博舍

生成式人工智能迎来大爆发,人类真的要失业了吗 人工智能替代人类工作可悲

生成式人工智能迎来大爆发,人类真的要失业了吗

去年夏天以来,以ChatGPT为代表的“生成式”人工智能系统接连问世,人们惊艳于它们的智能程度,但也对其未来发展产生担忧。这样的系统可以按需求生产内容,不仅威胁到人们的工作,还可能造成错误信息的激增。

StableDiffusion根据提示自动生成的画作,真假难辨。图源:https://stablediffusionweb.com/

就在10多年前,三位人工智能研究人员取得了一项突破,永远地改变了这个领域。

“AlexNet”系统通过从网上采集的120万张图像进行训练,识别出了从集装箱船到豹子等不同物体,其准确性远远高于以往的计算机。

这一壮举帮助开发人员阿莱克斯·克里泽夫斯基(AlexKrizhevsky)、伊利娅·苏茨克维(IlyaSutskever)和杰弗里·辛顿(GeoffreyHinton)赢得了名为ImageNet的年度神秘竞赛。它还展示了机器学习的潜力,并在科技界引发了一场将人工智能带入主流的竞赛。

从那时起,计算机的人工智能时代基本上在幕后形成。机器学习是一项涉及计算机从数据中学习的基础技术,已普遍应用于识别信用卡欺诈、提高在线内容和广告相关性等领域。如果说从那时起机器人就开始抢走人们的工作,那基本上也是在我们看不到的地方发生的。

现在不是了。人工智能领域的另一项突破刚刚撼动了科技界。这一次,机器在众目睽睽之下运行,它们可能终于准备好取代数百万的工作岗位了。

一个11月底发布的查询和文本生成系统ChatGPT,以一种科幻小说领域之外很少见到的方式闯入了公众的视线。它由总部位于旧金山的研究公司OpenAI创建,是新一波所谓的“生成式”人工智能系统中最引人注目的一种,这种系统可以根据要求生成内容。

如果你在ChatGPT中键入一个查询,它将以一段简短的段落作为响应,列出答案和一些上下文内容。例如,你问它谁赢得了2020年美国总统大选,它会列出结果,并告诉你乔·拜登何时就职。

ChatGPT界面。

ChatGPT使用简单,能够在瞬间得出看起来像人类生成的结果,有望将人工智能推入日常生活。微软向OpenAI(由AlexNet创始人苏茨克维联合创立)投资数十亿美元的消息,几乎证实了这项技术将在下一阶段的人工智能革命中发挥核心作用。

ChatGPT是一系列日益引人注目的人工智能公众展示的最新例子。另一个OpenAI系统,自动书写系统GPT-3,在2020年年中发布时震惊了科技界。其他公司的所谓大型语言模型紧随其后,去年扩展到图像生成系统,如OpenAI的Dall-E2、来自StabilityAI的开源StableDiffusion和Midjourney。

这些突破引发了人们争相寻找这项技术的新应用。数据平台ScaleAI首席执行官亚历山大·王(AlexandrWang)将其称为“应用案例的寒武纪大爆发”,将其比作现代动物生命开始繁荣的史前时刻。

如果计算机可以编写和创建图像,那么在正确的数据训练下,还有什么是它们无法生成的吗?谷歌已经展示了两个实验系统,可以根据简单的线索生成视频,还有一个可以回答数学问题。StabilityAI等公司已将这项技术应用于音乐。

这项技术还可以用于向软件开发人员建议新的代码行,甚至整个程序。制药公司梦想着用它以更有针对性的方式合成新药。生物技术公司Absci本月表示,已经利用人工智能设计出了新的抗体,可以将一种药物进入临床试验所需的大约四年时间缩短两年多。

但随着科技行业竞相将这项新技术强加给全球受众,人们需要考虑潜在的深远社会影响。

例如,让ChatGPT以12岁孩子的风格写一篇关于滑铁卢战役的文章,你就能让一个小学生的家庭作业手到擒来。更严重的是,人工智能有可能被故意用来产生大量错误信息,还可能会自动取代大量工作,远远超出最容易躺枪的创造性工作。

微软人工智能平台主管埃里克•博伊德(EricBoyd)表示:“这些模型将改变人与电脑互动的方式。它们将以一种前所未有的方式理解你的意图,并将其转化为计算机行为”。因此,他补充说,这将成为一项基础技术,“涉及几乎所有现有的东西”。

可靠性问题

生成式人工智能的倡导者表示,这些系统可以提高工人的生产力和创造力。微软称,公司旗下GitHub部门的软件开发人员,已经使用一个代码生成系统生成了40%的代码。

谷歌研究科技对社会影响的高级副总裁詹姆斯•马尼卡(JamesManyika)表示,对于任何需要在工作中提出新想法的人来说,这类系统的输出可以“解锁思维”。它们内置在日常软件工具中,可以提出想法、检查工作,甚至生成大量内容。

然而,尽管生成式人工智能易于使用,并有可能颠覆很大一部分科技领域,但对构建这项技术并试图在实践中应用的公司,以及许多可能在不久之后在工作或个人生活中遇到这项技术的人,都构成了深刻的挑战。

最重要的是可靠性问题。计算机可能会给出听起来可信的答案,但人们不可能完全相信它们说的任何话。其通过研究大量数据,根据概率假设做出最佳猜测,却不能真正明白它产生的结果。

圣菲研究所教授梅兰妮·米切尔(MelanieMitchell)表示:“它们对一次谈话之外的事情一无所知,无法了解你,也不知道词语在现实世界中意味着什么。”它们只是针对线索,产生大量听起来有说服力的答案,是聪明但无脑的模仿者,无法保证它们的输出不只是数字幻觉。

已经有事实展示,这项技术如何产生看起来有模有样但实际不可信的结果。

例如,去年年底,Facebook母公司Meta展示了一个名为Galactica的生成系统,它是根据学术论文进行训练的。人们很快发现,这个系统会根据要求发布乍一看可信但实际上是虚假的研究,导致Facebook在几天后撤回了系统。

ChatGPT的创建者也承认其有缺点。OpenAI表示,系统有时会给出“无意义”的答案,因为在训练人工智能时,“目前没有真相来源”。OpenAI补充说,使用人类直接训练它,而不是让它自己学习(这一种被称为“监督学习的方法”,可以由训练资料中学到或创建一个模式,并依此模式推测新的实例)并不奏效,因为系统通常比人类这个老师更善于找到“理想答案”。

一种潜在的解决方案是在生成系统的结果发布之前提交合理性检查检查。马尼卡说,谷歌的实验性LaMDA系统于2021年宣布,对每个线索提出了大约20种不同的响应,然后评估每种响应的“安全性、毒性和合理性”。“我们打电话去检验,看看这是真的吗?”

然而,斯坦福大学计算机科学副教授珀西·梁(PercyLiang)表示,任何依赖人类来验证人工智能输出结果的系统都存在问题。他说,这可能会教会人工智能如何“生成具有欺骗性但看上去可信的东西,实际上可以愚弄人类”。“事实是,真相难以捕捉,而人类并不擅长于此,这可能令人担忧。”

PhotobyArsenyTogulevonUnsplash

而这项技术的支持者说,有一些实用的方法可以使用它,而不必试图回答这些更深层次的哲学问题。微软联合创始人保罗•艾伦(PaulAllen)创立的人工智能研究所A12的顾问兼董事会成员奥伦•埃齐奥尼(OrenEtzioni)表示,就像互联网搜索引擎既能提供有用的结果,也能提供错误的信息一样,人们将设法最大限度地利用这些系统。

他说:“我认为消费者只会学会使用这些工具来造福自己。我只是希望这不会让孩子们在学校作弊。”

但让人类去猜测机器生成的结果是否准确,可能并不总是正确的答案。研究人工智能应用的科技行业组织“人工智能伙伴关系”首席执行官丽贝卡•芬利(RebeccaFinlay)表示,在专业环境中使用机器学习系统已经表明,人们“过度相信人工智能系统和模型得出的预测”。

她补充说,问题在于,“当我们与这些模型互动时,人们会将结果对于人类有何意义的不同方面灌输给它们”,这意味着他们忘记了系统并没有真正“理解”他们所说的话。

这些信任和可靠性问题,为不良行为者滥用人工智能提供了可能。对于任何故意试图误导的人来说,这些机器可能成为虚假信息工厂,能够生产大量内容,淹没社交媒体和其他渠道。在正确的例子训练下,它们可能还会模仿特定人物的写作风格或说话声音。

埃齐奥尼说:“制造虚假内容将非常容易、廉价和普遍。”

StabilityAI负责人伊马德•穆斯塔克(EmadMostaque)表示,这是人工智能普遍存在的一个固有问题。他说:“这是一种人们可以道德或不道德地、合法或非法地、符合伦理地或不符合地使用的工具。坏人已经拥有了先进的人工智能。”

他声称,唯一的防御措施就是尽可能大规模地推广这项技术,并向所有人开放。

这在人工智能专家中是一个有争议的解决方案,他们中的许多人主张限制对底层技术的使用。微软的博伊德表示,其“与我们的客户合作,了解他们的用例,以确保人工智能在这种情况下真的是一个负责任的用途。”

他补充说,微软还会努力防止人们“试图欺骗模型,做一些我们真的不想看到的事情”。微软为其客户提供工具,扫描人工智能系统的输出,以查找他们想要阻止的冒犯性内容或特定术语。

微软此前经历了惨痛的教训,认识到聊天机器人可能会失控:聊天机器人Tay在发表种族主义和其他煽动性言论后,不得不在2016年被匆忙召回。

在某种程度上,技术本身可能有助于控制新人工智能系统的滥用。例如,马尼卡表示,谷歌已经开发了一种语言系统,可以以99%的准确率检测出语音是否为合成。他补充说,谷歌的任何研究模型都不会生成真人的图像,从而限制了所谓深度造假的可能性。

人类的工作面临威胁

生成式人工智能的兴起,也引发了关于人工智能和自动化对就业影响的又一轮争论,这已经是一个老生常谈的话题。机器会取代工人吗?或者,通过接管重复性工作,它们会提高现有工人的生产力,并增加他们的成就感吗?

最明显的是,涉及大量设计或写作元素的工作面临风险。当StableDiffusion在去年夏末问世时,它对即时图像与提示相匹配的承诺,让商业艺术和设计界不寒而栗。

一些科技公司已经在尝试将这项技术应用于广告,其中就包括ScaleAI,其已经在广告图像方面训练了一个人工智能模型。王说,借助这个工具,小零售商和品牌可以得到专业的包装图像,而此前为产品拍摄此类图像价格高昂,他们无法负担。

Dall-E2解释生成原理的视频截图

这可能会威胁到内容创造者的生计。穆斯塔克说:“它彻底改变了整个媒体行业。世界上每一个主要的内容提供商之前都以为他们需要一个元宇宙策略:他们需要的是一个媒体生成策略。”

据一些面临失业的人说,这不仅仅事关生计。当歌手兼词曲作者尼克·凯夫看到ChatGPT写的听起来像他自己作品的歌曲时,他惊呆了。他在网上写道:“歌曲产生于痛苦,我的意思是,它们是基于人类复杂的、内在的创作斗争过程,而据我所知,算法是没有感觉的。数据没有感知。”

对科技持乐观态度的人相信,科技会放大而不是取代人类的创造力。斯坦福大学的梁说,有了人工智能图像生成器,设计师可以变得“更有野心”。“你可以创建完整的视频或全新的系列,而不仅仅是创建单个图像。”

版权制度最终可能发挥重要作用。应用这项技术的一些公司声称,出于“合理使用”,它们可以自由地使用所有可用数据来训练自己的系统。“合理使用”是美国的一项法律例外,允许有限度地使用受版权保护的材料。

其他人不同意这个说法。盖帝图像和三名艺术家上周在美国和英国对StabilityAI和其他公司提起诉讼,指控这些人工智能公司肆意使用受版权保护的图像来训练其系统,这是这一领域首个法律诉讼。

一名代表两家人工智能公司的律师表示,这个领域的所有人都已准备好应对诉讼,这是为这个行业制定基本规则不可避免的一步。对科技行业而言,围绕数据在训练人工智能方面作用的争论,可能会变得与智能手机时代初期的专利战一样重要。

最终,为人工智能新时代设定条款的将是法院,甚至是立法者,如果他们认为这项技术打破了现有版权法所基于的旧假设的话。

在那之前,随着计算机竞相吸收世界上更多的数据,生成式人工智能领域迎来了自由狩猎的季节。

原标题:《生成式人工智能迎来大爆发,人类真的要纷纷失业了吗?》

阅读原文

人工智能会取代人类的艺术创造力吗

    【热点观察·当文艺创作遇上人工智能①】

    中央美术学院2019届硕士毕业生中,有一位叫夏语冰。毕业前夕,夏语冰的画作同其他同学的作品一道,参加了中央美院研究生毕业作品展。

    夏语冰的作品,获得了中央美院老师们的高度肯定。该校的邱志杰教授专门为她的作品写下一大段褒扬的评语。另一位教授,受夏语冰作品的启发,还专门为她创作了一段音乐。

    6月15日,夏语冰将赴杭州参加跨界艺术展览;7月5日,夏语冰将以画家身份在中央美术学院举办个人作品展。

    不过,夏语冰并非现实中的真人。她是微软研发的一款人工智能机器人。这款在微软内部被叫作“小冰”的人工智能机器人,被培养学习绘画已经22个月。从刚开始画得很丑,到慢慢提升,小冰作为一个“画家”成长的过程,就像追求艺术的人类一样,经历了一个漫长、痛苦、艰辛的过程。经过22个月的学习培养,小冰的绘画作品,达到了一定的艺术水准,才被破格批准化名“夏语冰”参加中央美院研究生的毕业画展。

    在过去两年的人工智能的风潮下,人们除了目睹小冰作的画,欣赏了小冰写的诗,听到了谷歌开发的人工智能机器人Magenta创作的歌曲……艺术,这块传统上被认为是人类智慧金字塔尖的领域也要被AI(人工智能)占领了吗?

1.写诗绘画样样精通

    “孤陈的城市在长夜中埋葬/他们记忆着最美丽的皇后/飘零在西落的太阳下/要先做一场梦”,这是机器人小冰写的一首诗。发布于两年前的人工智能“少女诗人”小冰,经过不断的深度“学习”,如今已具备强大的“创作”能力。只需上传一张图片,给几个关键词,小冰就能在10秒内替你创作出诗歌初稿。

    在研发过程中,工程师们曾用27个化名,在报刊、豆瓣、贴吧和天涯等多个网络社区的诗歌讨论区中发布小冰的作品,在此过程中,没有人发现作者是个机器人。后来,小冰研发团队从小冰写成的数万余首诗中挑出139首结集出版,取名《阳光失了玻璃窗》。

    “少女诗人”小冰“出道”后,引起人们的极大关注和讨论,因为这跟AlphaGo打败柯洁还不一样。下棋本质上就是一个通过海量大数据和超强计算能力求落子最优解的过程,还属于“弱人工智能”范畴,但文艺创作完全是一个创造性的工作,而是否具备创造性思维,一向被视为由“弱人工智能”到“强人工智能”的分水岭。

    据微软(亚洲)互联网工程院副院长、微软小冰项目负责人李笛介绍,为了达成写诗技能,小冰学习了1920年以来519位诗人的现代诗,被训练了超过10000次。一开始,小冰写出的诗句毫不通顺,后来慢慢形成“独特的风格、偏好和行文技巧。不过,诗歌界对此并未给出好评。比如,诗人于坚就认为小冰的所谓写作只是个语言游戏,“无论输出多少句子都算不得真诗,因为真诗是有灵性的”。

    如果说“诗人”小冰的创作仍是基于对海量文字的统计和计算,那“画家”小冰的模型已开始基于情感计算框架。换句话说,“画家”小冰不仅具有IQ(智商),还开始具有EQ(情商),并且其“创作”开始基于情感激发。这个模型有两个非常鲜明的特点:会大量使用诱发源,不是让机器把一种已有的视觉元素,进行复制、拼接,再转成另外一种风格重新生成,而是要求在诱发源的帮助下,激发人工智能进行新的创作。该模型通过对过往400年艺术史上236位人类画家画作的学习,已能独立完成100%原创的绘画作品。

    此前世界上大多数人工智能的开发都是围绕着任务驱动型、知识型的路线来架构。但近些年,各大科技公司越来越重视对人工智能EQ(情商)的开发。除了微软的小冰,亚马逊开始希望Alexa能够有同理心,百度也提出“智能体”的概念,要求人工智能更加有个性,更加有“人设”。人工智能的构建已经从单纯的IQ开始向“IQ+EQ”演变。长此以往,人工智能将不仅具备人类的智慧,或许还将拥有人类的情感。艺术是人类情感符号化的表现形式,当人工智能拥有情感,并且能够依靠情感激发来进行文艺创作,那人类独有的文艺创作能力的确会受到极大的挑战。

2.离人类的水平还有点远

    不可否认,无论是专家学者,还是艺术家,大部分人都不认可人工智能机器人写的诗、画的画、作的曲是艺术品。因为艺术被认为是创作者对客观世界的认识,是其主观情感的呈现,而艺术活动更多是一种创造的过程,它充满感性色彩,人类艺术创造最大的特征就是情感化。而人工智能是理性的,它整套艺术生产逻辑基于数据,即便人工智能的文艺创作开始加入情感激发和随机化模块,但创作的内容仍然是从大量作品中提取、分解、组合而成,这种重组方式不能称为情感化的艺术创作。国外也有学者认为,人工智能目前没有可能创造与人类智力相当或者超过人类智力的作品,因为极具个人色彩的创造性活动是无法复制的。

    人类对人工智能文艺创作能力的抗拒和排斥,一方面基于主观情感上的“一时难以接受”,因为在人工智能时代,文学艺术可能会是人工智能机器人留给人类的最后一片施展才华的乐园;另一方面,人工智能在文艺方面的“造诣”,尚处在“低幼”阶段,离人类的文艺创作水平还差很远,并且在相当长一段时间内,仍然难以跟人类匹敌。

    以小冰的绘画作品为例,乍一看,颇具“艺术色彩”,但仔细观察会发现,那些作品仍然难以摆脱元素堆砌的痕迹。就像“中国的城市化进程”这个主题,小冰所画的内容基本上都在“建筑”“人”“家具”这几个模棱两可的元素上来回重复。而即便是输入“城市”这个关键词,小冰依旧会把城市跟椅子、时钟这类元素联系到一起,画作也不算完整,甚至过于抽象。

    目前来看,人工智能对人类艺术的冲击,大部分还是体现在心理层面。在未来相当长一段时间里,人工智能还是很难接替艺术家的创作,即便这些智能机器人创造出一些被人类认可的“艺术品”,那也是基于人的参与设计。人们需要通过了解创作者的人生经历、社会背景、内心情感,才能试图揣测一件艺术作品的深意,而人工智能机器人的“文艺创作”,整体上还难以使其“作品”充满这种感性的色彩。

    面对争议以及种种“不看好”,人工智能的开发者们显得有些无奈。“无论是‘少女诗人’小冰,还是‘画家’小冰,从一开始,我们就把它当作一款产品看待,我们从未想过,要让人工智能与人类的顶级艺术家进行PK,以证明谁的水平更高。”微软(亚洲)互联网工程院人工智能创造及商业事业部总经理徐元春坦言,现在人工智能的文艺创作能力,仍存在较大局限性,但他也呼吁人们不要带着“有色眼镜”去看人工智能创作,希望“让子弹飞一会”,多给人工智能一些成长的空间。

3.艺术家不应一味排斥而应加以利用

    人工智能对于人类生存现实基础的改变,迫使人们不得不重新思考艺术与现实的关系、作家和艺术家在艺术活动中的地位、艺术存在的意义及其终极走向等一系列问题。正如艺术批评家李心沫所言,当人类的绘画作品和运用人工智能程序绘制的作品,已经很难被人进行区分的今天,我们已经无法对人工智能视而不见,一味地唯我独尊或排斥是没有意义的。

    在人工智能与经济社会同频共振的趋势下,艺术世界将会发生巨大改变,并重塑艺术的边界,其未来是否会影响到艺术家的主体性身份?是否原本只有人类可以胜任的艺术工作,将被人工智能所取代?这些问题,只有交给时间来回答。

    从积极的角度看,人工智能的迅速发展,虽然给文学艺术的发展带来了空前的挑战,但也带来了前所未有的机遇,人类从现在开始就可以很好地利用人工智能,来丰富自己的文艺创作。李开复在《人工智能》一书中就指出,人工智能时代,程式化的、重复性的、仅依靠记忆与练习就可以掌握的技能将是最没有价值的,几乎一定可以由机器完成。最体现人的综合素质的技能,比如人对于复杂系统的综合分析、决策能力,对于艺术和文化的审美和创造性思维,基于爱、恨等情感与他人互动的能力,则在人工智能时代最有价值,也是最不容易被替代的。

    对文艺家而言,人工智能技术可以助其一臂之力,帮助他们提高学习效率,在极短的时间内阅遍人间所有的艺术精华,达到青出于蓝而胜于蓝的效果。人工智能机器人还可以为艺术家锦上添花,分析素材,增强和丰富艺术表现手法,让他们的艺术创作更上一层楼,给人类多彩的文学艺术世界增添更加绚丽的色彩,让文化消费者能体味更为赏心悦目的艺术之美。

    比如,小冰的绘画能力所瞄准的落地场景是服装面料的图案设计。李笛介绍,以小冰人工智能框架为基础,微软已经同中国纺织工业联合会以及几家最大的纺织面料企业合作开发了人工智能纺织服装面料图案设计平台。该平台可以不重样设计出1026种服装面料纹样和插画。另外,小冰也参与到了广播电视节目的制作中,截至目前小冰已经为63家电台和电视台生产了2800多小时的节目。

    无论是今天的被动输出,还是未来通过持续深度学习实现主动表达,人工智能为人类的文艺创作都提供了多种可能性。尽管对人工智能介入文艺创作褒贬不一,但无论文艺家还是人工智能的开发者,在一点上是有共识的,那就是:艺术家要保存人类的创造力。

    (本报记者 韩业庭)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇