张钹院士:建立完备的人工智能基础理论
作为引领第四次科技革命的战略性技术,人工智能(AI)给社会建设和经济发展带来了重大而深远的影响,但数据隐私、算法偏见、技术滥用等安全问题正给社会公共治理与产业智能化转型带来严峻挑战。第一个问题是科技发展的共性问题。科技是发展的利器,也可能成为风险的源头,人工智能也不例外。首先,AI的发展将引发新一轮的产业革命。一方面是传统产业的智能化,比如网络搜索中采取推荐算法、用户画像等等,提高服务的效率和质量。另一方面是智能技术的产业化,催生了新的产业,如智能交通、智慧医疗、智慧城市、自动驾驶等。与此同时,AI的发展也带来了新的风险和安全隐患,因此,我们既要抓AI的创新发展,又要抓AI的治理,两手都要抓。
第二个问题是人工智能发展与治理中的特殊性,具体表现在算法层面、数据层面与应用层面。
在算法层面看,现有的AI算法较脆弱,泛化能力较差,这意味着如果将算法运用到与训练场景区别很大的实际场景中,就会存在安全问题。以无人驾驶为例,AI训练的时候不可能穷尽所有的情景,当遇到新的突发事件便无法处理,就会造成AI技术的误用,有可能是无意识的误用。同时,这种脆弱性还使得人工智能系统容易被攻击、被欺骗,给AI技术的滥用造成可乘之机。
从数据层面看,现在人工智能应用效果很大程度上依赖数据质量,但由此会带来隐私泄漏、数据确权等问题,如果解决不好数据安全的问题,人工智能产业也不可能健康的发展。
在应用层面,人工智能技术已经逐渐对人们的生活造成冲击,比如售楼处看房带头盔、困在算法里的外卖骑手等等,还有深度伪造之类可能对社会造成重大影响的技术,都必须保证安全可控。
AI的创新发展是大道理,纵观信息科技的发展历史,尽管信息科技发展异常迅猛,但基本上安全可控。而人工智能发展却缓慢曲折,安全问题层出不穷。这两者的差别在于,从信息革命开始,信息的三大理论就已经建立,即图灵机理论(1936)、香农的通讯理论(1948)、维纳的控制论(1948)。正因为有了坚实的理论基础,从而引导信息技术健康的发展。然而人工智能的发展则相反,它的基础理论至今没有建立。尽管经历了第一代AI的符号主义模型(知识驱动)和第二代AI的亚符号(连接)主义模型(数据驱动),但它们均具有很大的局限性,不能构成AI的理论基础。由于缺乏理论指导,AI的发展处于难以控制的局面。
当前,必须解决“卡脖子”的基础理论问题,因此建立AI的理论基础是我们提出“第三代人工智能”的初衷。所谓的“第三代人工智能”,其发展路径是融合第一代的知识驱动和第二代的数据驱动的人工智能,在前两代理论的基础上发展第三代人工智能基础理论,建立一个完备的人工智能基础理论。具体的思路上,利用知识、数据、算法和算力4个要素,建立新的可解释和鲁棒的AI理论和方法,从而发展安全、可信、可靠和可扩展的AI技术。这样发展第三代AI和AI治理一起抓,以达到相辅相成共同发展。
人工智能刚刚拉开序幕,更精彩的大戏正要上演。全世界应该团结起来,共同来发展安全可控的第三代人工智能,让人工智能真正造福于人类。
(张钹,计算机科学与技术专家,中国科学院院士、俄罗斯自然科学院外籍院士,清华大学计算机系教授、博士生导师。现任清华大学人工智能研究院院长,微软亚洲研究院技术顾问。)
人工智能基础
本课程推荐教材及与课程学习目标对应关系如下:
1. 授课教材:《人工智能》丁世飞编著电子工业出版社 2020年第三版ISBN:9787121363955。
(1)教材特点:《人工智能导论(第3版)》主要阐述人工智能的基本原理、方法和应用技术。全书共13章,除第1章讨论人工智能基本概念、第13章讨论人工智能的争论与展望外,其余11章按照“基本智能+典型应用+计算智能”三个模块编排内容。一个模块为人工智能经典的三大技术,分别为知识表示技术、搜索技术和推理技术,主要包括知识表示、确定性推理、搜索策略、不确定性推理;第二个模块为人工智能的典型应用领域,包括机器学习、支持向量机和专家系统;第三个模块为计算智能与群智能,包括神经计算、进化计算、模糊计算和群智能。
本课程主要选用了本教材的第一稿模块,即知识表示技术、搜索技术和推理技术中相关的内容。
(2)使用方法:本教材对应课程学习目标1-5,可以做到对课程内容前半部分的全覆盖,请同学们学习完视频之后,一定要详细阅读教材中的对应部分,并针对课后习题进行联系,能够有效提高学习质量;
2、本课程参考了大量网络上的课程。对应课程学习目标6-8,包括:
https://stanford-cs221.github.io/spring2021/
https://cse.iitkgp.ac.in/~dsamanta/courses/da/
百度飞桨师资培训的机器学习和深度学习的内容。
https://easyai.tech
此外还有参考百度百科、B站、以及知乎和CSDN等各类科技网站。
在此表示感谢!