植入能和机器直接沟通的芯片,这个芯片是人机的桥梁,而人类-机器结合体将发挥出人与机器的各自优势。
一、什么是人工智能由于人工智能是一个边缘学科,是哲学、数学、电子工程、计算机科学、心理学等众多学科的混血儿。它的研究队伍由未自不同领域的学者组成,各自从事着自己感兴趣的工作,他们对人工智能是什么有不同的认识。
如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能支灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为、就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了,这样,人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。
除了上述的观点以外,人工智能领域中的心理学家、语言学家倾向于将重点放在用电脑去再现人脑思维的内部状态上.也就是要使电脑程产真正理解它所他的事情,就好保人脑一样去“思考问题”。
由于大家研究的内容与侧重点各不相同,因此对人工智能的认识也有一定的差异。但是,他们的认识又相互补充、相辅相成、共同构成了人工智能丰富多彩的研究层次与多样化的研究队伍。
(一)人工智能的理论于实践人工智能不仅仅是一个工程科目,同样也是一个科研主题,研究人员创立人工智能理论(人工智能程序能够做什么)并用数学分析和实验来验证。理论是可以通过数学抽象和定理证明来分析验证的,也可以通过开发程序、运行试验、分析结果进行经验性研究,这很像心理学家对接受实验者所做的实验,但复杂人工智能系统的行为是很难预测的。
人工智能的应用范围非常广泛。人们已经创建了人工智能程序,用于通过预测股市趋势来产生投资策略,诊断病人并给出治疗建议,以及控制工厂中的装配机器人。火星探测机器人的控制就采用了人工智能系统。
(二)人工智能概念著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
人工智能(ArtificialIntelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。
(三)人工智能的基础人类是通过自然语言来表达思想、知识、学习、交流等,为实现AI用机器模拟人的智能行为,显然,必须有适合于AI的知识获取、知识表示、知识推理的语言,编写相应的智能程序,以构成AI系统,即知识信息处理系统。自AI发展以来,由于AI应用领域的广泛性,已有十几种语言被应用,它们都是根据适用于所研究问题领域知识描述和处理而提出的。
二、人工智能原理(一)介绍人工智能的实现技术人工智能是实现具有智能的机器,尤其是具有智能的计算机程序的科学和工程技术。人工智能与用计算机理解人的智力的目标有一些关系,但它并不一定要使用生物学上的方法。
(二)人工智能的原理人工智能的科学研究要研究人的智慧的内部结构,相当于研究心理学的原理,这是一般人不大会去做的。大部分的人工智能研究集中在后者——工程实现上。知识:人的智能活动本质上就是获得和运用知识。知识是智能的基础,为了实现人工智能使机器具有智能就必须使它具有知识。表达:要采用适当的手段表达人的知识,然后才能存储到机器中去,这就是用知识表达要解决的问题。对知识进行表达就是把知识表示成便于计算机存储和利用的某种数据结构,知识表达方法又称为知识表示技术,其表示形式称为知识表示模式。
三、人工智能应用(一)人工智能的应用范围人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能的发展历史是和计算机科学与技术的发展史联系在一起的,人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
(二)人工智能中的机器翻译机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。虽然至今还没有一个实用、全面、高质量的自动翻译系统出现,不过也取得了很大的进展,特别是作为人们的辅助翻译工具,机器翻译已经得到大多数人的认可。
目前,国内的机器翻译软件不下百种,根据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和专业翻译类。在目前的情况下,计算机辅助翻译应该是一个比较好的实际选择。事实上,在很多领域中,计算机辅助人类工作的方式已经得到了广泛的应用,例如CAD软件。
机器翻译研究归根结底是一个知识处理问题,它涉及到有关语言内的知识、语言间的知识、以及语言外的世界知识,其中包括常识和相关领域的专门知识。随着因特网的普及与发展,机器翻译的应用前景十分广阔。作为人类探索自己智能和操作知识的机制的窗口,机器翻译的研究与应用将更加诱人。
(三)人工智能中的专家系统专家系统是一种模拟人类专家解决领域问题的计算机程序系统。专家系统内部含有大量的某个领域的专家水平的知识与经验,能够运用人类专家的知识和解决问题的方法进行推理和判断,模拟人类专家的决策过程,来解决该领域的复杂问题。
为了实现专家系统,必须要存储有该专门领域中经过事先总结、分析并按某种模式表示的专家知识(组成知识库),以及拥有类似于领域专家解决实际问题的推理机制(构成推理机)。
开发专家系统的关键是表示和运用专家知识,即来自领域专家的己被证明对解决有关领域内的典型问题有用的事实和过程。目前,专家系统主要采用基于规则的知识表示和推理技术。由于领域的知识更多是不精确或不确定的,因此,不确定的知识表示与知识推理是专家系统开发与研究的重要课题。
(四)人工智能模式识别模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。这里,我们把环境与客体统称为“模式”,随着计算机技术的发展,人类有可能研究复杂的信息处理过程。用计算机实现模式(文字、声音、人物、物体等)的自动识别,是开发智能机器的一个最关键的突破口,也为人类认识自身智能提供线索。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别系统(OCR)、语音识别系统等。计算机识别的显著特点是速度快、准确性和效率高。识别过程与人类的学习过程相似。
一个综合应用的例子,一汽集团公司与国防科技大学最近合作研制成功“红旗轿车自主驾驶系统”(即无人驾驶系统),它标志着我国研制高速智能汽车的能力已达到当今世界先进水平。汽车自主驾驶技术是集模式识别、智能控制、计算机学和汽车操纵动力学等多门学科于一体的综合性技术,代表着一个国家控制技术的水平。红旗车自主驾驶系统采用计算机视觉导航方式,并采用仿人控制,实现了对红旗车的操纵控制。首先,摄像机将车前方的道路和车辆行驶情况输入到图像处理和图像识别系统。该系统识别出道路状况、前方车辆的相对距离和相对车速。接着,路径规划系统根据这些信息规划出一条合适路径,即决定如何开车。然后,路径跟踪系统根据需跟踪的路径,结合车辆行驶状态参数和车辆驾驶动力学约束,形成控制命令,控制方向盘和油门开启机构产生相应动作,使汽车按照规划好的路径前进,即按自主驾驶系统的规划路径前进。
四、发展方向能够造出这样的具有人类智能的机器,是科学家们一直的理想。人工智能这个科学就是研究和模拟人类的思维,最终做出一台能够像人类一样思考的机器。人工智能科学中有一个很著名的标准,叫做“图灵测试”。用这个标准能够非常简单准确地测定一台机器是否具有人一样的智能。这个测试大概就是通过几个人与一台待测试的机器之间进行对话。当然人与人之间是不能互相看到对方的,人也不能看到哪个是人哪个是机器,之间只有通过对话来交流。然后人与机器之间互相进行对话,对话内容主要是随便问一些问题。到最后,如果对话的人,还分不清与他对话的几个人与机器当中,哪个是机器,哪个是人,那么就可以断定这台机器具备人一样的智能。
然而,直到今天,还没有任何一台机器可以通过这个测试。而且,离通过测试的差距还非常之大。这个测试对于机器,真正的困难就难在要像人一样回答问题。例如随便问一个问题:“12乘以7再加821等于多少”。这个问题就很容易让机器“中计”。因为对于机器来说,这种数学计算只需要花一秒不到的时间就能得出正确的结果。但是如果你发现对方可以这样快且准确地得出结果,你会相信他是人么?人毕竟有人特有的思维水平,人有感情,有各种各样的性格,这个就很难在机器上实现。
诚然,能够做出这样的机器,的确是人工智能的目标。不过人工智能的研究单纯就是为了这个么?我个人认为,能够做出像人一样聪明的机器是件好事,不过如果要求机器做到人的某些不好的特性,例如,懒惰、贪婪、罪恶等等,就不必了,做了也是自掘坟墓。人工智能应该可以为人类而服务,能够帮助人解决各种问题。
其实做到像人类一样思考的机器,这个只是人工智能科学的其中一个部分,绝不是全部。通过人工智能的研究,领略到智能科学的真谛,解决各种科学难题,促进其它学科的发展,这个才算人工智能的精华!
例如,人工智能的子学科专家系统,就曾帮助过医学、采矿等等多个学科,帮助这些学科解决了很多难题。这个时候,人工智能就在某一领域表现出比一般人更加卓越的能力。
据我所知,人工智能还有许多十分有趣的子学科,例如神经网络、进化计算等等。这些科学也是以模仿人类的思维为初衷发展起来。但是这些科学在发展过程中,却收获了很多其它的成果。神经网络、进化计算都曾经解决过许多数学上的难题,它们与专家系统一样,为其它各个学科起了很大的促进作用。神经网络还帮助过人类解决指纹识别、面相识别、汉字识别等的难题。
五、结语人工智能研究将是21世纪早期逻辑学发展的主要动力源泉。人工智能研究必须建立在归纳逻辑基础之上,从而达到多领域交叉合作来共同促进人工智能研究的广泛而深远的发展。我们现在所涉及的基于逻辑归纳的人工智能以及机器学习和归纳学习的系统研究还处于初级阶段。正如有人所说,在未来的计算机归纳学习或发现的研究中,将归纳逻辑的某些理论、方法或系统与机器学习、不确定性推理、神经网络中对归纳逻辑的研究适当“嫁接”起来,以改进并逐步革新现有的归纳学习系统,促使机器学习中归纳学习的基础理论形成,并进一步从事归纳学习的基础理论与系统的研究和开发,这是人工智能科学研究中的一项重大任务。
参考文献[1]毕家祥,人工智能模型于智能系统
[2]王士同,人工智能教程.2006年8月
[3]邢传鼎,人工智能原理及应用.2005年02月
[4][美]ThomasDeanJamesAllenYiannisAloimonos.2004年06月
[5]侯广坤,人工智能概论.1993年05月
[6][英国]C.J.哈里斯,人工智能的应用.1992年02月
[7]马宪民,人工智能的原理与方法.2002年
[8]张玉志,人工智能与社会进步.1990年03月
[9]孙雅明,人工智能基础.1995年05月
[10]米汉著,人工智能程序设计(第二版)
[11]傅京孙,人工智能及其应用.1987年09月
[12]胡俊,游戏开发中的人工智能研究于应用
[13]王万森,人工智能的原理及应用.2000年09月
[14]任巍,人工智能技术在计算机游戏软件中的应用.200602
[15]山东工业大学自动化研究所,人工智能浅说.1984年04月
12345第二篇:人工智能论文8400字
浅谈人工神经网络学习
1、简介
作为动态系统辨识、建模和控制的一种新的、令人感兴趣的工具,人工神经网络(ArtificialNeuralNetworks,ANN)提供了一种普遍而且实用的方法从样例中学习值为实数、离散值或向量的函数。像反向传播(BACKPROPAGATION)这样的算法,使用梯度下降下来调节网络参数以最佳拟合由输入—输出对组成的训练集合。ANN学习对于训练数据中的错误健壮性很好,且已被成功的应用到很多领域,例如视觉场景分析、语音识别以及机器人控制等。
神经网络学习方法对于逼近实数值、离散值或向量的目标函数提供的一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效的学习方法。例如,反向传播算法已在很多问题中取得了惊人的成功,比如学习识别手写字符、学习识别口语、学习识别人脸等。
1.1人工神经网络学习发展简史:
对人工神经网络的研究可以追溯到计算机科学的早期。McCulloch&Pitts(1943)提出了一个相当于感知器的神经元模型,20世纪60年代他们的大量工作探索了这个模型的很多变体。20世纪60年代早期Widrow&Hoff(1960)探索了感知器网络(他们称为“adelines”)和delta法则。Rosenblatt(1962)证明了感知器训练法则的收敛性。然而,直到20世纪60年代晚期,人们才开始清楚单层的感知器网络的表现能力很有限,而且找不到训练多层网络的有效方法。Minsky&Papert(1969)说明即使是像XOR这样简单的函数也不能用单层的感知器网络表示或学习,在整个20世纪70年代ANN的研究衰退了。
在20世纪80年代中期ANN的研究经历了一次复兴,主要是因为训练多层网络的反向传播算法的发明(Rumelhart&McClelland1986;Parker1985)。这些思想可以被追溯到有关的早期研究(例如,Werbos1975)。自从20世纪80年代,反向传播算法就成为应用最广泛的学习方法,而且人们也积极探索出了很多其他的ANN方法。在同一时期,计算机变得不在贵重,这允许人们试验那些在20世纪60年代不可能被完全探索的计算密集型的算法。
2、人工神经网络学习的国内外研究状况
随着人工神经网络20世纪80年代在世界范围内的复苏,国内也逐步掀起了研究热潮。l989年10月和11月分别在北京和广州召开了神经网络及其应用讨论会和第一届全国信号处理—神经网络学术会议;l990年2月由国内八个学会(中国电子学会、人工智能学会、自动化学会、通信学会、物理学会、生物物理学会和心理学会)联合在北京召开“中国神经网络首届学术会议”。这次大会以“八学会联盟,探智能奥秘为主题收到了300多篇学术论文,开创了中国人工神经网络及神经计算机方面科学研究的新纪元。经过十几年的发展,中国学术界和工程界在人工神经网络的理论研究和应用方面取得了丰硕成果,学术论文、应用成果和研究人员逐年增加.
在国际上,1987年,在美国加洲召开了第一届国际神经网络学会.此后每年召开两次国际联合神经网络大会(IJCNN).不久,该学会创办了刊物JournalNeuralNetworks,另有十几种国际著名的神经网络学术刊物相继问世,至此,神经网络理论研究在国际学术领域获得了其应有的地位。
作为人工神经网络学习的典型算法反向传播(BP)算法,近年来国内外学者对这一算法提出了一些改进。其中,由宋绍云、仲涛提出的BP人工神经网络网络的新算法解决了传统算法的局部极小及收敛速度慢的问题。该算法是在BP神经网络现有的基础上提出的一种新的算法,该算法的基本原理是任选一组自由权,通过解线性方程组求得隐层权,将选定的自由权与求得的权合在一起,就得到所需的学习权值。而BP人工神经网络自适应学习算法的建立则解决了BP神经网络结构参数、学习速率与初始权值的选取问题,并对传统的BP算法进行了改进,提出了BP神经网络自适应学习算法,又将其编制成计算机程序,使得输入节点、隐层节点和学习速率的选取全部动态实现,减少了人为因素的干预,改善了学习速率和网络的适应能力。计算结果表明:BP神经网络自适应学习算法较传统的方法优越,训练后的神经网络模型不仅能准确地拟合训练值,而且能较精确的预测未来趋势。基于遗传算法的人工神经网络学习避免了BP算法易陷入局部极小值、训练速度慢、误差函数必须可导、受网络结构的限制等缺陷。
人工神经网络的研究同样在实践中也有所发展。比如,基于人工神经网络的并行强化学习自适应路径规划,可以很好的应用于机器人蔽障系统。BP算法在雷达目标识别中的应用以及在超声检测中的应用等都是在BP算法改进的基础上实现的。
3、所选专题的研究意义与研究方法
从1946年第一台电子数字计算机问世以来直到现在,大多数信息处理都采用程序式计算方式。这种方式解题需要设计算法或规则,并正确的编制成软件,然后才能进行问题求解。这种解题方式必须考虑3个因素:
1问题的形式化;
2可进行计算的算法;
3计算的复杂性。
比较计算机和人的处理能力,其差别是惊人的。一方面,一个人能很容易识别面孔理解语言,而一台巨型机却很难识别出一棵树来。另一方面,用计算机进行计算,可以很快的得到答案,其计算能力大大超过了人。那么数字计算和辨识物体之间究竟有哪些差别呢?
辨识物体是不能简单明确的加以定义的。要识别一棵树,就必须给出树的全部定义。做出这样一种定义,等于要描述树的每一个可以想到的变量。这类问题构成了随机问题。所谓随机问题,就是那些需要具备某一系统的实际上每种可能状态的知识才能解答的问题。因此,为解决一个随机问题,就要求记忆所有可能的解答,当给定输入数据时,从所有可能的解答的集合中迅速的选出最合适的答案。而像数学一类的计算问题,其解答通常可以用一种算法简洁地表示出来,也就是说,可以用一个精确的指令系列来表示,该指令系列规定了如何处理输入数据以得到答案。
信息处理的一种新方法并不需要开发算法和规则,极大的减少了软件的工作量,这种方法称为神经网络。神经网络是一门崭新的信息处理学科,它从神经生理学和认知科学研究成果出发,应用数学方法研究并行分布的、非程序的、适应性的、大脑风格的信息处理的本质和能力。神经网络中主要的信息处理结构是人工神经网络。
神经信息处理是介于常规处理形式和人脑处理形式的中间处理形式。一方面,神经网络企图模仿人脑的功能,而另一方面许多实现技术又是常规的。表1-1给出了这3种信息处理范型的主要特点。神经信息处理许多特性与人脑相似,诸如联想、概括、并行搜索、学习和灵活性。
表1-13种信息处理范型
人脑处理信息的特点如下:
1大规模并行处理。人脑神经元之间传递神经冲动是以毫秒计的,比普通的电子计算机慢得多。但人们通常能在1ms内对外界事物作出判断和决策。这对传统的计算机或人工智能是做不到的。由此可知,人脑的“计算”必定是建立在大规模并行处理的基础上。人善于在复杂环境下作出判断,从整体上识别事物。神经网络的大规模并行处理与多处理机构成的并行系统是不同的。
2具有很强的容错性,善于联想、概括、类比和推广。每天有大量神经细胞正常死亡,但不影响大脑正常的功能;大脑局部损伤会引起某些功能衰退,但不是功能突然丧失。在计算机中,元器件的局部损坏,或者程序中的微小错误都可能引起严重的后果,即表现出极大的脆弱性。人脑与计算机信息处理的巨大差别在于对信息的记忆和处理方式不同。计算机的模式是信息局部储存,按程序提取有关的信息,送到运算器处理。大脑中信息的记忆,特别是长期记忆是通过改变突触的效能实现的,即信息存储在神经元间连接强度的分布上,信息的记忆和处理是合二为一的。这一点,神经网络与大脑信息处理方式及其相似。
3具有很强的自适应能力。人脑功能受先天因素制约,但后天因素,如经历、训练、学习等也起重要作用。这表明人脑具有很强的自适应性和自组织性。神经网络与符号处理不同,前者强调系统的自适应或学习过程,同一网络因学习方法及内容不同,可具有不同的功能;符号处理强调程序编写,系统的功能取决于编写者的知识和能力。
由上可知,脑是最复杂、最完美、最有效的一种信息处理装置,人们正以极大的兴趣研究它的结构和机理。这种研究与20世纪初的物理学和20世纪50年代的分子生物学一样,正酝酿着重大的突破,而这一突破将给整个科学的发展带来巨大而深远的影响。人们对大大脑的认识已深入到探索脑的核心问题,鉴定出了一系列涉及脑工作的重要分子,在感知、行为、学习和记忆方面都取得了重要进展。这表明人们将有可能最终揭开大脑这个人体最复杂系统的奥秘,为现代科技发展寻找新的道路。借助大脑工作原理,有可能使信息处理获得新的突破。
正因为如此,神经科学受到世界各发达国家的高度重视。美国国会通过决议将1990年1月5日开始的10年定为“脑的十年”。国际脑研究组织号召它的成员国将“脑的十年”变为全球行动。美国国防部高级研究计划局(DARPA)制定的8年研究计划中,神经网络是重要的方向。1986年日本政府提出了“人类前沿科学计划”(HFSP)研究计划,1992年提出“真实世界计算”(RWC)研究计划。德国人从1988年开始执行“神经信息论”的研究计划。
脑科学、神经生理学、病理学主要研究神经网络的生理机理,如神经元、突触、化学递质、脑组织等的构成和工作过程。而认知科学、计算机科学主要探索人脑信息处理的微结构理论,寻求新的途径,解决当前计算机和传统人工智能难以处理的问题。以此为背景,以人工神经网络为基础,形成了神经网络的新学科。
目前,对大脑思维的过程了解仍然很肤浅,人工神经网络模拟的研究还很不充分,人们面临的是一个充满未知的新领域。神经网络将在基本原理方面进行更深刻的探索。
神经网络的发展与神经科学、认知科学、计算机科学、人工智能、信息科学
机器人学、微电子学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。神经网络研究的主要目的如下:
1理解脑系统为何具有智能。这些计算与符号表示的形式操作处理不同,人脑是如何组织和实施这些计算的。
2研究各种强调“计算能力”的神经网络模型,并不着重于这些模型的生物学保真程度
3研究大规模并行自适应处理机理。
4研究神经计算机的体系结构和实现技术。
4、适合神经网络学习的问题
人工神经网络学习非常适合于这样的问题:训练集合为含有噪声的复杂传感器数据,例如来自摄像机和麦克风的数据。它也适用于需要较多符号表示的问题,例如决策树学习任务。这种情况下ANN和决策树学习经常产生精度大体相当的结果。反向传播算法是最常用的ANN学习技术。它适合具有以下特征的问题:
(1)实例是用很多“属性-值”对表示的:要学习的目标函数是定义在可以用向量描述的实例之上的,向量由由预先定义的特征组成。这些输入属性之间可以高度相关,也可以相互独立。输入值可以是任何实数。
目标函数的输出可能是离散值、实数值或者由若干实数属性或离散属性组成的向量:例如在ALVINN(Pomerleau(1993)的ALVINN系统是ANN学习的一个典型实例,这个系统使用一个学习到的ANN以正常的速度在高速公路上驾驶汽车。)
(2)系统中输出的是30属性向量,每一个分量对应一个建议的驾驶方向。每个输出值是0和1之间的某个实数,对应于在预测相应驾驶方向时的置信度。我们也可以训练一个单一网络,同时输出行驶方向和建议的加速度,这只要简单的把编码这两种输出预测的向量连接在一起就可以了。
(3)训练数据可能包含错误:ANN学习算法对于训练数据中的有非常好的健壮性。
(4)可容忍长时间的训练:网络训练算法通常比像决策树学习这样的算法需要更长的训练时间。训练时间可能从几秒到几小时,这要看网络中权值的数量、要考虑的训练实例的数量以及不同学习算法参数的设置等因素
(5)可能需要快速求出目标函数值:尽管ANN的学习时间相对较长,但对学习到的网络求值以便把网络应用到后续的实例通常是非常快速的。例如,Alvinn在车辆向前行驶时,每秒应用它的神经网络若干次,以不断的更新驾驶方向。
(6)人类能否理解学到的目标函数是不重要的:神经网络学习方法学习到得权值经常是人类难以解释的。学到的神经网络比学到的规则难以传达给人类。
5、我对人工神经网络学习研究的认识及观点
5.1人工神经网络学习的几种算法
1.有监督Hebb算法
2.单层感知器
3.梯度(LMS)算法
4.BP算法
这几种算法中,BP算法应用最为广泛。
5.2基于反向传播网络的学习
反向传播算法是一种计算单个权值变化引起网络性能变化值得较为简单的方法。由于BP算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为“反向传播”。
5.2.1反向传播网络的结构
鲁梅尔哈特(Rumelhart)和麦克莱兰(Meclelland)于1985年发展了BP网络学习算法,实现了明基斯的多层网络设想。BP网络不仅含有输入节点和输出节点,而且还含有一层或多层隐(层)节点,如图5.1所示输入信号首先向前传递到隐节点,经过作用后,再把隐节点的输出信息传递到输出节点,最后给出输出结果。节点的激发函数一般选用S型函数。
BP算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐单元层逐层处理后,传至输出层。每一层神经元的状态只影响下一层神经元的状态。如果在输出层得不到期望输出,那么就转为反向传播,把误差信号沿原连接路径返回,并通过修改各层神经元的权值,使误差信号最小。
图5.1BP网络
5.2.2反向传播学习算法
(1)选取比率参数r。
(2)进行下列过程直至性能满足要求为止。
1对于每一训练(采样)输入;
(a)计算所得输出,
(b)按下式计算输出节点的值
(c)按下式计算全部其他节点
(d)按下式计算全部权值变化
2对于所有训练(采样)输入,对权值变化求和,并修正各权值。
权值变化与输出误差成正比,作为训练目标输出只能逼近1和0两值,而绝不可能达到1和0值。因此,当采用1作为训练目标值作为训练时,所有输出实际上呈现出大于0.9的值;而当采用0作为目标值进行训练时,所有输出实际上呈现出小于0.1的值;这样的性能就被认为是满意的。
反向传播算法是一种很有效的学习算法,它已解决了不少问题,成为神经网络的重要模型之一。反向传播算法框图如图5.2所示。
图5.2反向传播算法框图
5.2.3反向传播算法性能分析
反向传播算法作为指导多层感知器训练的最流行的算法而出现,基本上,它是一个梯度(导数)的技术而不是一个最优化技术。其具有两个明显的性质:局部计算简单;可实现权值空间的随机梯度下降。多层感知器背景下的BP学习的这两个属性导致了它的优点和缺点。
1.BP网络的优点
1BP网络实质上实现了一个从输入到输出的映射功能,而数学理论已经证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题。当隐含神经元可以任意配置时,BP网络能记忆任意给定的学习样本,再现样本输入到样本输出的联想关系。BP网络的记忆容量与隐含神经元的数量相关,BP网络的记忆容量可通过增加隐含神经元而得到扩充。
2BP网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力。通过学习,BP网络能在任意精度范围内表达复杂的非线性映射。
3BP网络具有泛化能力,能从样本数据中学习知识,抽象一般性规律。BP网络的泛化能力既与自身记忆容量相关,又与学习样本具有的信息量相关。
2.BP网络的问题
传统的BP网络在诸多领域得到广泛应用,也取得一定的成效,但在实际应用中有时处理结果并不理想,还存在诸多问题。究其原因,主要是BP网络还存在许多固有的缺点,这不只是多层前向BP网络的问题。
1BP算法的学习速度很慢,其主要原因有:
•由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂因而必然会出现“锯齿形现象”,这使得BP算法低效。
•存在麻痹现象。由于优化的目标函数很复杂,它必然会在神经元输出接近0和1的情况下出现一些平坦区。在这些区域内,权值误差改变很小,使训练过程几乎停顿。
•为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,而这种方法将引起算法低效。
2网络训练失败的可能性较大,其原因有:
•从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此算法很有可能陷入局部极值,使训练失败。
•网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。
3难以解决应用问题的实例规模和网络规模间的矛盾。这涉及网络容量的可能性与可行性的关系问题,即学习复杂性问题。
4网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验决定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题。
5新加入的样本要影响已学习成功的网络,而且描述每个输入样本的特征的数目也必须相同。
6网络的预测能力(也称泛化能力)与训练能力(也称逼近能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,但是不能反映样本内含的规律。
6.小结
1、人工神经网络学习为学习实数值和向量值函数提供了一种实际的方法,对于连续的和离散值得属性都可以使用,并且对训练数据中的噪声具有很好的健壮性。反向传播算法是最常见的网络学习算法,这已经被成功应用在很多学习任务中,比如手写识别和机器人控制。
2、反向传播算法考虑的假设空间是固定连接的有权网络所能表示的所有函数的空间。包含三层单元的前馈网络能够以任意精度逼近任意函数,只要每一层有足够数量的单元。即使是一个实际大小的网络也能够表示很大范围的高度非线性函数,这使得前馈网络成为学习预先未知的一般形式的离散和连续函数的很好选择。
3、反向传播算法使用梯度下降方法搜索可能假设的空间,迭代减小网络的误差以拟合训练数据。梯度下降收敛到训练误差相对网络权值的局部极小值。通常,梯度下降是一种有应用潜力的方法,它可用来搜索很多连续参数的假设空间,只要训练误差是假设参数的可微函数。
4、反向传播算法最令人感兴趣的特征之一,是它能够创造出网络输入中没有明确出现的特征。确切的讲,多层网络的隐藏层能够表示对学习目标函数有用的但隐含在网络输入中的中间特征。
5、过度拟合训练是ANN学习中的一个重要问题。过度拟合导致网络泛化到新的数据时性能很差,尽管网络对于数据表现非常好。交叉验证方法可以用来估计梯度下降搜索的合适终止点,从而最小化过度拟合的风险。
任何新生事物的成长都不是一帆风顺的。人工神经网络学习也不例外。但是,经过长时间的研究发展,神经网络学习已经逐步成长起来了,在未来的发展中可能会遇到新的困难,甚至遭受较大的挫折。广大研究者也可能会为此承受巨大风险。但是作为科学研究者,我们应持有乐观的态度,为神经网络学习的发展做贡献。
参考文献:
【1】宋绍云,仲涛.BP人工神经网络的新型算法.人工智能及识别技术,2009,5(5)
【2】李晓峰,徐玖平,王荫清,贺昌政.BP人工神经网络自适应学习算法的建立及其应用.系统工程理论与实践.2004,5(5)
【3】李建珍.基于遗传算法的人工神经网络学习算法.西北师范大学学报(自然科学版).2002,38(2)
【4】耿晓龙,李长江.基于人工神经网络的并行强化学习自适应路径规划.科学技术与工程.2011,11(4)
【5】蔡自兴,徐光祐.人工智能及其应用.北京:清华大学出版社,2010
【6】史忠植.神经网络.北京:高等教育出版社,2009
【7】(美)TomM.Mitchell.曾华军张银奎等译.机器学习.北京:机械工业出版社,2003
【8】涂序彦.人工智能:回顾与展望.中国人工智能学会.北京:科学出版社,2006
【9】朱福喜,朱三元,伍春香.人工智能基础教程.北京:清华大学出版社,2006
+更多类似范文┣ 工程测量论文4000字┣ 工程实习论文2900字┣ 铁道工程论文2300字┣ 工程测量论文2200字┣ 更多工程论文范文