博舍

人工智能如何“向善” 人工智能五大应用领域包括哪些

人工智能如何“向善”

一段时间以来,以ChatGPT为代表的人工智能大模型搅动了全球人工智能技术发展的浪潮。从写代码到讲故事,从撰写文章到自动制作数据表格……人工智能正在给人类的工作、学习、生活带来诸多变化。

我们距离“无所不能”的通用人工智能还有多远?人工智能的发展带来哪些安全隐患和挑战?近日召开的2023北京智源大会上,来自全球的人工智能专家学者围绕相关话题展开探讨。

通用人工智能路途尚远

“想象一下,未来10年,通用人工智能(AGI)几乎在每一个领域都超过人类的专业知识,最终可能超过所有大型公司的总体生产力,这将提高人们的生活水平。”OpenAI首席执行官山姆·阿尔特曼展现了一幅人工智能的未来图景。

所谓AGI,是指能够像人类一样在各种领域进行智能任务的人工智能系统。这与目前人工智能应用只聚焦于特定任务或领域(如图像识别、语音识别、自然语言处理等)不同,对人工智能技术提出了更高要求。

“通用人工智能可以比人类更好、更快地学习和执行任务,包括人类无法处理的任务。由于机器在速度、内存、通信和带宽方面的巨大优势,未来通用人工智能几乎在所有领域都将远超人类的能力。”美国加州大学伯克利分校计算机科学教授斯图尔特·罗素说。

尽管人工智能已经有了“超越”人类的“时间表”,但在很多专家看来,目前的人工智能距离AGI还有不小的距离。

罗素认为,当下火热的大语言模型并不“理解世界”,只是通用人工智能的一块“拼图”——“我们并不了解如何将它与其他部分连接起来,甚至还有一些缺失的拼图还没有找到。”

北京智源人工智能研究院院长黄铁军指出,要实现通用人工智能,有3条技术路线:第一是大模型,通过海量高质量数据,让人工智能具备智能涌现能力;第二是具身智能,通过强化学习方法,训练出具身模型;第三是类脑智能,让机器达到或类似于人脑能力。

对于人工智能的发展,图灵奖得主、纽约大学教授杨立昆提出了“世界模型”的概念——人工智能系统可以通过这一模型理解世界的运转方式,并以最优化、成本最小的方式来行动。

加强安全治理领域国际合作

根据预测,到2030年,人工智能将创造15.7万亿美元的经济价值。人工智能为经济发展提供了重要机遇,但也引发了安全性方面的担忧和争议。

图灵奖得主、多伦多大学教授杰弗里·辛顿认为,目前的人工智能已经可以通过学习,掌握“欺骗”人类的方式。“一旦人工智能具备了‘欺骗’的能力,就有了‘控制’人类的能力。这样的超级智能可能会比预想中发生得更快。”

在通用人工智能时代到来之前,人工智能的安全风险主要来自于“人”。“我们不应该假设机器是公正的,因为机器可能会试图改变人类的行为。更准确地说,是机器的所有者想要改变其他人的行为。”图灵奖得主、中国科学院院士姚期智说,当前人工智能的发展处于重要窗口期,各国应共同合作,搭建人工智能的治理结构。

随着人工智能的本事越来越大,人工智能的“对齐”问题浮上水面。所谓“对齐”,即人工智能系统的目标要和人类的价值观与利益“对齐”,保持一致。

如何让人工智能与人类“对齐”?阿尔特曼认为,人们应当负责任地将人工智能应用到世界中,重视和管理好安全风险。他建议在人工智能技术研发过程中建立平等、统一的国际规范和标准,并通过国际合作,以可验证的方式建立人工智能系统安全开发的信任体系。

黄铁军认为,人工智能虽然会产生预料之外的新能力,但这并不意味着人类无法对人工智能进行管理。“如何管理人工智能这样一个创造性极强的系统,社会学、历史学等学科都能提供很好的借鉴意义。”

今年2月,中国在《全球安全倡议概念文件》中提出加强人工智能等新兴科技领域国际安全治理,预防和管控潜在安全风险。在此次智源大会上,专家学者积极评价中国在推动人工智能国际治理上的贡献。

阿尔特曼说,中国在人工智能领域拥有大量优秀的人才和产品系统,在人工智能的安全方面应发挥关键作用。

麻省理工学院人工智能与基础交互研究中心教授马克斯·泰格马克表示,中国在塑造全球人工智能议程上的能力日益增长,可以在人工智能安全治理领域发挥领导作用。

推动大模型共建共享

当下,全球人工智能领域的科技竞赛日趋白热化。2023中关村论坛上发布的《中国人工智能大模型地图研究报告》显示,全国已发布了79个参数在10亿规模以上的人工智能大模型。

从全球来看,中国和美国已发布的大模型数量超过全球总数的80%。中国自2020年起进入大模型快速发展期,在大模型方面已建立起涵盖理论方法和软硬件技术的体系化研发能力,形成了紧跟世界前沿的大模型技术群,涌现出多个具有行业影响力的预训练大模型。

在此次大会上,全面开源的智源“悟道3.0”系列大模型及算法正式发布。据了解,“悟道3.0”涵盖了一系列领先成果,包括“悟道·天鹰”(Aquila)语言大模型系列、天秤(FlagEval)开源大模型评测体系与开放平台,“悟道·视界”视觉大模型系列以及一系列多模态模型成果等。

黄铁军认为,人工智能大模型有3个特点:一是规模大;二是有“涌现性”,即能够产生预料之外的新能力;三是通用性,不限于解决专门问题或者专门领域。他表示,大模型不是任何一家机构或者一家公司垄断的技术,应当共建共享,推出一套智力社会所需的基础的算法体系。

(来源:《人民日报海外版》;编辑:高逸昕;审核:林超)

【科普】人工智能全面介绍

本文主要内容

一、人工智能是什么?

二、人工智能包含哪些领域?(应用层,技术层,基础层介绍)

三、人工智能的岗位有哪些?

四、人工智能学习哪些内容?

五、适合哪些人学习?

六、学出来对不同岗位有什么帮助?

一、人工智能是什么?

人工智能是一门利用计算机模拟人类智能行为科学的统称,它涵盖了训练计算机使其能够完成自主学习、判断、决策等人类行为的范畴。

例如:人工智能的图像识别,模拟的是人的视觉能力,语音识别模拟的是人的语言表达能力····,“人工智能”并不属于一门单独的技术,属于交叉学科,同时可以跟各个行业进行结合。

大家在网站上所看到的像自动驾驶、工业机器人、智能翻译、人脸识别的门禁等属于AI的应用场景,已经结合了产品后完成的AI应用。

二、人工智能包含哪些领域?(应用层,技术层,基础层介绍)

上图为人工智能的产业结构图。

   第一,应用层:属于场景行业+AI,如智能医疗、智能安防、智慧教育,智能工厂智能家居等,可以将AI应用到所在行业,同时应用层也是产品经理和项目经理的主战场;

   第二,技术层:AI的技术层,主要研究通用技术,如图像识别、语音识别、文本识别、自然语言处理等通用技术;其中AI的通用技术离不开机器学习(ML)和深度学习(DL),下文有关于机器学习和深度学习的详细介绍;

   第三,基础层:主要做芯片、云计算、框架等方向。

   从人工智能的底层平台需求出发,构建完整的从人工智能计算平台的硬件单元研发、数据治理、AI建模再到平台部署的人工智能的“基础设施”,基础层主要布局一些PaaS形态的基础计算平台和算法平台供其他公司直接调用,减少其他公司的人工智能研发成本和周期。

三、人工智能的岗位有哪些?

根据人工智能的产业结构,所以不同层都会有不同的岗位,具体如下:

第一,应用层岗位:AI项目经理、AI产品经理、AI售前解决方案工程师、智能硬件解决方案工程师、AI产品销售、传统制造,电力,化工燃气等行业+AI······

应用层属于PM岗的主战场,普遍薪资在25-50w之间,比普通PM岗位普遍高出30%-50%左右薪资。

第二,技术岗位:机器学习算法工程师、深度学习算法工程师、推荐算法工程师、自动驾驶算法工程师、语音识别工程师、图像识别工程师、NLP自然语言处理工程师、AI技术管理、AI高级研发工程师等······

技术层岗位起步薪资30-60w之间,且对年龄没有限制。

第三,基础层:属于岗位+AI,例如当下大数据开发工程师是要求懂AI机器学习算法,高级数据分析要求懂AI的机器学习,智慧IC,智能芯片等相关岗位······

第四,衍生岗位,即人工智能行业发展后衍生出来的以往从未有过的行业,像机器人训练营,智能手臂工程师,工业机器人系统操作员,服务机器人应用技术员等,是这两年新出现的岗位,大部分岗位对学历要求不高,同时一二线城市甚至三四线城市都会有。

四、人工智能学习哪些内容?

(1)Python提到人工智能就一定会提到Python,python是一门编程语言,在AI算法实现当中扮演中工具的角色,如果你本身有其他的编程语言也会有优势的。(2)数学主要教授的大学期间的高数,线性代数,数学需要配合着项目来学习,不然你会觉得比较枯燥,像人脸识别的产品,单独开发出来这个AI人脸识别的产品,精准度89%和99%所用的算法模型和数学公式就有不同,所以需要配合着场景来学习(3)机器学习机器学习(MachineLearning,ML),机器学习在公司当中处理的是结构化数据,(结构化数据也就是有行列序列之分的,比较容易能找到规律)是人工智能的核心,属于人工智能的一个分支。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。简单来讲:机器学习是类似于教孩子认字,第一次见不了解,但是大批量的这个字长得一样,我逐渐就认识这个字了。(4)深度学习深度学习(DeepLearning)是机器学习的一种新方法,深度学习在公司当中处理的是非结构化数据,(非结构化数据也就是不容易找到规律的数据,例如图片、音频等)它使用包含复杂结构或由多重非线性变换构成的多个处理器(神经网络)对数据进行高层抽象的算法。其机动在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像、声音,文本。深度学习的过程分为训练和推理(即评估)两个过程,通过训练过程来获得数据模型,然后用于评估新的数据。简单来讲:深度学习就是模拟的人的大脑,让机器有自主学习的意识了。

以上是关于机器学习和深度学习相关的介绍。

五、适合哪些人学习?

第一,突破薪资发展,在保持原有岗位上的业务能力的同时突破瓶颈薪资,普遍能上涨30%-50%的薪资;

第二,岗位转型,从传统软件开发岗位、PM岗位、技术管理岗位转型成为AI的PM岗位、AI的算法工程师,以及人工智能的团队管理;

第三,数字化转型公司,目前所面临的公司转型的现况,学习AI可以解决原有行业当中的痛点问题,借力AI做降本增效等问题;

第四,入职就业,面对疫情后内卷的市场,公司中对于技术人员要求更高了,学习后会有专业的就业老师进行简历指导内推企业,增加入职企业成功率。

六、学出来对不同人有什么帮助?

(一)技术管理岗位年薪30w上涨到50w,负责AI技术团队;

(二)技术岗位转型AI算法,年薪60w;

(三)PM转型AI项目经理、AI产品经理,年薪40w;

(四)失业零基础学员提升AI转行就业,月薪18k

(五)数据分析岗位提升AI,上涨7k月薪

(六)刚毕业学生学习AI,就业年薪30w

不同的行业和不同岗位学习AI的需求是不同的,自己的岗位结合AI后具体的薪资可以一键三连查询!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇