博舍

人工智能是什么 人工智能的概念及应用是什么

人工智能是什么

人工智能是什么?欢迎大家迈入人工智能的大门1.人工智能的定义2.人工智能的话题3.人工智能的四大技术分支4.人工智能的主要应用领域5.人工智能的三种形态5.1.弱人工智能到强人工智能有多难?5.2.弱人工智能的前进方式5.3.强人工智能到超级人工智能之路5.4.智能爆炸——强人工智能时代微信公众号同步欢迎大家迈入人工智能的大门

  人工智能(ArtificialIntelligence,AI)是当前全球最热门的话题之一,是21世纪引领世界未来科技领域发展和生活方式转变的风向标,人们在日常生活中其实已经方方面面地运用到了人工智能技术,比如网上购物的个人化推荐系统、人脸识别门禁、人工智能医疗影像、人工智能导航系统、人工智能写作助手、人工智能语音助手等等。目前有大量群体对人工智能的定义、原理、分类、应用产生了极大地兴趣,可是网上媒体发布的一些资料信息大多具有极强的偏向性和导向性,很少有客观全面的总结。在这里,我做了一个详细的“人工智能图解笔记”,从人工智能的定义、分类和发展路径等角度,给大家展示了一个全面的人工智能图谱。

1.人工智能的定义

  人工智能的定义主要有以下几种:

人工智能的一种定义:《人工智能,一种现代的方法》笔记:人工智能是类人思考、类人行为,理性的思考、理性的行动。人工智能的基础是哲学、数学、经济学、神经科学、心理学、计算机工程、控制论、语言学。人工智能的发展,经过了孕育、诞生、早期的热情、现实的困难等数个阶段;人工智能的另一种定义:人工智能是研究、开发用于模拟、延伸和扩展人的智能理论、方法、技术及应用系统的一门新的技术科学,它是计算机科学的一个分支;人工智能是一门什么科学?:人工智能科学的主旨是研究和开发出智能实体,‍‍在这一点上它属于工程学。工程的一些基础学科自不用说‍‍,数学、逻辑学、归纳学、统计学,‍‍系统学、控制学‍‍、工程学、计算机科学‍‍,还包括对哲学、心理学、生物学、神经科学、认知科学‍‍、仿生学‍‍、经济学‍‍、语言学‍‍等其它学科的研究‍‍,可以说‍‍这是一门‍‍集数门学科精华的‍‍尖端学科中的尖端学科——因此说人工智能是一门综合学科。‍

2.人工智能的话题

  人工智能的话题有且不限于以下几种:

我们总是把人工智能和电影想到一起:星球大战、终结者、2001:太空漫游等等,电影是虚构的,那些电影角色也是虚构的,所以我们总是觉得人工智能缺乏真实感;人工智能是个很宽泛的话题:从手机上的计算器到无人驾驶汽车,到未来可能改变世界的重大变革,人工智能可以用来描述很多东西,所以人们会有疑惑;我们日常生活中已经每天都在使用人工智能:生活中很多互联网工具已经是人工智能了,只是我们没意识到,或者已经习惯了而已。JohnMcCarthy在1956年最早使用的人工智能(ArtificialIntelligence)这个词,他总是抱怨“一旦一样东西用人工智能实现了,人们就不再叫它人工智能了。”;一些场景的弱人工智能例子:谷歌,一个巨大的搜索热人工智能;智能手机,弱人工智能系统;智能汽车,很多已经安装了控制汽油渗入,控制防抱死系统的电脑等;垃圾邮箱过滤器也是经典的弱人工智能。

3.人工智能的四大技术分支

  人工智能的四大技术分支如下所示:

模式识别:是指对表征事物或者现象的各种形式(数值的文字、逻辑的关系等等)信息进行处理分析,以及对事物或现象进行描述分析分类解释的过程,例如汽车车牌号的辨识,涉及到图像处理分析等技术;机器学习:研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构是指不断完善自身的性能,或者达到操作者的特定要求;数据挖掘:知识库的知识发现,通过算法搜索挖掘出有用的信息,应用于市场分析、科学探索、疾病预测等等;智能算法:解决某类问题的一些特定模式算法,例如我们最熟悉的最短路径问题,以及工程预算问题等等。

4.人工智能的主要应用领域

  人工智能的主要应用领域有哪些呢?

机器人领域:人工智能机器人,如PET聊天机器人,它能理解人的语言,用人类语言进行对话,并能够用特定传感器采集分析出现的情况、调整自己的动作来达到特定的目的;语音识别领域:该领域其实与机器人领域有交叉,设计的应用是把语言和声音转换成可进行处理的信息,如语音开锁(特定语音识别)、语音邮件以及未来的计算机输入等方面;图像识别领域:利用计算机进行图像处理、分析和理解,以识别各种不同模式的目标和对象的技术,例如人脸识别、汽车牌号识别等等;专家系统:具有专门知识和经验的计算机智能程序系统,后台采用的数据库,相当于人脑具有丰富的知识储备,采用数据库中的知识数据和知识推理技术来模拟专家解决复杂问题。

5.人工智能的三种形态

  人工智能具体有哪三种形态呢?

弱人工智能:弱人工智能(ArtificialNarrowIntelligence,ANI)是擅长与单个方面的人工智能,比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上存储数据,它就不知道怎么回答你了;强人工智能:强人工智能(ArtificialGeneralIntelligence,AGI),是人类级别的人工智能,强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能要难得多,我们现在还做不到。LindaGottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念,快速学习和从经验中学习等操作”。强人工智能在进行这些操作时,应该和人类一样得心应手;超人工智能:超人工智能(ArtificialSuperIntelligence,ASI),牛津哲学家,知名人工智能思想家NickBostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科技创新、通识和社交技能”。超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍,超人工智能也正是为什么人工智能这个话题这么火热的缘故,同样也是为什么永生和灭绝这两个词会在本文中多次出现。

5.1.弱人工智能到强人工智能有多难?

  弱人工智能已经实现了,强人工智能还有一段路要走。那么目前究竟遇到了哪些困难呢?

一个大困难:人类的大脑是我们所知宇宙中最复杂的东西,至今我们都还没完全搞清楚;可以简单解决的:可简单解决的造一个能在瞬间算出10位数乘法的计算器;目前比较难以解决的:选一个能分辨出一个动物是猫还是狗的计算机;已经成功的:造一个能战胜世界象棋冠军的电脑;还没做出来的:谷歌目前花了几十亿美元在做一个能够读懂六岁小朋友的图片书中的文字,并且了解那些词汇意思的电脑;逻辑容易感知难:一些我们觉得困难的事情——微积分,金融市场策略、翻译等等,对于电脑来说都太简单了;而且我们觉得容易的事情——视觉、动态、转移、直觉——对电脑来说太难了;计算机科学家DonaldKnuth:人工智能已经在几乎所有需要思考的领域超过了人类,但是在那些人类和其它动物不需要思考就能完成的事情上还差得很远;人工智能的一个典型目标例子:要想达到人类级别的智能电脑,电脑必须要理解更高深的东西,比如微小的脸部表情变化,开心、放松、满足、满意、高兴这些类似情绪间的区别,以及为什么《布达佩斯大饭店》是好电影,而《富春山居图》是烂电影。

5.2.弱人工智能的前进方式

  弱人工智能已经实现了,强人工智能还有一段路要走。那么目前究竟遇到了哪些困难呢?

第一步:增加电脑处理速度:要达到强人工智能,肯定要满足的就是电脑硬件的运算能力,如果一个人工智能要像人脑一般聪明,他至少要能达到人脑的运算能力。从人脑的发展速度来看,预计到了2025年就能花1000美元买到可以和人脑运算速度抗衡的电脑了;第二步:让电脑变得更智能:抄袭人脑,参考人脑范本做一个复杂的人工神经网络,科学界正在努力逆向工程人脑,来理解生物进化是怎么造出这个神奇的东西的,乐观的估计是我们在2030年之前能够完成这个任务,我们已经能模拟小虫子的大脑了,蚂蚁的大脑也不远了,接着就是老鼠的大脑,到那时模拟人类大脑就不是那么不现实的事情了;模仿生物演化,除了抄袭人了,也可以像制造飞机、模拟小鸟那样模拟类似的生物形式。不全部复制,包括部分人工的设计干预,因为人类主导的演化会比自然快很多很多,但是我们依然不清楚这些优势是否能使演化模拟成为可行的策略。让电脑来解决这些问题,如果抄学霸的答案和模拟学霸备考的方法都走不通,那就干脆让考题自己解答自己吧。这种想法很无厘头,却是最有希望的一种。总的思路是我们建造一个能进行两项任务的电脑——研究人工智能和修改自己的代码,这样他就不只能改进自己的架构了,我们直接把电脑变成了电脑科学家,提高电脑的智能就变成了电脑自己的任务,前期会很慢,但一旦上路,后面会飞速发展。

5.3.强人工智能到超级人工智能之路

  从强人工智能到强人工智能,还有哪些需要改进和增强的地方呢?

发展的观点:总有一天,我们会造出和人类智能相当的强人工智能电脑。到了这个时候,人工智能不会停下来,考虑到强人工智能之于人脑的种种优势,人工智能只会在“人类水平”这个节点做短暂的停留,然后就会开始大踏步向超人类级别的智能走去;超级人工智能比人类牛逼的地方:硬件上,运算速度往着几何级的速度增长;容量和存储空间也会迅速提升,远超人类,而且不断拉开距离;可靠性、持续性,不会疲惫,能持续不断的思考;软件上,可编辑性、升级性,以及更多的可能性。和人脑不同,电脑软件可以进行更多的升级和修正,并且很容易做测试,另外一个则是集体能力,人类的集体智能是我们统治其它物种的重要原因之一,而电脑在这方面比我们要强得很多,一个运行特定程序的人工智能网络能够经常在全球范围内自我同步,这样一台电脑学到的东西会立刻被其它所有电脑学得,而电脑集群可以共同执行同一个任务,因为异见、动力、自利这些人类特有的东西未必会出现在电脑身上。

5.4.智能爆炸——强人工智能时代

  如果强人工智能时代来临,地球将是一幅怎样的景象呢?

人类统治地球观:人类对于地球的统治教给我们一个道理——智能就是力量,也就是说一个超人工智能,一旦被创造出来,将是地球有史以来最强大的东西,而所有生物,包括人类都只能屈居于其下——而这一切有可能在未来几十年就发生。当一个超人工智能出生的时候,对我们来说,就像一个全能的上帝降临地球一般;递归的自我改进概念:一个运行在特定智能水平的人工智能,比如说脑残人类水平,有自我改进的机制,当它完成一次自我改进后,她比原来更加聪明了,我们假设它到了爱因斯坦水平,而这个时候它继续进行自我改进,然而现在它有了爱因斯坦水平的智能,所以这次改进会比上一次更加容易,效果也更好。第二次的改进使它比爱因斯坦还要聪明很多,但它接下来的改进进步更加明显。如此反复,这个强人工智能的智能水平越长越快,直到它达到了超人工智能的水平——这就是智能爆炸,也是加速回报定律的终极体现;当人工智能达到人类水平:以下的情景可能会发生:一个人工智能系统,花了几十年时间到达了人类脑残智能水平,而这个节点发生的时候,电脑对于世界的感知大概和一个四岁小孩一般;而这个节点后一个小时,电脑立马推导出了统一广义相对论和量子力学的物理理论;而在这之后一个半小时,这个超人工智能变成了超人工智能,智能达到了普通人类的17万倍;科技大佬警惕人工智能的原因:现在很多科技大佬包括科学家都在提出警惕人工智能,要建立和完善法律法规,目的就是担心未来人类会因此毁灭。那些在我们看来超自然的只属于全能的上帝的能力,对于一个超人工智能来说,可能就像按下一个电灯开关那么简单,防止人类衰老、治疗各种不治之症、解决世界饥荒、甚至让人类永生、操纵气候来保护地球未来什么的,这一切都将变得可能,同样可能的是地球上所有生命的终结。微信公众号同步

  小编在这里通知大家,关注微信公众号“机器学习和人工智能”,干货多多~  我们会定期推送Python编程,人工智能基础算法,学术界、工业界最新动态,让更多的人了解人工智能~  欢迎扫描下方二维码关注哈~

AI技术说:人工智能相关概念与发展简史

作为近几年的一大热词,人工智能一直是科技圈不可忽视的一大风口。随着智能硬件的迭代,智能家居产品逐步走进千家万户,语音识别、图像识别等AI相关技术也经历了阶梯式发展。如何看待人工智能的本质?人工智能的飞速发展又经历了哪些历程?本文就从技术角度为大家介绍人工智能领域经常提到的几大概念与AI发展简史。

一、人工智能相关概念

1、人工智能(ArtificalIntelligence,AI):就是让机器像人一样的智能、会思考,是机器学习、深度学习在实践中的应用。人工智能更适合理解为一个产业,泛指生产更加智能的软件和硬件,人工智能实现的方法就是机器学习。

2、数据挖掘:数据挖掘是从大量数据中提取出有效的、新颖的、有潜在作用的、可信的、并能最终被人理解模式(pattern)的非平凡的处理过程。

数据挖掘利用了统计、机器学习、数据库等技术用于解决问题;数据挖掘不仅仅是统计分析,而是统计分析方法学的延伸和扩展,很多的挖掘算法来源于统计学。

3、机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,机器学习是对能通过经验自动改进的计算机算法的研究。

机器学习是建立在数据挖掘技术之上发展而来,只是数据挖掘领域中的一个新兴分支与细分领域,只不过基于大数据技术让其逐渐成为了当下显学和主流。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。

4、深度学习(DeepLearning):是相对浅层学习而言的,是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习的概念源于人工神经网络的研究。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

到了当下,经过深度学习技术训练的机器在识别图像方面已不逊于人类,比如识别猫、识别血液中的癌细胞特征、识别MRI扫描图片中的肿瘤。在谷歌AlphaGo学习围棋等等领域,AI已经超越了人类目前水平的极限。

为了方便大家理解,我们将上文提到的四个概念的关系用下图表示。需要注意的是,图示展现的只是一种大致的从属关系,其中数据挖掘与人工智能并不是完全的包含关系。

二、人工智能发展历史

(图片来源于网络)

由图可以明显看出DeepLearning从06年崛起之前经历了两个低谷,这两个低谷也将神经网络的发展分为了几个不同的阶段,下面就分别讲述这几个阶段。

1、第一代神经网络(1958-1969)

最早的神经网络的思想起源于1943年的MP人工神经元模型,当时是希望能够用计算机来模拟人的神经元反应的过程,该模型将神经元简化为了三个过程:输入信号线性加权,求和,非线性激活(阈值法)。如下图所示:

1958年Rosenblatt发明的感知器(perceptron)算法。该算法使用MP模型对输入的多维数据进行二分类,且能够使用梯度下降法从训练样本中自动学习更新权值。1962年,该方法被证明为能够收敛,理论与实践效果引起第一次神经网络的浪潮。

1、第二代神经网络(1986~1998)

第一次打破非线性诅咒的当属现代DeepLearning大牛Hinton,其在1986年发明了适用于多层感知器(MLP)的BP算法,并采用Sigmoid进行非线性映射,有效解决了非线性分类和学习的问题。该方法引起了神经网络的第二次热潮。

1989年,RobertHecht-Nielsen证明了MLP的万能逼近定理,即对于任何闭区间内的一个连续函数f,都可以用含有一个隐含层的BP网络来逼近该定理的发现极大的鼓舞了神经网络的研究人员。

同年,LeCun发明了卷积神经网络-LeNet,并将其用于数字识别,且取得了较好的成绩,不过当时并没有引起足够的注意。

值得强调的是在1989年以后由于没有特别突出的方法被提出,且神经网络(NN)一直缺少相应的严格的数学理论支持,神经网络的热潮渐渐冷淡下去。

1997年,LSTM模型被发明,尽管该模型在序列建模上的特性非常突出,但由于正处于NN的下坡期,也没有引起足够的重视。

3、统计学建模的春天(1986~2006)

1986年,决策树方法被提出,很快ID3,ID4,CART等改进的决策树方法相继出现。

1995年,线性SVM被统计学家Vapnik提出。该方法的特点有两个:由非常完美的数学理论推导而来(统计学与凸优化等),符合人的直观感受(最大间隔)。不过,最重要的还是该方法在线性分类的问题上取得了当时最好的成绩。

1997年,AdaBoost被提出,该方法是PAC(ProbablyApproximatelyCorrect)理论在机器学习实践上的代表,也催生了集成方法这一类。该方法通过一系列的弱分类器集成,达到强分类器的效果。

2000年,KernelSVM被提出,核化的SVM通过一种巧妙的方式将原空间线性不可分的问题,通过Kernel映射成高维空间的线性可分问题,成功解决了非线性分类的问题,且分类效果非常好。至此也更加终结了NN时代。

2001年,随机森林被提出,这是集成方法的另一代表,该方法的理论扎实,比AdaBoost更好的抑制过拟合问题,实际效果也非常不错。

2001年,一种新的统一框架-图模型被提出,该方法试图统一机器学习混乱的方法,如朴素贝叶斯,SVM,隐马尔可夫模型等,为各种学习方法提供一个统一的描述框架。

4、快速发展期(2006~2012)

2006年,深度学习(DL)元年。是年,Hinton提出了深层网络训练中梯度消失问题的解决方案:无监督预训练对权值进行初始化+有监督训练微调。其主要思想是先通过自学习的方法学习到训练数据的结构(自动编码器),然后在该结构上进行有监督训练微调。但是由于没有特别有效的实验验证,该论文并没有引起重视。

2011年,ReLU激活函数被提出,该激活函数能够有效的抑制梯度消失问题。

2011年,微软首次将DL应用在语音识别上,取得了重大突破。

5、爆发期(2012~至今)

2012年,Hinton课题组为了证明深度学习的潜力,首次参加ImageNet图像识别比赛,其通过构建的CNN网络AlexNet一举夺得冠军,且碾压第二名(SVM方法)的分类性能。也正是由于该比赛,CNN吸引到了众多研究者的注意。

AlexNet的创新点:

(1)首次采用ReLU激活函数,极大增大收敛速度且从根本上解决了梯度消失问题;

(2)由于ReLU方法可以很好抑制梯度消失问题,AlexNet抛弃了“预训练+微调”的方法,完全采用有监督训练。也正因为如此,DL的主流学习方法也因此变为了纯粹的有监督学习;

(3)扩展了LeNet5结构,添加Dropout层减小过拟合,LRN层增强泛化能力/减小过拟合;

(4)首次采用GPU对计算进行加速。

结语:作为21世纪最具影响力的技术之一,人工智能不仅仅在下围棋、数据挖掘这些人类原本不擅长的方面将我们打败,还在图像识别、语音识别等等领域向我们发起挑战。如今,人工智能也在与物联网、量子计算、云计算等等诸多技术互相融合、进化,以超乎我们想象的速度发展着。而这一切的发生与演变,只用了几十年的时间……

人工智能技术应用的领域主要有哪些

随着智能家电、穿戴设备、智能机器人等产物的出现和普及,人工智能技术已经进入到生活的各个领域,引发越来越多的关注。那么,人工智能目前都应用在哪些领域,运用了怎样的技术原理呢?

什么是人工智能?

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。曾经有很多人戏称,人工智能就像一列火车,你苦苦期盼,它终于来了,然后它呼啸而过,把你抛在身后。虽然这是一种笑谈,但也反应了人工智能技术发展的迅速和无法想象的快,可能一个不小心,你就被远远甩在身后。

##人工智能技术的细分领域有哪些?人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。

1、深度学习

深度学习作为人工智能领域的一个应用分支,不管是从市面上公司的数量还是投资人投资喜好的角度来说,都是一重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师李世石。百度的机器人“小度”多次参加最强大脑的“人机大战”,并取得胜利,亦是深度学习的结果。

深度学习的技术原理:

1.构建一个网络并且随机初始化所有连接的权重;2.将大量的数据情况输出到这个网络中;3.网络处理这些动作并且进行学习;4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重;5.系统通过如上过程调整权重;6.在成千上万次的学习之后,超过人类的表现;

2、计算机视觉

计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被支付宝或者网上一些自助服务用来自动识别照片里的人物。同时在安防及监控领域,也有很多的应用……

计算机视觉的技术原理:

计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

3、语音识别

语音识别技术最通俗易懂的讲法就是语音转化为文字,并对其进行识别认知和处理。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。

语音识别技术原理:

1、对声音进行处理,使用移动窗函数对声音进行分帧;2、声音被分帧后,变为很多波形,需要将波形做声学体征提取,变为状态;3、特征提起之后,声音就变成了一个N行、N列的矩阵。然后通过音素组合成单词;

4、虚拟个人助理

说到虚拟个人助理,可能大家脑子里还没有具体的概念。但是说到Siri,你肯定就能立马明白什么是虚拟个人助理。除了Siri之外,Windows10的Cortana也是典型代表。

虚拟个人助理技术原理:(以Siri为例)

1、用户对着Siri说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息;2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器;3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。总而言之,Siri等虚拟助理软件的工作原理就是“本地语音识别+云计算服务”。

5、语言处理

自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言通信。

语言处理技术原理:

1、汉字编码词法分析;2、句法分析;3、语义分析;4、文本生成;5、语音识别;

6、智能机器人

智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。

智能机器人技术原理:

人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。

智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。7、引擎推荐

不知道大家现在上网有没有这样的体验,那就是网站会根据你之前浏览过的页面、搜索过的关键字推送给你一些相关的网站内容。这其实就是引擎推荐技术的一种表现。

Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。

引擎推荐技术原理:

推荐引擎是基于用户的行为、属性(用户浏览网站产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。快速推荐给用户信息,提高浏览效率和转化率。

关于人工智能的展望

除了上面的应用之外,人工智能技术肯定会朝着越来越多的分支领域发展。医疗、教育、金融、衣食住行等等涉及人类生活的各个方面都会有所渗透。

当然,人工智能的迅速发展必然会带来一些问题。比如有人鼓吹人工智能万能、也有人说人工智能会对人类造成威胁,或者受市场利益和趋势的驱动,涌现大量跟人工智能沾边的公司,但却没有实际应用场景,过分吹嘘概念。

转自:http://www.arduino.cn/thread-45848-1-1.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇