博舍

曹培杰:智慧教育:人工智能时代的教育变革 人工智能下教育的变革有哪些内容和特点

曹培杰:智慧教育:人工智能时代的教育变革

当前,以人工智能为代表的技术创新进入到一个前所未有的活跃期,而教育仍未摆脱“工业化”的印记,以至于有人认为,“我们把机器制造得越来越像人,却把人培养得越来越像机器”,这不仅制约着教育功能的充分发挥,而且导致经济社会转型面临危机。所以,我们要有一种时代紧迫感,全面深化教育改革,推动“工业化教育”向“智慧型教育”转变,扩大高质量人才的供给能力,为经济社会发展提供强有力的人力资源保障。

(二)智慧教育蓄势待发

随着人工智能越来越广泛的应用于传统行业,那些机械重复、烦琐枯燥、大量使用体力的职业可能都会被机器人所取代,甚至连一些专家的决策工作也面临风险。比如,拥有大数据分析能力的智能医疗诊断,在某些疾病上比普通医生判断的准确率更高;智能金融系统在风险预测、股票投资等方面大显神通,成为金融机构争先布局的重点领域……随着一系列连锁反应的叠加,人工智能正在触发一场剧烈的社会分工调整,我们很可能会成为人类历史上第一代需要和机器去竞争工作的人。正如“控制论之父”维纳所说:“我们是如此彻底地改造了我们的环境,以至于我们现在必须改造自己,才能在这个新环境中生存下去。”[2]教育作为培养人的事业,将会成为决定人类能否在人工智能时代胜出的关键。众所周知,现行教育体系是工业社会的产物,核心是通过整齐划一的教学流程批量化地生产人才,尽管难以照顾个性差异,但却为人类社会从农业时代进入工业时代提供了必要的人力资源。但是,当人类社会迈进信息时代的新阶段——人工智能时代,这种工业化的教育体系已经无法满足未来社会对人才的需求,时代发展迫切需要一场教育变革。2016年3月,世界经济论坛发布了一份题为《教育的新愿景:通过技术培育社会和情感学习》的研究报告,倡导把人的社会性和情感教育置于应对新工业革命的高度,包括批判性思维/问题解决、创造力、沟通能力、合作能力等四种胜任力,以及好奇心、首创精神、坚毅、适应力、领导力、社会文化意识等六种个性品质。[3]换句话说,教育不是由外而内传递知识,而是由内而外觉悟智慧。这就要求,我们必须打破整齐划一的传统教育形态,构建与人工智能时代相适应的智慧教育体系,利用智能技术对学习环境、学习内容、教学方式、管理模式进行系统化改造,为学生提供富有选择、更有个性、更加精准的智慧教育。

二、智慧教育的理念内涵

目前,学术界对智慧教育有两种理解。一种将其视为是对知识教育观的批判和超越。英国哲学家怀特海指出,在古代学校里,哲学家们渴望传授的是智慧,而在现代学校,我们的目标却是教授各种科目的书本知识,这标志着教育的失败;教育的全部目的,就是使人具有活跃的智慧;教育要激发学生的求知欲,提升其判断力,锻造其对复杂环境的掌控能力,使学生能够运用理论知识对特殊事例做出预见。[4]我国著名科学家钱学森从系统科学出发,提出用大成智慧教育培养拔尖创新人才,拆除各门科学技术之间的鸿沟,让科学与艺术不分家,让数学、自然科学与哲学社会科学互连手,从而做到大跨度的触类旁通,完成创新。[5]美国心理学家斯腾伯格倡导学校要为智慧而教,要引导学生智慧地思考和解决问题,让他们学会平衡自我、人际和外部社会之间的共同关切,从而更好地承担社会责任。[6]

另一种视角是将智慧教育视为教育信息化发展的新阶段,是依托物联网、云计算、无线通信等新一代信息技术的教育信息生态系统[7],更是信息化元素充分融入教育后发生的“化学反应”[8]。祝智庭教授认为,智慧教育是通过利用智能化技术构建智能化环境,让师生施展灵巧的教与学方法,使其由不能变为可能,由小能变为大能,从而培养具有良好价值取向、较高思维品质和较强施为能力的人才。[9]黄荣怀教授认为,智慧教育是利用现代科学技术为学生、教师等提供一系列差异化的支持和按需服务,全面采集并利用参与者群体的状态数据和教育教学过程数据来促进公平、持续改进绩效并孕育教育的卓越。[10]此外,智能教育也是一个与智慧教育联系密切的概念。狭义的智能教育定位于“以人工智能为内容的教育”,目的是培养掌握智能技术的专业化人才;广义的智能教育则定位于实现个体智能的提升,不仅掌握人工智能等技术,还能初步具备未来工作中实现人机合作的能力。[11]

综合已有研究,我们认为,智慧教育是指以“人的智慧成长”为导向,运用人工智能技术促进学习环境、教学方式和教育管理的智慧转型,在普及化的学校教育中提供适切的学习机会,形成精准、个性、灵活的教育服务体系,最大限度地满足学生的成长需要。只有把“人”置于教育的最高关注,发掘人的潜能,唤醒人的价值,启发人的智慧,才能从容应对人工智能时代带来的挑战。智慧教育不仅是教育基础设施的信息化、智能化,而且是教育理念与教育方式的转型升级,从注重“物”的建设向满足“人”的多样化需求和服务转变。[12]智慧教育包括三个组成部分:一是相互融通的学习场景,利用智能技术打通物理空间与网络空间之间的壁垒,让万物互联,让世界互通,所有学生都可以在任何地方、任何时刻获取所需的任何信息;二是灵活多元的学习方式,注重学习的社会性、参与性和实践性,打破学科之间的界限,开展面向真实情境和丰富技术支持的深度学习;三是富有弹性的组织管理,破除效率至上的发展理念,释放学校的自主办学活力,利用人工智能提高教育治理的现代化水平,让学生站在教育的正中央。总之,人工智能为教育提供了全新的视角和机遇,智慧教育的广泛开展将成为教育史上一座重要的里程碑。

三、智慧学习环境:从“教育工厂”到“学习村落”

如果把原来的学习环境比作“教育工厂”的话,那么,智慧学习环境就是“学习村落”。在这里,每个学习者都掌握学习的主动权,人工智能可以帮助他们找到志同道合的伙伴和相互匹配的导师,推送适配的学习资源,提供精准的学习支持,从而开展积极主动的个性化学习。它不是为了“统一的教”,而是为了“个性的学”,要利用数据和算法的力量来读懂学生、发现学生、服务学生。

(一)全面感知的学习场所

现在,校园只是一个开展教学的物理场所;未来,校园将变成万物互联的智能空间。人工智能会把冷冰冰的机器设备变成充满温情的“私人助理”,通过不断学习人类的行为和习惯,提出针对性的辅助策略,帮助学生开展积极主动的个性化学习。一是利用物联网技术对温度、光线、声音、气味等参数进行监测,自动调节窗户、灯具、空调、新风系统等相关设备,主动响应校园安全预警,保障学校各系统绿色高效运行,为学生创设安全舒适的学习环境。二是借助情境感知技术在自然状态下捕获学习者的动作、行为、情绪等方面的信息,精准识别学习者特征,全面感知学生的成长状态,提供学习诊断报告、身高体重走势图、健康分析报告等,为学生身心健康发展提供有力支持。三是利用大数据技术对学习过程进行跟踪,了解学生的认知水平以及在学习中存在的优势和不足,提供量身定制的最优学习路径。

(二)灵活创新的学校布局

学校的环境布局一直延续着工业时代的设计标准,目的是满足统一集体授课的需要。随着人工智能时代的到来,教育理念和教学组织形式都在发生深刻变化,学习空间的呈现形式也将随之改变。未来的学习空间将从“为集体授课而建”转向“为个性学习而建”,把千篇一律的教室变成灵活创新的学习空间,把单调乏味的建筑打造成智慧的育人环境。[13]一是创新教室布局,打破工厂车间式的教室设计,配备可移动、易于变换的桌椅设施,支持教师开展多样化的教学活动。二是扩展学校的公共空间,按照多功能、可重组的设计思维,加强学习区、活动区、休息区等空间资源的相互转化,给学生提供更多的活动交往空间,促进学生的社会性发展,弥合正式学习与非正式学习之间的鸿沟。[14]三是优化校园空间,给学生提供动手实践的场地,建立创客空间、创新实验室、创业孵化器等新型学习环境,培育有共同兴趣爱好的实践社群,鼓励学生把创新想法转化为实际作品。北京十一学校龙樾实验中学、巴西的NAVE学校、美国明尼苏达大学的主动学习教室(ActiveLearningClassrooms)、加拿大皇后大学的主动学习空间(ActiveLearningSpaces)等都在这方面做了有益探索。

(三)深度交互的网络学习空间

网络教育的真谛在于实现人文交互环境下的个性化学习。[15]近五年来,全国师生网络学习空间开通数量从60万个迅速激增到了6300万个,覆盖了各级各类教育,很多地方利用网络学习空间进行个人成长记录和综合素质评价,带动了教育理念变革和教学模式创新。[16]但不容忽视的是,网络学习空间的活跃程度并不乐观,交互行为停留于较浅的层面。未来,网络学习空间将从课堂教学的延伸走向教育形态的重塑,构建群体个性化的学习共同体和实践共同体。[17]一是开发智能学习助手,根据学生的学习需求、学习路径和检索痕迹,按需推送学习资源和学习支持,过滤无关的信息,减轻认知负荷,使学生可以随时、随地、随需进行高质量的学习。二是强化成员间的关系网络,加强对互动数据的收集、分析和处理,包括订阅、观看、转发、提问、评论等,精准识别师生、生生互动关系,提供更加匹配的组合方案,形成稳定的趣缘合作共同体,促进深度交互的发生。三是提供远程协作、社会网络、同步课堂等方面的工具,鼓励跨学校、跨区域、跨国别的协同学习,扩大优质教育资源覆盖面,突破常规手段难以解决的教育均衡问题,让亿万孩子同在蓝天下共享优质教育。

四、智慧学习方式:从“学以致用”到“用以致学”

随着互联网时代的到来,以知识为中心的学习方式已经无法满足时代发展需要,学习越来越呈现出实践性、情境性和个性化的特征,仅靠死记硬背就可以掌握的知识或技能逐渐失去价值,人工智能在这些方面可以比人做得更好。这就要求,我们必须转变教育观念,加快推动学习方式变革,从“学以致用”走向“用以致学”,更加重视每个学生的独特体验,鼓励他们在解决问题中学会解决问题,在做事中学会做事,成为能够适应未来复杂挑战的人才。

(一)深度学习

在人工智能的语境下,深度学习指的是一种新的算法,它通过模拟人类神经网络,构建具有多隐含层的机器学习模型和海量的训练数据,让机器自动学习有用的特征,从而提升分类或预测的准确性。[18]在语音识别、图像理解、自然语言处理等领域,采用深度学习算法之后,其准确性都得到了极大的提升。正是这种算法模型的突破,让机器拥有了类似人类的智慧,引发了新一代人工智能的崛起。巧合的是,深度学习既是决定人工智能兴衰的关键所在,也是决定未来教育成败的关键所在。人类要想从人工智能时代的职场中胜出,就必须从强调记忆和练习的传统学习中脱离出来。学习绝不能停留于知识的表面理解和重复记忆,学生要在已有知识的基础上,将所学新知与原有知识建立联系,获取对知识的深层次理解,建立一套自己的思维框架,并有效迁移到其他的问题情境中。深度学习包括五个环节:一是还原知识的丰富情境,知识从哪里来,深度学习的起点就应该从哪里开始;二是面向实践的学习活动,鼓励学生用所学知识解决实际问题,以任务驱动的方式组织学习,提供接近专家及其工作过程的机会;三是用不同视角透视学习,提供社会化软件及其他认知工具来支持学习,允许共同体成员拥有不同的角色和身份,鼓励提出不同观点,让学生在对话和互动中建构知识;[19]四是提供成果展示及表达的机会,促使思维清晰化,引导学生进行反思,实现对知识的深度理解;五是建立更加立体的评价,把关注点从教师的教转向学生的学,强调学生在学习活动中的参与程度、积极性以及突破原有框架的创造力,利用学习分析、课堂观察等技术手段,为不同的学生制定不同的标准,让每一位学生都有出彩的机会。

(二)跨学科学习

人类的智慧来源于知识观的完整,它不是零敲碎打的,而是与整体特征密切相关的。现行的分科教学有利于系统知识的习得,但不利于完整知识体系的形成和综合思维能力的培养。近年来兴起的STEM教育和创客教育,都把跨学科学习作为重点,强调通过不同学科的交叉融合,培养学生的创新精神和实践能力。跨学科学习倡导根据生活中的问题设置主题,将不同学科围绕同一个主题联系起来,构建相互衔接贯通的课程体系。于是,原有的学科林立变成主题式的课程整合,学生有机会运用多个学科的知识来解决问题,在动手实践中形成自己的知识体系,从而实现知识的活化以及向现实生活的有效迁移。[20]跨学科整合有三种取向:一是学科知识整合取向,分析各学科的知识结构,找到不同知识点之间的连接点与整合点,将分散的课程知识按跨学科的问题逻辑结构化;二是生活经验整合取向,从儿童适应社会的角度选择典型项目进行结构化设计,让学习者在体验和完成项目的过程中,习得蕴含其中的多学科知识与技能;三是学习者中心整合取向,这种模式不是由教师预设问题,而是由学习者个体或小组提出任务,任务内容需要学习并运用跨学科知识。[21]值得说明的是,跨学科学习需要坚实的学科基础,没有学科就没有跨学科,两者相辅相成、互为依存,教师要处理好分科教学和跨学科学习的关系,从更广阔的视野认识学习的本质。

(三)无边界学习

陶行知先生指出,“生活即教育”“社会即学校”,教育不能脱离社会、脱离生活。如果学校生活与社会生活联系不紧密,学生的学习不是从自己的直接经验里长出来的,那就是一种呆板的、低效的教育。所以,学校应该是一个开放的组织系统,要建立与真实世界的联系,充分利用外部社会资源开展教育,把整个社会变成学生成长的大课堂。美国的密涅瓦大学(MinervaSchools)就是“一所没有校园的大学”,四年本科学习分布在全球七大城市,包括旧金山、香港、孟买、伦敦等,通过与当地高校、研究所、高新技术企业建立合作,学生可以使用一流的图书馆、实验室等进行学习,利用一切可利用的社会资源开放办学,实现了高等教育的结构性创新。[22]无边界学习是未来教育发展的重要趋势,它包括以下内容:一是把知识学习和现实生活连接起来,学生的学习场所不再固定,随着课程的不同,既可以在教室,也可以在社区、科技馆和企业,甚至可以去不同城市游学,任何可以实现高质量学习的地方都是学校;[23]二是建立实践共同体,加强学校与产业行业之间的合作,共建创新创业实践基地,鼓励学生动手实践,引导他们运用知识去解决现实问题,从而获得真正的本领;三是技术增强的泛在学习,利用混合现实技术,将虚拟场景融入真实世界,或是将真实场景融入虚拟世界,让学生有机会观察微观世界、感知抽象概念,使学习变成一种丰富情境下的亲身体验。

五、智慧教育管理:从科层机构到弹性组织

当前的教育管理大多采用科层制,各职能部门分工明确,职权关系等级分明,按照标准化流程开展工作。从专业分工的角度看,这种模式有利于提高工作效率,为现代学校运行提供了有力的组织保障,但在人工智能时代却暴露出致命缺陷:在严格的条条框框下,学校被程序化、行政化,很容易陷入具体细节之中,对新变化缺乏适应能力。原本充满智慧的教育,变成了按部就班的机械操作,学校和教师逐渐失去自主性和创造性,异化为教育的机器,而教育本身也沦落成应试的工具。智慧教育管理要改变这种局面,更加关注人的完整实现,从科层机构走向弹性组织,增强组织运行的灵活性,从根本上激发和释放学校的办学活力。

(一)破除“效率至上”的评价导向

教育作为培养人、发展人、成就人的事业,所有的外在指标都应服务于这一根本目的。现在普遍存在的分数、升学率等量化指标,设计初衷都是为了提高教育效率,保障教育质量,这在过去也确实发挥了重要作用。但在人工智能时代,这种围绕效率而构建的工业化教育体系正面临危机。由于过于强调效率,学生的创新意识、完备人格以及兴趣志向都受到了不应有的忽视,学校也不再是一个令学生向往的场所。实际上,效率从来不是教育的关键,人的智慧成长才是教育应该关注的重点。如果学校以效率为绝对导向,那些需要长期发展才能见到成效的学习活动就无法开展,学生的长远且面向未来的关键能力必然受到损害。一旦学校被功利化、浮躁化的思想所绑架,就会陷入“谁先减负谁就利益受损”的囚徒困境,并最终走向共同毁灭。所以,智慧教育一定要遵循教育规律,破除“效率至上”的痼疾。一是坚持立德树人,不用单一片面的标准评价学生,把品德、行为习惯、身体健康、社会实践等方面的表现纳入评价指标,利用人工智能对定性数据进行分析,更加科学地评价学生的全面成长。二是综合考虑学生的起点水平,引导学校不抢生源、不过分拔高、不恶性竞争,把增值性作为评价学校的基本原则,重点关注学校提供高质量课程的水平和满足学生个性化学习的程度,一流学校不一定是拥有一流生源的学校,而是把一般生源也能培养成一流人才的学校。三是基于大数据的教育管理优化,动态模拟学校布局、教育投入、入学形势、就业渠道等方面的变化,科学预判教育发展趋势,提前做好教育规划,并在规划中更加关注教育公平和教育均衡,着力解决教育发展不平衡不充分问题。

(二)充分激发学校的办学活力

当前,学校作为办学主体,面临着有责无权、权责不对等、人权财权不匹配等突出问题,无力推动更深层面的教育改革,主要精力都用来应付上级部门的各类评比和检查。在学校内部管理中,行政力量往往凌驾于专业力量之上,服从管理取代了专业引领,上下级关系取代了共同体关系,本来应该以学生为核心的学校,变成了以“领导”为核心的“机关”,学校管理呈现出越来越严重的行政化倾向。近年来,一些带有理想主义色彩的名校长被民办学校或社会机构挖角,已经成为一个不容忽视的现象。学校作为培养人的专业机构,如果只注重标准化的科层管理,不考虑教育的专业性和学术性,那就会使学校越来越呆板固化,越来越不像学校。管理转型是智慧教育能否成功的关键,必须解决传统管理与学校创新之间存在的不协调问题,从根本上激发学校的办学活力。一是落实学校的办学自主权,形成政府宏观管理、学校自主办学、社会广泛参与的教育格局,推动教育、财政、人事等管理部门向学校下放权力,让学校享有教师评聘、经费使用、课程安排(包括大小课、长短课、阶段性课程等)、修业年限(包括弹性学期、混龄编班等)、育人方式(包括社会实践、参观考察、研学旅行等)等方面的自主权,从根本上激发学校的办学活力。二是完善学校的内部治理结构,利用信息化手段提高教育治理的现代化水平,促进“管理本位”向“服务本位”转型,建立普通师生、家长、社区以及相关利益方参与学校管理的机制,形成依法办学、自我约束、多元参与、社会监督的网状治理结构。三是增加学术团体的权利,形成新的治理单元,通过职能重新定位,明确划分行政事务与专业事务的边界,强化教师领袖的专业影响力和学术领导力,激发教师的主动性和创造力,构建行政管理和学术引领相融合的学校治理体系。

(三)构建全社会参与的教育生态

作为一项复杂的系统工程,智慧教育决不能“头疼医头,脚疼医脚”,要从构建良好生态的高度进行教育改革,建立学校与外部社会的协同机制,形成校内外相互沟通、资源高度共享、流程无缝衔接的新格局。一是积极引导多元社会主体参与教育,促进和规范民办教育发展,鼓励社会力量提供多样化的教育产品和服务,适当放宽办学资格门槛,为教育公益组织的成长创造更大空间,广泛开展薄弱学校委托管理、第三方教育评价等方面的探索。二是建立行业专家驻校制度,包括科学家驻校、工程师驻校、文学家驻校、艺术家驻校等,鼓励行业专家为学生开设专题讲座、指导研究性学习、开展技能培训等。三是探索多样化的教师补充渠道,提高兼职教师评聘的灵活性,引导各行各业的专业力量参与学校教育,教学的提供者不仅是教师,也可能是科学家、工程师、工人、农民、医生、商人等,任何有专长的人都可以成为“教师”。四是支持学校购买教育服务,加大财政投入力度,拓展教育公共服务的有效供给,帮助学校构建起一套覆盖广、选择多、更加完善的课程体系,为每一个学生提供个性化的课程,最大限度满足学生多样化的学习需求。

人工智能为社会转型带来了新的曙光,相对于其他社会系统来说,教育系统更需要超前部署、未雨绸缪。教育是人类应对人工智能挑战的根本力量,只有通过智慧的教育培养智慧的人,充分发掘生命的内在潜质,才能在人工智能时代立于不败之地。值得注意的是,人工智能在促进教育变革的同时,也隐藏着巨大风险:当机器越来越智能,对学习的预测越来越精准,就会反过来限制学生的选择自由,导致一部人成为量化评估的受害者而非受益者。因为,所有的数据都来自过去,我们完全依赖过去来判断未来,表面看是提供了量身定制的教育,实际上却让学生只能成为过去自己的延伸,而非新生的自我。

参考文献:

[1]克劳迪娅·戈尔丁,劳伦斯·凯兹.教育和技术的竞赛[M].北京:商务印书馆,2015.398-442.

[2]维纳.人有人的用处——控制论与社会[M].北京:北京大学出版社,2010.31.

[3]WorldEconomicForum.NewVisionforEducation:FosteringSocialandEmotionalLearningthroughTechnology[EB/OL].http://www.wojde.org/FileUpload/bs295854/File/10rp_52.pdf.2018-03-07.

[4]怀特海.教育的目的[M].上海:文汇出版社,2012.9-51.

[5]钱学敏.钱学森对教育事业的设想——实行大成智慧教育培养全面发展的新人[J].西安交通大学学报:社会科学版,2005,(3).

[6]Sternberg,J.R.WhySchoolsShouldTeachforWisdom:TheBalanceTheoryofWisdominEducationalSettings[J].EducationalPsychologist,2001,(4).

[7]杨现民.信息时代智慧教育的内涵与特征[J].中国电化教育,2014,(1).

[8]陈琳,等.教育领域综合改革开局之年我国教育信息化新发展[J].中国电化教育,2015,(1).

[9]祝智庭,贺斌.智慧教育:教育信息化的新境界[J].电化教育研究,2012,(12).

[10]黄荣怀.智慧教育的三重境界:从环境、模式到体制[J].现代远程教育研究,2014,(6).

[11]张进宝,姬凌岩.是“智能化教育”还是“促进智能发展的教育”——AI时代智能教育的内涵分析与目标定位[J].现代远程教育研究,2018,(2).

[12]任友群,等.融合创新,智能引领,迎接教育信息化新时代[J].中国电化教育,2018,(1).

[13]曹培杰,王素.未来学校:“互联网+”时代的教育创新[J].中小学信息技术教育,2017,(5).

[14]曹培杰.未来学校的兴起、挑战及发展趋势[J].中国电化教育,2017,(7).

[15]孟万金.网络教育的真谛:人文交互环境下的个性化自主学习[J].教育研究,2002,(4).

[16]雷朝滋.教育信息化:从1.0走向2.0——新时代我国教育信息化发展的走向与思路[J].华东师范大学学报:教育科学版,2018,(1).

[17]郭绍清,等.网络学习空间变革学校教育的路径与政策保障[J].电化教育研究,2017,(8).

[18]余凯,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,(9).

[19]Herrington,J.,Oliver,R.AnInstructionalDesignFrameworkforAuthenticLearningEnvironments[J].EducationalTechnologyResearchandDevelopment,2000,(3).

[20]曹培杰.反思与重建:创客教育的实践路径[J].教育研究,2017,(10).

[21]余胜泉,胡翔.STEM教育理念与跨学科整合模式[J].开放教育研究,2015,(4).

[22]尚俊杰,曹培杰.“互联网+”与高等教育变革——我国高等教育信息化发展战略初探[J].北京大学教育评论,2017,(1).返回搜狐,查看更多

人工智能赋能教师教育:基本逻辑与实践路向

近年来,自然语言处理、机器学习、人脸识别等智能技术快速发展,促使教育信息化逐渐呈现智慧特性,人工智能赋能教育创新发展已成我国教育改革的关键抓手。传统信息技术逐步实现智能升级,技术赋能教师教育的形态也实现重大变革。2018年,《教师教育振兴行动计划(2018—2022年)》推出“互联网+教师教育”创新行动,并强调应充分利用大数据、人工智能等新技术,助力教师教育理念与模式变革,推进教师教育信息化建设与应用。2022年,《教育部教师工作司2022年工作要点》指出,“推进第二批人工智能助推教师队伍建设试点工作,开发和应用教师智能助手,探索开展教师智能研修,推广完善‘双师课堂’。”基于此,本研究尝试聚焦人工智能赋能教师教育这一议题,理顺人工智能赋能教师教育的基本逻辑,并面向中小学教师群体开展问卷调研,从而进一步挖掘人工智能支持下教师教育变革所面临的现实困境,归纳提炼人工智能赋能教师教育的实践路向,以期为新技术时代教师教育变革提供有益参照。

一、信息技术赋能教师教育的历史变革

随着信息技术的不断升级与发展,一些具有“类人功能”的智能产品逐渐应用于教育教学领域,促使教育信息化样态逐渐具有智能属性。就教师教育而言,信息技术赋能教师教育的历史进程主要经历了三个发展阶段。

(一)电化教育时代:信息技术赋能教师教育的初步探索期

1978年4月,全国教育工作会议指出,应充分利用广播、电视等工具,大力培训师资。此次会议不仅有力地推动了我国电化教育的发展,也促进了广播、电视等现代化技术手段在教师教育中的应用,开启了信息技术赋能教师教育的初步探索。1981年10月,教育部颁文要求“发挥电化教育在提高师资水平中的作用”。20世纪80年代中后期,随着计算机技术和网络通信技术的不断进步,信息技术赋能教师教育的工具与方式逐步得以拓展。1996年,《中小学计算机教育五年发展纲要(1996—2000年)》指出,应面向师范生开展相关培训,提升计算机辅助教学的知识与技能,并强调教师需对计算机等电化教育教学手段予以掌握。归纳来看,在电化教育阶段,教师教育的实践理念与行动方式逐渐融入技术元素,但这一时期教师教育存在着信息共享滞后、技术应用水平低下等诸多问题,教师教育过程与投影、录音、录像、电视、计算机等传统教育技术媒体之间的融合尚处于浅层阶段。

(二)教育信息化时代:信息技术赋能教师教育的快速发展期

21世纪初,我国的教育信息化发展较为关注项目及工程建设,以远程教育、开放教育等方式为依托,致力于提供多样化的教育信息化服务。在教育信息化背景下,我国教师教育理念与方式发生重大变革,信息技术赋能教师教育也逐步从电化教育时代迈向教育信息化时代。2002年,教育部发布《关于推进教师教育信息化建设的意见》,对教师教育信息化原则、目标以及具体举措等诸多方面作了基本要求,为我国教师教育信息化快速发展奠定了行动方向。随后,我国教师教育信息化建设开始逐渐关注宏观指导与项目实践相结合的推进方式。《2009—2012年中小学教师国家级培训计划》等文件以具体的实践项目来推动教师教育信息化。随着互联网、云计算等技术的快速发展,教师教育体系也积极顺应信息技术发展趋势,致力于培养具有信息化教学技能的新型师资。但由于这一时期信息资源良莠不齐,教师教育过程的数据挖掘和分析还相对滞后,对于硬件设施投入与建设的关注高于软件设施,教师教育课程资源尚未实现有效的区域联通。

(三)“智能教育”时代:信息技术赋能教师教育的战略转型期

2017年,《新一代人工智能发展规划》中明确提出,应利用人工智能技术满足社会大众对于教育、医疗等方面的民生需求。随着机器学习、智能感知等智能技术与教育教学的整合成效逐渐凸显,2018年,《关于开展人工智能助推教师队伍建设行动试点工作的通知》中更是强调应提升教师对于人工智能的胜任力与适应力。2021年4月,教育部发布《关于开展第二批人工智能助推教师队伍建设试点推荐遴选工作的通知》,强调应通过建立师范生大数据评价管理机制、创新“人工智能+教师研修”模式等手段,促进人工智能、大数据等技术与教师队伍建设的有效整合,助推教师教育理念与模式的智能转型。此外,人工智能与教师培训的整合也逐渐得到广泛关注,2021年5月,教育部、财政部发布《关于实施中小学幼儿园教师国家级培训计划(2021—2025年)的通知》,强调应推进人工智能与教师培训融合发展,形成人工智能支持教师终身学习的新机制;《教育部教师工作司2022年工作要点》亦强调应推进人工智能助推教师队伍建设,发掘推广一批人工智能助推教师队伍建设的先进典型,推进教师资源数字化建设和教师队伍数字化治理。

二、人工智能赋能教师教育的基本逻辑

在“人工智能+教师教育”生态系统中,信息技术能够对教师教育的课程设置、教育模式、评价方式、应用实践、培训和终身学习等方面产生影响,解决教师培训方式变革以及教师教育的管理问题也是推进人工智能与教师教育体系深度融合的关键。

(一)课程层面:智能资源共享赋能教师教育课程体系完善

教师教育课程是构成教师教育体系的重要内容,这也是人工智能赋能教师教育的基本着力点。人工智能在资源推荐、资源整合等方面具有智能特性,人工智能赋能教师教育的一大优势在于可通过智能资源共享推进教师教育课程体系趋向完善。首先,人工智能可为教师教育课程资源的开发与获取提供技术保障。可通过智能化资源开发平台,设计与整合海量教案、课件、课堂实录、习题等教学资源数据,且利用大数据的智能匹配与分析功能为教师筛选出最优质的课程资源并为其推荐最适切的学习资料,有助于为教师专业发展提供精准化的培训课程资源。例如,华中师范大学“现代教育技术应用”课程通过引入虚拟仿真实验和桌面VR交互一体机,促进师范生自身学科内容与新兴形式资源的融合,设计、开发和生成多种沉浸式、交互式的教学资源。其次,人工智能可助力教师教育课程管理建设。基于智慧课程管理系统为教师及教师教育者提供留言、点评、交流、反思等信息共享功能,可实现海量的教师学习行为数据的精准采集与分类,并利用数据分析与共享技术为教师教育者改进课堂教学方式与内容设计提供证据支持。归纳来看,智能资源共享本身是一种信息共享,有助于拓展教师教育课程学习的资源内容与空间场域,此为人工智能赋能教师教育的课程逻辑。

(二)评价层面:机器学习赋能教师教育质量精准改进

机器学习赋能教师教育质量精准改进可被视为人工智能赋能教师教育评价的重要环节。首先,机器学习有助于实现教师教育过程性数据的精准挖掘。长期以来,教师教育质量缺乏相对全面的评价标准,教师教育质量评估往往侧重于结业考评、期末考评等总结性评价方式,较为忽视教师教育过程的数据记录与信息采集,教师教育者可能对于自身教学过程中的潜在问题也难以发觉。其次,机器学习立足于对海量数据全生命周期的伴随式采集、深度挖掘与分析,其能够通过挖掘数据背后的潜在关系,不仅能够实现基于理性证据的科学决策,也能够为教师教育质量的精准监测与改进提供实践路径。机器学习可通过智能传感、人脸识别、图像识别等技术实现在线教师教育数据、线下教师教育数据的有效采集与智能分析,有助于以大数据分析方式来可视化呈现教师教育质量分析结果。基于质量分析结果,教师教育者能够迅速识别其教育教学的缺点,并能够有针对性地予以改进,进一步掌握当前教师教育课程、管理、实践等方面存在的实质性不足,这为教师教育质量的精准改进提供了诸多便利。例如,黄慕雄等人以广东省教师教育大数据智慧系统为例,构建了一种多源多层的教师专业发展分析模型,采用较为成熟稳定的协同过滤推荐算法综合分析并精准制订培训发展方案,是满足教师培训机构为教师智能化制订培养方案需求的部分体现,为精准评估与改进教师教育质量提供了有效支持。

(三)管理层面:智能决策助力教师教育治理机制重塑

人工智能拥有规模化数据、深度学习算法以及高度计算力,其通过科学规范的数据聚类、数据认知、决策优化等过程,挖掘数据的复杂性关联和潜在价值,使智能决策得以实现。首先,智能决策为以单向性、强制性及刚性为核心特征的传统教师教育管理模式走向科学民主式的教师教育治理模式提供了重要支撑。基于智能决策理念的教师教育治理将由经验走向循证,经由“提出问题—获取证据—评价证据—应用实践—效果评估”科学流程,自始至终指向准确和明智的最佳教育证据筛选与应用,保障教师教育决策有据可循。其次,智能决策本身体现了一种数据治理的理念,其以规模化数据和智能算法为中介,促进教师教育决策过程由单一主体决策走向基于数据智能的多主体协作,有利于教育行政部门、教师培训机构、学校等决策主体构建基于证据的教师职前职后一体化协同机制,教师教育的决策者、参与者可通过协同完成数据收集、表征、组织、分析、交流等环节,精准定位并预测教师培训的需求与供给状况,尤其是应真正关照乡村学校在职教师专业发展的个性化需求,最终生成兼具技术理性与人文关怀的教师培训与研修方案。

(四)培训层面:智能互联助力教师培训空间极速拓展

自20世纪末《中小学教师继续教育规定》颁布以来,我国教师培训的规模、经费投入、相关制度和体系建设等飞速发展。然而,不少地区的教师培训工作也暴露出一些现实难题,如对教师培训的需求分析不够细致与准确、培训内容重复与泛化、培训空间满意度不高等。随着深度学习等智能技术的发展,教师教育空间将逐步实现虚拟空间与物理空间的无缝衔接,智能互联助力教师培训空间极速拓展成为现实。首先,基于智能互联理念的教师研修平台进一步提升了教师培训的针对性与有效性,有助于创设沉浸性更强的线上虚拟研修空间与“双师课堂”教学空间,可实现对教师认知结构、教学行为、教学风格与专业能力的智能监测与精准诊断,并实现精准化的课程推送、个性化的助学支持。其次,基于智能互联的教师培训助手系统为教师培训目标的实现释放了工作空间。AI教师能够将教师培训者从琐碎的机械性行为中解放出来,教师培训者将拥有更多的“自由时间”,这使其可以在更充分的自我认知基础上,更多反思教师教育课程设计、实践应用、沟通协作等方面的教师培训问题。再者,基于智能互联的跨区域培训云平台有助于拓展教师专业学习空间。“智能+教育”模式打破了教师培训的时空局限,进一步增强了教师培训的灵活性,有助于实现跨区域的教师培训新机制,有助于打造线上线下一体化的教师培训新机制,这对于实现偏远、贫困、落后地区教师教育与发达地区协同发展具有重大意义。例如,依托统一的宁夏教育云在线互动课堂平台,宁夏尝试推进名校名师与普通教师开展线上师徒结对,组建专业成长共同体,利用在线互动课堂、名师网络工作室等,实现城乡教师“智能手拉手”。

三、人工智能赋能教师教育的现实困境

遵循前文所述的人工智能赋能教师教育的基本逻辑,本研究基于教师教育体系构建的实际现状,从课程层面、评价层面、管理层面、培训层面出发,结合对10位区域教师进修学校管理人员、教师教育领域学者、中小学校长的访谈结果,编制了“人工智能支持下的教师教育改革调查问卷”。除基本信息题项、多选题“您认为人工智能支持下的教师教育可能存在哪些问题?”之外,问卷中各题项均采用李克特五点量表形式(从非常不符合到非常符合)予以呈现。首先,选择江苏省W市90位中小学教师进行预调研施测,基于预调研样本数据,对问卷进行信效度检验。数据分析结果显示,整体量表的KMO统计值为0.95,Bartlett球形检验结果的p值<0.001,表明问卷适合进行因子分析。对整体问卷进行探索性因子分析,抽取出4个公因子,累计方差解释率达到86.26%,表明因子结构较为可靠。依据因子载荷图可知,题项A1到A4构成课程维度,题项B1到B3构成评价维度,题项C1到C4构成管理维度,题项D1到D3构成培训维度,与本研究对人工智能赋能教师教育的基本逻辑的分析框架相一致,表明问卷具有较好的结构效度,可作为正式调研问卷。

之后,基于正式调查问卷,本研究选取浙江、江苏、上海等教育与经济发达地区的中小学作为调研学校,面向中小学教师投递电子问卷,调研结束后,回收有效问卷527份。本研究利用Cronbachsalpha、CR、AVE值检验问卷信效度。整体量表的Cronbachsalpha值为0.966,各分量表的Cronbachsalpha值在0.89与0.97之间,证明问卷具有较好的内在一致性信度;验证性因子分析结果显示,各分量表的CR(组合信度)取值范围在0.79与0.86之间,表明量表的组合信度较好。各分量表的AVE值均大于0.5,表明量表的收敛效度较好。此外,验证性因子分析结果显示,模型拟合较好,RMSEA、CFI、SRMR指标均达到测量学标准(RMSEA<0.08;CFI≥0.90;SRMR<0.06)。综合上述分析结果,可知问卷通过了信效度检验。

人工智能支持下的教师教育现状的描述性分析结果如下。总体而言,人工智能支持下的教师教育现状的均值水平为3.85,除评价层面以外,各子维度(课程层面、管理层面、培训层面)的均值水平均在4以下,由此可见,当前教师对于融入人工智能的教师教育、职后培训的感知情况并未达到理想程度,人工智能在推进教师教育改进方面尚存较大空间,因此,仍需进一步探索如何利用人工智能优化区域教师教育体系,提升教师教育的有效性、针对性、科学性、智慧性。在此诉求背景下,精准分析人工智能赋能教师教育变革所面临的现实困境,则成为归纳和提炼人工智能赋能教师教育实践路向的关键之举。具体而言,本研究将进一步结合调查分析结果,围绕课程、评价、管理、培训四个方面剖析人工智能赋能教师教育的现实困境(见图1)。

图1人工智能赋能教师教育的现实困境

(一)教师教育课程体系难以适应智能时代教师专业发展

在智能时代,教师教育的内容正发生重大变革,人工智能已成为教师教育工作的得力助手,开设一系列面向教师的人工智能课程具有一定的必要性。但就我国教师教育课程体系而言,其目前尚难以适应智能时代教师专业发展。首先,在课程层面,区域教师教育课程建设缺乏较为统一且清晰的课程标准,区域教师教育的课程科目、结构和类型较为单一的现象时常出现。而且,本研究调查结果显示,55.79%的教师认为,教师教育课程内容与教师所需的智能教育素养脱节;题项“教师教育的课程内容能够满足您的实际需求”均值为3.91。由于受人、财、物等多方面资源的影响,教师教育课程理念的变革难度相对较大,即使是面对人工智能等新技术的冲击,教师教育课程建设也具有滞后性与保守性,融入人工智能教育内容的教师教育课程特色难以有效凸显。其次,在教学内容方面,目前不少地区的教师教育教材体系陈旧,教学内容未能结合智能时代所需做到有效更新。数据分析结果显示,题项“当前的教师教育课程关注如何让教师有效应用人工智能产品”及“学习教师教育课程能够提升您的智能教育胜任力”的均值水平分别为3.95与3.94,这表明教师教育课程体系与人工智能等技术知识的融合力度与成效不足。再者,在教学方面,受困于不少教师教育者、受训在职教师及师范生的技术接受与整合能力存在欠缺,教师教育课程教学缺乏具有足够信息化胜任力的教师教育师资,导致智能技术赋能教师教育课程教学的过程受到教师能力的严重制约。

(二)基于证据的教师教育质量评价有待优化

在5G、人工智能、大数据等技术的支撑下,如何构建基于证据的教师教育质量评价体系是推动人工智能时代教师教育发展的一大难题。为尽可能地减少评价过程中的标准不一与价值冲突等问题,在从事教师教育评价活动之前,需要确立相应的指导标准和价值准则。对于我国教师教育评价实践而言,基于证据的教师教育质量评价亟待进行优化,教师教育质量评价体系尚待建立健全。综合来看,我国不少地区至今仍未形成循证式的教师教育质量评价标准体系,导致我国教师教育评价活动在实践中缺乏必要的规范性与科学性,48.39%的教师认为,对于教师教育效果的多维评价有待加强。此外,我国教师教育评价普遍存在着重视运用分数、成绩等量化指标评价的倾向,仍然留有“头痛医头、脚痛医脚”碎片化的评价方式,且数据分析结果显示,题项“培训专家能够利用人工智能对您的学习效果进行分析与评价”均值为3.96,这表明人工智能尚未全方位融入循证式教师教育质量评价体系,未能充分借助人工智能等新技术立体化地搜集教师教育活动的信息从而科学全面地评价教师教育效果,进而导致教师教育评价新格局尚未完全形成。

(三)大数据赋能教师教育管理存在决策偏差

人工智能浪潮风起云涌,其与大数据之间的关系相伴而行,人工智能功能的发挥离不开数据处理与运算的支持。决策者依托人工智能的分析及预测功能,可从“基于经验的分析”转向“数据驱动决策”,这在一定程度上有助于教育管理者系统把握教师的个体诉求与行为轨迹,并据此进行信息反馈和教学激励。但需要注意的是,智能技术是一把双刃剑,在帮助实现教师教育决策科学化的同时,其也会因人技关系异化而产生一系列问题。数据分析结果显示,人工智能赋能教师教育的管理层面均值水平为3.73,表明当前人工智能在优化教师教育管理方面尚存在一定的问题及弊病。首先,人工智能算法、决策使用的数据及数据处理方式均是由“人”来创建的,不可避免带有个体主观隐含的偏见。当主观的算法设计偏见或数据处理偏见渗透到教师教育管理过程中,将会给教师教育决策带来一定的偏差与错误。其次,人工智能算法具有自主决策、学习的能力,它的设计者难以预测最终的结果,也无法完全解读它是如何得出现有结论的。因此,教师教育决策的相关主体一定程度上将会陷入算法分析结果难以解读的困境,这将削弱决策者的公信力与可信度。再者,根据数据分析结果可知,45.92%的教师认为人工智能可能无法十分准确地量化教师教育成效。处于不断完善与发展阶段的人工智能算法及其所依赖的数据很有可能具有一定的局限性,这将导致一些非数据化或难以数据化的教师教育问题被排除在决策过程之外,进而给以数据作为决策基础的教师教育决策者带来一定的决策盲区,产生大数据赋能教师教育的信息偏差现象。

(四)教师培训与智能技术的整合存在效度困境

数据质量、算法功能对人工智能应用成效影响较大,无论是数据挖掘,还是智能算法设计,均无法做到尽善尽美,数据分析结果显示,人工智能赋能教师教育的培训层面均值水平为3.64,表明人工智能在教师培训实践中的应用依然存在效度困境。首先,使用算法和预测模型对教育现象进行度量将会造成一定风险,这主要取决于计算模型和算法是否符合教育逻辑、教育过程和教育中的人是否可以被量化和计算、对教育过程的量化是否能够反映教育本真,这需要进一步反思智能技术应用于教师培训的合理性与规范性,将其应用范围限定在可控风险领域之内。其次,智能技术在教师培训中的使用效能相对较低,其在培训资源建设、助学辅导、培训成效评价等方面的应用程度受人力、物力、财力等多方面制约。调查结果显示,59.20%的教师认为,人工智能技术与教师教育的融合性不强;41.18%的教师认为,学区或学校难以投入大量资源以支持智能化教师教育体系构建;另外,42.88%的教师认为,目前人工智能支持下的教师教育指导性政策与规章尚需完善。这表明不少地区不仅缺乏具有较高智能教育素养的教师教育专家以及足够的经费支持、资源保障,而且,也缺乏人工智能赋能教师培训的指导性政策与规章,进而导致区域教师教育部门在利用智能工具开展教师培训活动时易陷入“仅加大软硬件投入”的战略误区,忽视对教师教育者技术接受与整合能力的有效训练,进而削弱了智能技术在教师培训需求满足与资源建设方面的应用空间。

四、人工智能赋能教师教育的实践路向

随着人工智能与教师教育领域的不断融合,人工智能赋能教师教育也面临着如教师教育课程体系难以适应智能时代教师专业发展、基于证据的教师教育质量评价有待优化、大数据赋能教师教育管理存在决策偏差、教师培训与智能技术的整合存在效度困境等问题。综上,为推动人工智能在教师教育领域的合理应用,人工智能赋能教师教育体系构建应关注以下实践路向。

(一)加强数字化课程建设,推进教师教育资源智能化开放共享

以往教师教育资源虽然也包括微课、短视频、精品课等信息化形式,但随着新课标的颁布与新教材的逐步使用,教师教育数字化资源动态性缺位、资源建设质量不高、资源建设区域协同性差、资源建设针对性不强等问题逐渐凸显。在人工智能时代,教师培训课程、教师研修资料等均可被表征为较易传播与计算的数字形态,教师教育资源建设应加强数字化课程建设,推进教师教育资源智能化开放共享。首先,区域教育行政管理部门、各级各类教师培训机构及中小学校应携手打造智能化区域教师教育课程资源库,立足教师群体的数字画像以及教师培训专业标准,积极利用虚拟现实、增强现实、智能云等智能技术,关注教师教学技能网络模拟实训与教育理论在线学习,充分整合微课、慕课、直播课、公开课等数字化课程资源,推动数字化教师教育课程资源系统化建设。例如,首都师范大学聚焦于人工智能时代下的教师发展,由高校导师团队设计面向教师专业发展的在线课程,师范生制作开发课程,并且在课程开设期间与在职教师开展全程陪伴式的互助共学,师范生为在职教师解答与技术应用有关的困惑,而在职教师可以为师范生在教学方面提供经验分享。其次,构建数字化教师教育课程资源监管体系。地方教育行政管理部门、学科教研员、教育督学及督导专家等多方人员应组建数字化教师教育课程资源审查小组,确保数字化教师教育课程资源开发经过开发测试、内部评价、外部评价等严格流程,应利用机器学习、数据挖掘等智能技术,及时对参训在职教师或师范生的课程资源使用记录、共享渠道与心得体会予以电子存档。再者,应创设数字化教师教育课程资源的智能推送与共享机制。地方教育行政管理部门可依托“国培计划”“区域教师发展计划”等各级各类教师教育项目,着手建立优质数字化课程资源开发与遴选机制,遴选优质数字化资源,明确数字化教师教育资源流通标准与准入门槛,利用大数据分析与智能画像技术,通过智能筛选、提取和整合教师专业学习需求信息,基于在职教师专业学习的数字画像,有针对性地为教师推送定制化课程资源。

(二)立足评价改进,构建基于证据的教师教育质量监测体系

如前文所述,在评价层面,基于证据的教师教育质量评价机制还有待完善。评价对于教师教育质量的提升来说具有导向与指引作用,随着数据智能理念的不断深化,教师教育评价愈发关注数据式证据,如何利用数据信息呈现教师教育评价证据成为热点议题。因此,有必要立足于当前教师教育评价存在的现实问题,构建基于证据的教师教育质量监测体系。一方面,应基于智能数据挖掘,构建教师教育质量监测方案。从教师教育评价主体来看,教师教育质量评价受其主观判断影响,若教师教育评价所依赖的数据信息不够客观,将导致教师教育的评价结果有失公允。因此,应基于教师教育评价的实际诉求,智能挖掘与提取师范生、职后教师、教师教育者等评价利益相关者的数据信息,建立教师管理信息化系统,构建教师学分管理机制,建立教师数据的“驾驶舱”,对教师教育过程进行精准预警与监测。另一方面,创设基于证据可视化的教师教育质量分析机制。基于大数据分析、生物信息识别、图像识别、视频分析等技术,可从教师教育投入、过程、产出、背景等方面进行教育质量观测,动态采集教师教育行为和环境信息,严格落实数据筛选、数据比较、数据整合、数据呈现等一系列证据可视化流程,及时向主管部门、教育工作者、师范生、教师公开教师教育质量观测结果,注重教师教育质量评价结果与改进方案的可视化呈现,以便进一步明确教师教育质量的改进方向与提升路径。例如,宁夏充分利用大数据支撑教师智能研修行动并建设教师教育质量监测体系,为提升教师在教学设计、课堂组织、班级管理、教育研究等方面的综合能力,将教师管理信息系统、教师继续教育网络研修等平台整合融入宁夏教育云,基于教育云平台实现对教师专业发展状态的监管、测评与干预。

(三)聚焦数智融合,优化教师教育决策偏差调节机制

如前文所述,在管理层面,大数据赋能教师教育管理存在决策偏差。以往的教师教育决策存在主观判断、决策流程过于僵直与落后、决策技术过于单一等问题,人工智能时代教师教育决策虽可实现基于证据的教师教育决策,但其并不意味着教师教育决策绝对的合理化与准确化,教师教育决策仍有可能存在偏差问题(如决策偏见、决策失误等)。因此,应聚焦数智融合,优化教师教育决策偏差调节机制。首先,应构建基于数智融合的教师教育决策咨询服务体系。以师范教育、在职培训等多种形态为主体的教师教育体系涉及多个决策主体,且以往区域层面教师教育决策可能在师范教育与在职培训对接层面存在信息鸿沟,而且区域层面可能在城乡教师发展规划方面存在决策偏差。为此,可通过创设区域教师管理与发展服务平台,动态汇聚不同决策主体的建议与反馈意见,为地方教师教育管理者改进教师发展计划、教师研修项目管理服务、教师专业发展学分银行服务等提供信息支持与路向导引。其次,应关注教师教育决策偏差诊断与调节机制的创设。人工智能时代教师教育决策不仅应体现智慧化特性,而且应秉承基于证据的科学主义取向。应提升教师教育决策者的智能教育素养与数据素养,打通教师教育利益相关者间的决策信息共享通道,及时诊断区域教师培训与研修实践的主要问题与产生根源,智能分享与整合来自地方教师发展学院或中心、教育行政管理部门及高校教师教育基地的反馈信息,构建协同化地方教师教育决策咨询服务体系,有效提升区域教师教育决策的科学化和民主化。

(四)关注智能研修,创设基于分层分类的精准化教师培训体系

如前文所述,在培训层面,教师培训与智能技术的整合存在效度困境。以往师资培训一般采用讲座、讨论、观摩、进修、线上刷课等多种方式,但大多数培训方式属于短期行为,难以长期针对特定教师群体(如位处偏远的农村地区教师)开展教师专业培训。人工智能赋能教师网络研修平台与模式创建为教师终身学习与持续发展提供了重要支持。由此,为进一步推进人工智能赋能教师教育,满足不同类型教师群体的学习诉求,加快教师队伍数字化建设进程,推动教师数字化发展,有必要关注智能研修,创设基于分层分类的精准化教师培训体系。首先,教师培训部门或机构应着手建立研修专区,组建区域智能研修共同体,对参与在线研修的教师群体进行合理分类,以研修问题与实践案例为抓手,满足不同类别、层次、岗位的教师需求。教师教育者应基于教师研修数据进行智能追踪,尝试捕捉不同类型(如农村教师、城镇教师)、不同层次(如教学新秀、教学骨干、教学专家)教师参与智能研修的学习需求,以便构建线上与线下、必修与选修相融通的精准化教师研修模式。其次,应注重探索建立基于分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。最后,应基于大数据融合,探索建立分层分类的教师发展测评系统,创设智能化教师培训成效评价模式。具体而言,应关注教师在学科、年龄、教龄等方面的实质性发展差异,评价方案的设计与实施应关注教师发展的过程性与阶段性数据的提取与筛选。也应着重提升教师教育者的信息化评价素养与智能技术胜任力,尝试通过教师个体发展画像的智能分析与评价,为受训教师后续的专业学习以及教师教育者的教学实践提供改进方向。

五、结语与展望

关于华南师范大学|统一认证|移动平台

Copyright©2023SouthChinaNormalUniversity.AllRightsReserved|华南师范大学版权所有

华南师范大学

人工智能技术给教育行业带来哪些主要影响?

现如今,人工智能技术对社会各个领域日益产生深远的影响,教育领域也不例外。在这一领域,人工智能技术的进步为教学和学习带来了新的可能性和挑战,甚至有可能从根本上改变教育治理和教育机构的内部架构。人工智能技术虽然会对教育行业产生影响,但绝对不会像线上电商颠覆传统零售那样剧烈。从目前情况来看,人工智能技术对教育的影响主要体现在以下几个方面:

人工智能技术可实现“个性化”教学

人工智能技术影响教育的关键方法之一,是为学生提供个性化学习。通过自适应学习程序、游戏和软件等系统响应学生的需求,全过程搜集学生的学习数据,通过分析这些数据,最后向学生推荐个性化的学习方案。尤其是基于人工智能的自适应学习系统,帮助学校和老师提供个性化的教学,同时帮助学生提高学习效率,激发学习兴趣。

以中国“科大讯飞”为例,目前主要通过三个步骤打造以学生为中心的课堂,实现个性化学习:首先对每一个学科,构建学科知识图谱;然后通过学科的知识图谱分析每一位学生的学习情况,让每一位学生的学习情况可视化;最后给相应学生推荐个性化的学习资源。人工智能赋能之下,学校实现了个性化教与学,课堂得到有效延伸;通过师生的共同努力,在教学质量上实现突破。

人工智能技术可重复学生没有掌握的内容,并且帮助学生按照自己的节奏学习,比如美国“可汗学院”可根据每个人的学习状况自主设计学习进程。这种定制教育可帮助不同学习水平的学生在一个教室中一起学习,教师可在需要时促进学习并提供帮助和支持。该学院下一个目标是,在未来的几年内制作出从幼儿园到高中的所有课程,以及部分大学课程,如计算机科学和电子工程等。每个人学习的处境和内容不同,所以我们不仅要因材施教,而且要因时、因地施教。而基于人工智能技术建立促进个性发展的教育体系,是未来教育发展的基本趋势。

人工智能技术可为学习提供指导

智能辅导系统能够理解学生喜欢的学习方式;它们还能够衡量学生已有的知识量,所有这些数据和分析都用于提供专门为该学生创建说明和支持。试验和错误是学习的关键部分,但对于许多学生来说,错误的答案会给他们挫败感,有些学生不喜欢在同龄人或老师等权威人士面前犯错,而人工智能技术可为学生提供在相对无判断的环境中进行试验和学习的方法,人工智能“导师”还可提供改进的解决方案。人工智能技术将促进教育决策的科学化和资源配置的精准化,加快形成现代化的教育公共服务体系。目前在学校的实际运用中,人工智能技术所收集的数据可为现代教育治理提供决策辅助。人工智能助手可扮演老师、辅导员、同学等虚拟人物,它们可从不同的视角,提出问题,并提供指导。

人工智能技术不仅能让学生定制课程与学习进度,还能及时为学生提供反馈;当发现学生向系统提交错误的家庭作业答案时,系统会向教师发出警报,并为学生提供正确答案的提示。这种类型的系统有助于填补课程中可能出现的空白,并有助于确保所有学生都能掌握知识,让学生立即得到反馈,帮助他们理解概念的内涵和外延。现在一些基于人工智能技术的辅导课程已经存在,这可帮助学生完成基础数学、写作和其他科目的基础知识。利用智能化的教学系统,人工智能技术也可持续的为学生提供支持和辅导,帮助他们克服困难,更快的完成学习计划及目标。

人工智能技术可改变学习方式

使用人工智能系统,学生可随时在世界任何地方学习,学生根据自己的需要安排学习时间。通过人工智能技术,学校可创建全球化的教室,学生所处的位置将不再重要。学生如果由于某种原因无法参加课程,则通过访问链接,点击该链接,加入现场教室。人工智能技术还可将全世界的学习者联系在一起,超越教室的墙壁,与其他学生、教师、作家、科学家等互动,以加强他们的学习效果。人工智能技术可促进合作学习,通过比较学生的学习者模型,而后建议处于相似认知水平或具有互补技能的参与者互相帮助,并通过分组来支持协作学习。教育最大的挑战之一是每个人的学习方式不同,人工智能系统可为每个学习者提供个性化的学习方式,使每个学生能够以最适合自己的方式学习。

英国数学家和教育理论家阿弗烈·怀特海先生在《教育的目的》一书中指出:“学生是有血有肉的人,教育的目的是为了激发和引导他们的自我发展之路。”对学生而言,人工智能技术可为学生提供一对一的辅导,真正实现了因材施教;也可打破时空的壁垒,加强学习者的交流与互动。对教师而言,“师生的交往活动是教学过程中的本质属性。”人工智能技术可减轻其重复性工作,使其有更多的时间与学生交流,培养他们的各种技能,帮助他们日后更好地融入社会。基于对学生的洞察力,人工智能技术会自动创建一条个性化的学习路径,以确保学生能够以尽可能好的方式学习并取得成功。

仅从以上三个方面可见,人工智能技术给教育带来较为显著的正面影响。然而,该技术在给教育带来有利因素的同时,也会存在相应的挑战。在人工智能技术渗透进入传统教育领域带来优势的同时,也会引发一些问题;例如人工智能技术的出现可能会导致学生被动接受已经安排好的知识,而丢失主动分析、思考的能力;也有人担心人工智能技术为教师做了太多,教师的教学水平可能会因为人工智能技术的出现而有所下降。因此,要充分认识人工智能技术的优势和它可能存在的问题,做到趋利避害,真正使人工智能技术发挥育人的作用。正如中国教育家周仪荣先生所言:科技是一把双刃剑,在它给人们带来美好的同时也带来一些麻烦;因此要合理利用科技,发挥它有利的一面,限制它不利的一面,是提高教学质量的有效途径之一。 

 

人工智能时代,教师专业发展面临哪些机遇和挑战

总之,有关人工智能对教学方式影响的研究相对丰富,不少学者对于人工智能如何影响教学颇有见地,但对于理论的完善和实践的摸索依旧“在路上”。一方面,对于人工智能和教学方式革新的逻辑与内涵有待明确。另一方面,人工智能时代教育发展的具体内涵、因果关系有待明晰。

但不可否认的是,借助人工智能可以针对学生做精准判断与个性化诊断,并为学生自主学习提供的个性化辅导,确实驱动了精准教育发展。精准教育服务有望实现日常教育与终身教育定制化。

3

教学环境的更迭——泛在学习的推进

目前讨论人工智能在金融、交通、医疗等领域的应用较多,但在教育领域则相对较少。关于人工智能与教育关系的讨论较为深入的一次也许是在“人工智能与未来教育”高峰论坛。人工智能对于教学环境的改变可在互联网对教学环境的改变上有所洞悉。

在华东师范大学袁振国教授的《人工智能的时代,依然会有诗和远方》一文中,他认为人工智能难以替代人类感知和思维的整体性与统整性,以及人的情感性与社会性。人工智能将彻底改变传统的教育,使任何人在任何地点任何时间可以学习任何的内容,即泛在教育。

泛在学习强调智能化环境的创设,目标是创设让学生随时随地利用任何终端进行学习的环境,实现以学生为中心的教育。学生在时间、空间上的自由度将是传统教育所不能及的。

目前国内外关于人工智能和泛在学习的理论相对较少,袁振国教授的研究在国内处于相对领先位置,但依旧没有形成系统的理论。泛在学习的有关观点虽具一定的合理性和前瞻性,但因为太过“年轻”,缺乏足够的说服力。

人工智能时代教师专业发展的机遇

1

教育模式之变:新师徒制,以学生为中心

在我国,“学而优则仕”的思想根深蒂固,传统的教育模式依旧有其影响。在新课程改革热潮下,中国的教育模式正在从应试教育向素质教育过渡。大数据时代,发达的网络催生了“互联网下的新师徒制”——以互联网为媒介,由某一领域的行家里手,以长期言传身教的方式,带领较大规模的徒弟们用碎片时间进行学习与实践的一种新型教育模式。它改变了传统的教育模式,实现了教育史上的一次革命。

人工智能可以通过数据分析为徒弟们匹配相应的教师,从而满足学习者的个性化需求,甚至以机器教师的身份在线为学习者提供有针对性的指导,或通过人机交互技术协助教师为学生在线答疑。此类教育模式以学生为中心,突破了传统课堂对学生的束缚,更是顺应了我国教育改革的趋势和方向。教师在专业发展过程中需主动适应人工智能时代新型教育模式,不断提升自我信息素养以顺应时代之变。

2

教学方式之变:精准教育,重视个性化学习

人工智能是通过机器学习、深度学习来工作的,而其也能相应地推动学生对知识的深度学习。可以说,个性化学习的目标是满足学生的需求和兴趣,而人工智能技术则能基于学生的个性化信息数据进行情绪识别、情感计算、自然语言处理与分析,为个性化学习提供智能支持,从而实现精准教学。常见的模式有个性分析、智能推送和精准反馈服务。未来,每个学生会像拥有智能手机一样,人手一个陪伴自己成长且能学会解决复杂而抽象问题的机器人。人工智能可以成为教师的助手,而学生则可以通过机器人辅助从而拥有“私人”教师团队。

时代在进步,21世纪的小学生与“智能”走得太近,如果教师能够全面突破传统,瞄准精准化、个性化、弹性化、融合化的变革趋向,强化“共享共创”“个性定制”“体验参与”意识,更加有利于把握人工智能时代的教育新机遇。

3

教学形态之变:泛在学习,随时随地学习

传统的学习资源分散无序、共享性差、聚合性差,而在泛在学习时代,资源深度聚合让学习变得“泛在”与即时。相比火热的在线教育,“人工智能+基础教育”的融合之路要审慎、复杂得多。随着互联网的发展及人工智能在教育上的应用,泛在学习将会真正实现。人工智能改变了教学的形态,也促使教育打破传统思想边际,加快教育教学转型,以适应新形势下的教学形态之变。

同时,人工智能可以实现教育资源的相对公平。智能教育将让更多的人享受一样的资源,得到一样的受教育权利,让更多的少年儿童在人生起跑线上不因资源的不同而被区别对待,而从这一视角上来看人工智能对于教育的改变将是革命性的。

此外,人工智能为学生构建的群体智能学习环境将能有效满足学生的学习需求,让学生适应未来的学习工作模式,甚至创造新的模式。

教师的专业发展是与具体的教学情境联系的动态的知识建构过程,如何提前适应泛在教学形态并在此情境下提升自我教学能力及教学效果,是每位教师需要思考的问题。

人工智能时代教师专业发展的挑战及应对

1

教学内容求创新,课堂教学应突破

人工智能催生了泛在学习,也将扩充教学资源。不仅教师能够接触深度聚合的教学资源,学生亦能唾手可得海量的学习资源。在这样的情况下,教师对教学内容进行创新就显得很有必要。单纯依靠书本上的“死知识”显然很难满足学生的需求,书本上原原本本的内容,学生依托人工智能便可学习。未来,人工智能时代的教育是“人性为王”的教育,教师应加强教育对德、仁、情等人性特有的东西的关注。在课堂教学中更多地关注对学生创造力、社交能力等人工智能难以代替因素的培养。

2

告别传统题海战术,探索教学新方式

受应试教育的影响,教育被许多人狭隘地理解为“刷题”,其实教育并非仅灌输知识与传授技能。知识主要依靠人的记忆力和逻辑判断力进行消化。可以说,任何一个机器人都可以记忆五万个数字,所以机器在这一点上是很容易取代传统的注重知识灌输的教育的。如果一位教师最大的兴趣就是做重复的工作,那么在效率优先的人工智能时代,他是肯定会被替代的。传统行为主义下对学生反复操练的教学方式显然在人工智能时代是立足不了的。

真正的教育过程,从来就不是师生之间单向的机械操作。教学主体不是冷冰冰的“程序载体”,而是有血有肉有思想有灵魂的人,情感交流绝对不是没有温度的人工智能能够做到的。教师应有意识地转变传统的题海战,寻求教学新方式,注重教学的艺术性,将学生放在主体地位。教师要在泛在学习大趋势下巧妙利用好教学情境,变灌输为感化,增强自身的能动性,提高效率并降低事件重复率。

3

学生反馈应重视,依托数据精滴灌

人工智能将为学生的个性化学习提供技术支持,从而推进教师精准教学的开展。人工智能时代,教师对于学生学习的认识被画上新的问号,多元学习环境下作业和考试已很难反映学生的学习全貌。人工智能所带来的数据分析技术将为教师开通对学生学习情况诊断、反馈的绿色通道。

此外,在教学中,教师对于学生学习情况的反馈与矫正是一个循环往复的过程,这就要求教师的反馈要及时、准确,而这些恰恰是人工智能所擅长的。如何应对人工智能所带来的挑战,积极利用它而不是被其取代,是每位教师需要认真思考的问题。

人工智能时代教师专业发展正受到越来越多人的关注,人们也正在致力于这方面的探索与实践。人工智能时代,教育模式、教学方式、教学形态等被重新解读,担负着教育信息化和教育改革使命的教师也应转变传统教学观念,重新定位角色,发展专业素养,从讲授者转向指导者,适应新师徒制、个性化学习、泛在学习等发展要求,思考教育的本质和内涵,重视教育过程中的情感投入,在实践和反思中不断提高教学的艺术性和创造性,拥有仁爱之心、恻隐之心,逐渐达到专业发展的目的。

(作者董瑶瑶系浙江师范大学教师教育学院博士生;李志超系浙江师范大学教师教育学院副教授)返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇