构建人工智能未来法治体系
核心阅读
任何技术都是双刃剑,人工智能也不例外。在享受最新技术带来的便利时,不能忽视与之相关的安全问题。要用法治为人工智能产业健康发展保驾护航,让人工智能服务造福人类社会。
从智伴机器人到自动驾驶汽车,再到法院庭审中的智能语音识别,近年来,人工智能已逐渐进入人们的日常生活。
“深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”今年政府工作报告让人工智能产业看到了前进的方向。
在人工智能迅猛发展的进程中,关于可能引发的道德伦理问题,可能带来的社会治理问题争议不断。
推动新一代人工智能健康发展,法治应该有哪些作为,或者说人工智能产业健康发展到底需要怎样的法治保障?近日,《法制日报》记者采访了人工智能产业领域、法律界的相关代表、委员,以及人工智能法律研究的相关专家学者。
人工智能发展亟需立法保障
几天前,全球首例无人车致死案宣判,Uber公司不承担刑事责任,再次引发了公众对人工智能发展中法律问题的热议。
“如何推动法律体系与时俱进,尽快满足人工智能产业飞速发展和社会进步的需要,这对法治带来了很大挑战。”全国人大代表、科大讯飞董事长刘庆峰说。
与刘庆峰观点一致,在记者采访的代表委员中,无一例外都提出应加快人工智能立法工作。
全国人大代表、中华全国律协副会长刘守民认为,立法一方面要对人工智能发展做引领,另一方面也要规制如发展目标、路径和阶段。但由于人工智能发展飞快,立法往往跟不上发展速度。
关于法律滞后,全国人大代表、重庆盼达汽车租赁有限公司党支部书记、总经理高钰有不同看法:前沿的技术变革和创新的商业模式带来的不确定性,也决定了相关的立法工作会有滞后性。
“但新生事物并非排斥法律法规的制约,相反,法律对于新兴商业模式和技术创新的有效规范和制约能更好地引导企业、行业健康有序发展。”高钰说。
由于人工智能涉及的领域众多,不同领域涉及的立法也存在差异。因此,全国人大代表、北京市律师协会会长高子程建议,前期可在重点领域,比如交通、医疗等先行试点专门立法,待总结经验后再进行综合系统立法。
全国人大代表、致公党上海市委专职副主委邵志清也有类似的建议:“由于涉及面太宽,社会对人工智能的认识还处于初步阶段,目前对人工智能进行综合立法的条件还不具备。但是为了防范重大风险,需要针对人工智能的具体应用进行立法。”
对于立法到底应该从哪些方面进行,基于自己的专业实践,受访者都有不同的认知。
刘庆峰指出,算法、算料(数据)、算力是人工智能技术发展的重要支点,需要有针对性地予以立法规制。
而在高子程看来,还应立法应明确规定人工智能的法律地位、人工智能生成内容的权利归属、人工智能损害后果的责任分担、人工智能风险的法律控制等亟待解决的内容。
邵志清告诉记者,人工智能应用的管理应该重点围绕伦理道德、资源获取、主体认定、行为认定、责任划分等方面进行立法。
“人工智能立法已不仅是一个国内法的问题,这是人类共同面对的课题。”刘守民认为,人工智能发展还需要国内与国际间的协调,通过国际的公约条例,包括技术标准等领域形成共识。
规范司法加强执法不可或缺
“用法治的手段保障人工智能‘安全、可靠、可控’,也是欧、美、日、韩等国发展人工智能产业的必经之路和共同经验。”西南政法大学人工智能法学院院长陈亮说。
在陈亮看来,立法只是法治保障人工智能发展的其中一环:执法、司法等环节同样不能偏废。
高子程也认为,完善立法,规范司法,加强执法,加大普法,积极构建人工智能未来法治体系,用法治保障人工智能健康持续发展。
“在司法中,要坚持法治理念、法治思维和法治方式,树立谦仰、审慎、善意、文明、规范办案理念,恪守技术中立原则,不轻易对司法机关看不准、有市场、受欢迎的技术业态产品采取强制措施,最大限度减少司法活动对新技术发展的不利影响。”高子程说。
在高子程看来,司法还应坚持刑法的谦抑性,在其他法律规范足以保护相应法益的前提下,刑法不应首先介入,只有在其他法律规范无法充分有效保护相应法益时,刑法才有介入的必要和空间。
“在执法环节,应建立专门的执法部门,明确其职权范围,规范其执法程序。”陈亮认为,尤应注意的是,在制度设计时,应以委托代理理论为指导,从制度层面解决好该执法部门的参与约束和激励相容的问题,以免执法过程中出现委托代理人问题,导致人工智能立法流于形式。
为让执法真正有成效,高子程认为,应组织相关执法部门专责制定人工智能领域配套的各种技术规范、技术标准,这个标准应当是对行业自身所发展出来的标准与公共利益、个人权利保护原则的综合考量,其制定程序应当遵循公共参与、听证等行政程序规则。
伦理及安全问题不容忽视
从目前已经投入使用的人工智能产品中看,部分智能庭审系统甚至已经能够基本代替书记员的记录工作,加快了庭审进度。
人们不禁会问,当人工智能广泛应用之时,一些可以替代的传统行业是否会造成大量的失业,造成社会的不稳定。
“解决这些问题首先是在人工智能大规模替代现有工作之前,把社会保障体系建立起来。”刘庆峰说,在社会保障体系之下,人工智能代替了重复性工作后,人会有更多的时间去做创意等不能替代的事情,从而获得社会价值感。
刘庆峰认为,人机合成是未来人工智能的重要突破方向。他举例称,目前“智医助理”可以根据医嘱对话,自动生成对疾病的判断,供医生参考确认。“所以我想人工智能并不是要淘汰人类,而是要让人类站在人工智能的肩膀之上。”刘庆峰说。
对于人类与人工智能的关系,刘庆峰还是很乐观。他认为,人工智能立法应当遵循“人机耦合”和“以人为本”原则。
“这意味着要充分认清人工智能是帮助人的,而不是替代人的,要刺破技术面纱,有针对性地规制技术背后人的行为;意味着要把人民群众的生命和财产安全放在首位,实现人工智能在风险可控的范围内发展。”刘庆峰说。
不论乐观与否,人工智能立法在伦理道德方面还是要有明确规定。
邵志清认为,应明确禁止应用人工智能技术实施违反人类伦理道德的行为,特别是在基因工程、生命科学、情感意识等方面用法律为智能社会划出伦理道德的边界,让人工智能服务造福而不是困扰危害人类社会。
“对人工智能要抱有一定的尊重和敬畏,技术进步带来的东西不见得都是好事,一定要慎重,避免出现有悖伦理道德的事情。”刘守民说。
全国政协委员、360集团董事长兼CEO周鸿祎也认为,任何技术都是双刃剑,人工智能也不例外。“但我们在享受最新技术带来的便利时,也不能忽视与之相关的安全问题。”(法制日报记者战海峰)
复旦人工智能教授:未来3
今年5月1日国际劳动节当天,
第一波AI失业潮到来,
科技巨头IBM公司宣布暂停7800人的招聘,
称这些岗位的工作将由AI取代,
此前3月底,高盛集团发布报告,
预计全球将有3亿工作岗位会被生成式AI取代,
其中律师和行政人员受影响最大。
▲
AI生成美女图,以假乱真
▲
AI超现实创作:上班族在地铁里看金鱼、瓜农川普
在中文网站,因为ChatGPT和Midjourney,
也陆续出现了第一批失业的设计师和文案编辑。
未来3-5年,什么样的工作会被AI取代?
哪些行业是相对安全的?
如果想要成为AI工程师,需要什么样的能力?
以及文科生可以转AI吗?
一条采访了复旦大学人工智能专家张军平教授,
针对以上问题做了解答。
自述:张军平
编辑:刘亚萌
▲
张军平教授行走在复旦校园里
ChatGPT-4的出现是令人震惊的,我们做AI研究的,知道迟早会有这么个东西出来,不过没想到这么快,以及跑出来的性能这么好。
3月份以来,我朋友圈里很多人都在晒ChatGPT-4的聊天截图,非常狂热。再加上MidjourneyV5一起,大家都很担心,自己的工作会不会被AI取代?
▲
人机共存场景
一条编辑部经由Midjourney生成
这个担忧是合理的。
ChatGPT-4最令人惊艳的一点,是它的“涌现功能”,就是当它训练的数据量足够大的时候,这个复杂的系统,就诞生了其各组成部分所没有的属性——接近人类的“思维模式”和“智力表现”。
里面有个思维链,帮助ChatGPT-4去“链式思考”。就像我们有时候做作业,到了某个节点,做不出来,然后家长说“你再想一想”,其实也没说什么,但是这个学生就觉得我可能还有一些东西没掌握,通过慢慢想和一点点的引导,就突然把一个正确答案得出来了。
所以你在对话框里,让ChatGPT-4“再想想”,它也会再给你一个改进过的答案,大家就会觉得很惊讶。
因为AI对生产效率的提高,一个优秀的人才可以做很多工作,由一小部分人运营一个大市值公司的现象,以后可能会越来越多。你看Midjourney就是个典型,员工只有11人,但是年营收1亿美金。
▲
AI生成“失火”的白领工位
细看来,未来3-5年内容易被取代的工作,有两个标准:脑力工作和简单易重复。确实白领受影响比较大。
笔译和客服已经被替代得差不多了。
我自己的生活里,现在接快递电话,好多是机器人。国内科研工作者写论文要翻译成英文,以往可能要找国外的母语翻译者,以后说不定可以尝试ChatGPT-4翻译,它速度快,把领域内的专有名词限定下,应该会很不错。
▲
Office365里嵌入ChatGPT,能自动生成简报、表格
接下来最危险的是办公室文员、人力资源,还有做财务报表的。微软Office365已经把ChatGPT嵌入到Word、PPT和Excel里了,可以自动生成简报、PPT和表格,你以往费心学习的这些Office技能价值就下降了。
有个段子说“财务不会被AI替代,因为它不能做替罪羊”,虽然有点道理,但生产效率提高了,意味着公司对财务的人才需求压缩,你的就业空间就变小。
另外还有律师行业。我们知道律师很重要的一块工作是熟练法条和查找以往的案例,查找的过程是非常耗时间的,律所里应该专门有一部分人做这块工作。
换成AI的话,它把所有的案例都收过来,ChatGPT用对话的方式给你,速度非常快,那么以前做这部分工作的律师,就不再需要了。
▲
程序员们在工作
一条编辑部经由Midjourney生成
ChatGPT-4也会生成代码的,部分程序员会受到影响,尤其是前端。因为前端设计比较模块化,并没有涉及到很复杂的计算。OpenAI有个演示,就是在纸上画个草图,然后ChatGPT-4就给你跑出来了一个网页。
从公司的角度,有可能以后会更加倾向于ChatGPT写代码。因为每个人写代码的风格是不一样的,一个员工走了,新员工过来,因为不顺手,可能要重写代码。那么ChatGPT的一致性会更好,从公司的角度来说,更加有效率。
▲
AI生成的风格插画
受Midjourney影响的插画师、设计师,我网上看到有些人已经被裁员。你人完成一副插画可能要花2天时间,机器几分钟就出来了,效果还很好,这在迫使大家去做更具有创新性的工作。
一个有意思的现象是,一部分AI研究者自己的工作,都被AI干掉了。
据说现在美国一些大学,在自然语言处理、计算机视觉和语音识别方向的教职,不再增加了。
然后我们就讨论是为什么?以往科研院校,3-5年会出些成果,细细碎碎的需要那么些人去做,但是ChatGPT-4出来之后,它把很多问题都解决了,剩下都是一些非常难啃的硬骨头,那么你是不需要那么多教职去做的,就导致一些岗位被减掉。
▲
制作漆器的手工艺人
首先,跟实体相关的工作,比如医生、护工、驾驶员,还有小众手工艺者,比如做古琴的、做陶瓷的艺术家,都是依赖个人经验来做的,被AI替代的概率较小。
因为一直以来AI大多在做认知相关的任务,感知这块下的功夫少,现阶段跟实体相关的都做不好,与人类相比,机械手比较初级,拧一个瓶盖还是很难的事情。
就连打扫卫生,对我们人类来说是“简单易重复”,但对机器却是一个模糊的概念,没有办法程序化或形式化。
那么对于白领工作,还有一部分比较安全,就是大数据进入不了的行业。
▲
《滚蛋吧,肿瘤君》剧照
我们想想ChatGPT是怎么起来的?它的数据都是Billion级的,就是10亿级以上,这就意味着这么多数据,很有可能都是不设隐私的,才能被它调用。
如果一个行业涉及到隐私,数据不能公开,不能上模型训练,那么AI就挤不进去。比如说医疗、银行、生物等领域,相对来说是安全的。
所以我的一些学生,他们就不在互联网公司找工作了,而是会去一些数据相对封闭的领域,稳定一些。
如果高中生选专业,只考虑就业前景的话,我觉得人工智能方向目前还是最好的,所谓“不入虎穴焉得虎子”。
我们有个新名词叫做AIforScience,用人工智能帮助科学发展,以后各行各业都需要AI的辅助,要由懂AI方向的人来操作,那么就会有一个非常大的人才缺口。
▲
AI研究员
一条编辑部经由Midjourney生成
一个好的AI研究者或工程师,需要三个基本素质:数学基础、编程能力、英文。学英文是因为要跟踪国际最前沿的技术,读文献资料,然后对编程能力的要求,要比数学高一些。
现在不像以前那样需要了解特别深的人工智能知识,如果你是计算机或其他理工科专业,转AI的话门槛并没有那么高。
首先,现在的研究大部分是模块化,深度网络都是一些模型,就像积木一样在搭。算法方面,在ArXiv上你能够快速知道最新的算法是什么样子,代码呢本身就有很多网站,比如Github上的代码是共享的。这三点,就使得你现在进入这个行业是比较容易的。
文科生也有机会转AI的,我们复旦有中文系的学生,转到我们做自然语言处理的这个组,做得还挺好的。
▲
机器人与女孩一起在农场工作
一条编辑部经由Midjourney生成
首先,我们确实需要追赶,不追不行,要不然就会被卡脖子。
据说GPT5已经训练完了,那我们什么时候能追上国外的?目前有两派,一派是乐观派,觉得问题不大,2-3个月能追上。另一派是悲观派,觉得需要1年至1年半。
可能你觉得1年时间不算太久,其实这里面有些麻烦的地方。
目前AI主流的发展路径是三大块:模型、算力、大数据。
乐观的地方是,模型框架前辈们都做好了,几乎是公开的,研究人员把它做大、做深就行了。
▲
深度学习之父GeoffreyHinton
2006年GeoffreyHinton就提出来了深度学习模型,之后有一个图像分类竞赛上采用了大规模数据集ImageNet,2012年GeoffreyHinton就带着他的学生为这个竞赛做了新的深度学习模型,一下子就令人震惊了,比上一届冠军性能提升了将近10个百分点。
这是什么概念呢?如果你是用传统机器学习方法来做,每年就提高0.3-0.4个百分点。这意味着,深度学习的方法比传统机器学习方法,加快了20年左右。所以那时候,大家都转到做深度学习模型。
但是深度学习模型,是需要强大的算力的,在特定的GPU芯片上面跑。
据说ChatGPT有1万块A100的GPU做支撑,单块A100的售价在1万美元左右,光是GPU成本就是1亿美元(约合6亿人民币),这就是为什么OpenAI不到100人的小公司,微软投资了20亿美元上去的原因之一。所以大模型,几乎只能由大公司、大机构来做。
但是我们国家,目前在算力上有瓶颈,因为2022年12月份,美国对中国禁售了A100以上的GPU。这样国内没法用A100(有替代品,但通讯模块受限),但国外还能用比A100更好的卡,这就有点麻烦了。
现在我们做研究成本很高,也是因为GPU,以往你发文章只需要时间和人力成本,但是现在一篇论文的成本说不定在10万人民币左右。
再一个就是大数据,中文语料库推不上去。
ChatGPT有10亿级以上的数据做预训练,它都是英文的,但是我们中文的每个平台,都设了一个进入的门槛,防止你大范围搜索,另外还有格式的问题,这就导致我们堆数据,没有国外那么方便。
而且ChatGPT-2之后就没有开源了,你也不知道确切的差距到底在哪里。
现在国内的AI投资很火,资本层面的驱动还是蛮重要的。而且我们复旦前段时间发布了一个Moss系统,还开源了,相对来讲还是一个比较小的模型,大家都还是在努力的。
▲
上海街头的机器人
一条编辑部经由Midjourney生成
从历史上来讲,人工智能不到90年,我们一般认为它的开端,是1936年的图灵机,期间一直经历涨跌的过程。
七八十年代它经历第一次寒冬,当时如果你说自己是做人工智能的,是拿不到项目的。在90年代初,又经历了第二次寒冬。
我自己是从小喜欢看科幻小说,接触AI是在1997年,当时更流行叫自己是做机器学习而非人工智能的。
我的感受是到了2012年,也就是GeoffreyHinton带着学生赢得了竞赛那一年,人工智能才真正迎来腾飞。
▲
2016年AlphaGo对弈韩国围棋手李世石
到了2016年AlphaGo赢了李世石,然后2017年谷歌研究出了Transformer网络,这之后才有了ChatGPT的一系列工作,还有自动驾驶、AI金融、AI医疗等各个领域都在前进。
但其实到2022年,AI行业有点往下走的趋势了,因为大家觉得该做的都做了,并没有看到很好的应用,很明显的是有些大公司的深度学习这块,已经在裁员了。但突然今年3月一下子ChatGPT-4出来了,就又把大家都拉了回来。
所以它有兴盛期,也有衰败期。我自己在这个领域待久了,对于ChatGPT-4掀起的热潮看得比较冷静一些吧。AI的研究范围是很宽泛的,很多问题很难,难以在短时间内变现,人类对智能的理解还有很长的路要走。
作为一名研究者,乐趣还是在于探索未知,你在未知里面可以找到一点点进步,那个愉悦感就很令人满足了。
原标题:《复旦人工智能教授:未来3-5年,哪些工作会被AI取代?》
阅读原文
人工智能时代的工作变化、能力需求与培养
摘要:在人工智能时代,程序化工作和一部分非程序化工作将被人工智能取代,工作将向高度智慧化转移,劳动者的工作定位将发生升级方式、介入方式、前进方式、转移方式和集中方式等不同的变化。为了适应人工智能时代,要在学校教育和企业教育中注重提高受教育者的人工智能素养、培养创造性思维能力、社会交流能力以及环境应变能力。应对人工智能时代培养所需人才的关键措施包括:突出个性化培养理念;构建人工智能素养教育体系;实施问题导向及跨学科合作探讨的学习方式;利用人工智能技术提高学习效率。
关键词:人工智能;工作定位;能力需求;能力培养
基金项目:本文系中国社会科学院登峰战略企业管理优势学科建设项目、中国社会科学院京津冀协同发展智库研究课题的阶段性成果。
当前,我们正处在全面进入人工智能时代的过渡期,几乎所有领域都出现了装载有人工智能技术的机械设备。18世纪中期以来,人类历史上先后出现了蒸汽机、内燃机与马达、计算机与互联网技术。这些技术极大地改变了人类的生产生活方式,推动了人类社会的发展。可以说,人工智能是继三大技术之后的又一重大技术。况且,与以往技术不同,人工智能可以替代人的脑力劳动,这将大幅度地改变人们现有的工作内容,并要求人们拥有不同于以往的特殊能力。然而,关于如何界定人在人工智能时代的工作定位及所需能力、如何培养人工智能时代所需要的人才,是尚未解决的课题。目前,有研究围绕人工智能可能产生的就业影响,尤其是结构性失业风险以及社会经济对策等方面进行了分析(万昆,2019;陈明生,2019;王君等,2017;潘文轩,2018),也有研究对人工智能背景下职业教育体制改革与发展问题进行了探讨(南旭光,汪洋,2018;毛旭,张涛,2019;丁晨,2019),但深入到工作能力层面,从劳动者角度探究人工智能时代的人才培养问题的相关研究还较为少见。鉴于此,本文基于技术—工作—能力—培养的视角,结合前沿研究进行理论分析,阐明人工智能对工作业务的影响机制,明确人工智能时代的工作定位与能力需求,探讨能力培养的战略思路和关键方法。
一、人工智能时代的工作变化
人工智能(ArtificialIntelligence,简称AI)是指可以感应环境、做出行动,并获取最佳结果的合理主体(RationalAgent)(S.J.Russell,P.Norvig,2018)。感应环境、做出行动和获取最佳结果,属于人的智慧行为,而这些行为通过计算机程序(合理主体)被再现出来,就成为了人工智能。换言之,人工智能就是具有人类智慧的计算机系统。而在现实的工作环境中,人工智能的计算机系统又是与大量的感应器、超高速通信网、大数据收集分析装置、终端设备、机器手等组成更为复杂的系统来进行实际作业的,如机场出入境管理的人脸识别系统、汽车自动驾驶系统等。因此,可以说人工智能就是装载有可以模拟人类智慧行为的计算机程序的自动化设备。
现阶段的人工智能可以在一定程度上替代人完成识别、决策和操控方面的任务。在识别方面,人工智能可以进行信息判别、分类与检索,如从影像中发现癌变征兆;从音调语速中检测情绪;从图像中监控设备异常、天气异常、用户账号异常等。在决策方面,人工智能可以进行数值形式下的物象评估与匹配,如预测销售额、GDP指标、民意度、信用风险、病变风险;推断消费者爱好、产品推销时机;根据消费者爱好、习惯不同而推荐不同内容的商品广告等。在操控方面,人工智能可以进行表现生成、设计行动最佳化及作业自动化,如自动撰写新闻稿件、概括文章大意;设计项目路线图、商品标识、网页布局、药品成分、建筑物结构;优化游戏策略、送货路线、店铺布局;实施自动驾驶、客户咨询等。只要人规定好了计算机程序的信息处理目的和分析方式,人工智能就能准确无误地替代人工进行作业(安宅和人,2015)。
(一)工作变化的特征
人工智能时代工作变化的特征体现在以下三方面。
1.程序化工作被人工智能取代
所谓程序化工作,按照美国经济学家奥托(D.H.Autor)等的定义,是指变化少、可以按照事先规定的程序进行的工作(Autoretal,2003)。程序化工作又分为主要使用认知能力的程序—认知型工作和主要使用肢体能力的程序—肢体型工作。认知能力是指直觉、判断、想象、推理、决策、记忆、语言理解等能力;肢体能力是指体力。程序—认知型工作具有重复性、单一性、目的明确并且主要使用脑力等特点,如行政事务、会计工作。程序—肢体型工作虽然也有重复性、单一性、目的明确等特点,但主要使用体力,如流水线组装、仓库运输业务。由于程序化工作相对简单,易于编制成计算机程序,所以人工智能对人类劳动的替代,首先会从这些工作开始。例如,产品组装是按照作业标准反复实施同样内容的工作,而作业标准完全可以编制为计算机程序,所使用的设备以及动作也完全可以建立成模型,因此,产品组装就可以由人工智能来代替实施。再如,需要一定认知能力的会计业务,人工智能也可以通过扫描或接受电子信号等方式获取相关数据,而后根据规定程序进行分类、汇总等作业。因此,在人工智能时代程序化工作会呈现明显的减少趋势,以往的自动化设备,基本是替代体力劳动的蓝领劳动者,而人工智能将替代白领劳动者。英国剑桥大学学者弗雷(C.B.Frey)与奥斯本(M.Osborne)在2013年发表的报告中指出,美国在未来20年里将有47%的工作存在被替代的可能性,电话推销员、标题审查与摘要人员、手工缝纫工、技工、保险受理员、手表修理工、货物运输人员、税务代理员、照片处理工、会计助理、图书馆技术员、数据输入员等工作被取代的概率可高达99%(C.B.Frey,M.Osborne,2013)。日本经济新闻和英国金融时报2017年合作进行的调查显示,制造、餐饮、运输等23个产业的2000项工作中有超过3成的业务可能被替代,制造业被替代的比例是80.2%,包括焊接、组装、裁缝、制鞋等业务;餐饮业被替代的比例是68.5%,如客服、点餐、食材准备、餐桌与餐具摆放等业务;运输业被替代的比例是48.4%,包括车辆维修、飞机驾驶、运输信息提供等业务(ShotaroTani,2017)。这些研究表明,被取代概率高的工作基本上都是重复性、单一性、目的明确的程序化工作,其中不乏白领岗位的部分业务。
2.一部分非程序化工作被人工智能取代
相对于程序化工作,非程序化工作通常变化较大,难以按照事先规定的计划进行。这一工作又分为两类,一类是非程序—认知型工作,如科学研究、文学创作、作曲作画、经营管理、医疗诊断、诉讼辩护等;一类是非程序—肢体型工作,如烹饪、理疗、看护以及汽车驾驶等。非程序—认知型工作需要高层次的文化水平、分析能力和想象力,现阶段的人工智能还达不到完全替代的水平。烹饪、理疗、看护以及汽车驾驶等非程序—肢体型工作需要高度的人际间互动、灵敏的环境反应能力以及灵活的肢体动作,而这些要求现阶段的人工智能尚不能完全做到,所以这些工作基本上还需要人来承担。但随着人工智能技术的发展,人工智能在未来不仅会代替人做更多的程序化工作,而且有望将一部分非程序化工作纳入替代范围,如自动驾驶、行走助力、编制诉讼方案、作曲作画等(Autor,2015)。届时非程序化工作完全由人来完成的局面就会发生变化,进而带来业务重组,从以前由人承担所有业务变成由人工智能和人共同分担业务,如影像诊断由人工智能完成,最终诊断由医生完成;围棋陪练由人工智能承担,棋艺解说由教练承担。
3.工作向高度智慧化转移
装载有人工智能的设备可以替代人的程序化工作,甚至部分非程序化工作,但现阶段人工智能仍有很大的局限性,如人工智能不能设定目标和规划未来、不能产生意识、不能对未曾有的变化作出反应、不能提出问题、不能设计分析框架、不能产生灵感、不具有常识判断力、不具有指挥人的领导能力(安宅和人,2015)。所以现阶段仍有四类工作是人工智能所无法替代的。一是高度创造性的思维工作。如通过综合分析各种知识归纳和提出新概念、通过多方面分析发现问题并提出解决方案、基于情感创造出文学艺术作品等。二是高度社会化的沟通工作。如包含理解、说服、交涉在内的工作,人际间交往与协同作业等。三是高度灵敏的肢体型工作。如演奏乐曲、表演舞蹈、高难度手工艺等。四是高度非程序化的工作。如看护、清扫工作。这些工作看似简单,但需要人根据知识、经验以及常识等对情境作出判断,如在清扫时对发现的废纸需要进行判断,确定它是重要笔记还是真正的废纸,而人工智能的扫地机是无法做到的(野口悠纪雄,2018)。但即使如此,现在几乎所有领域中都在使用人工智能,并且人工智能的工作领域还在不断扩展。在看护工作中,移动搀扶患者机器人已经开始出现;人工智能已能够进行文学、绘画及音乐的初步创作,人与人工智能协同作业的状态已成为普遍现象。在这种状态下,人的工作内涵必然要向高度智慧化转移。
(二)人机关系与工作定位
在刚开始引进人工智能的生产过程中,人仍是作业的主体,人工智能起辅助性和支持性作用。人工智能辅助人进行数据和信息处理方面的业务,支持人做一些复杂的、技术性的工作,从事需要肢体劳动的、程序化的操作,但对于需要高度认知能力的工作,如推理与决策,以及需要与人沟通的工作,如协调、开发与咨询、沟通与互动,人工智能的贡献相对较少,但这种情况将会发生改变。世界经济论坛《职业前景报告2018》发表了2018年人与设备的工作时间占比值和2022年人与设备的工作时间占比的预测值(见表1)。对于所有业务,2022年设备的工作时间占总工作时间的比值会增加,其中设备在信息和数据处理、探索和获取业务信息的工作时间占比将超过人的工作时间。在行政、肢体的程序化任务、识别和评估业务信息、执行复杂技术任务中,设备的工作时间占比也将超过四成。即使在推理与决策以及沟通与互动这样原本主要由人来完成的业务中,设备的工作时间也将提高三成左右。因此,未来人工智能不仅能在生产过程中起辅助、支持的作用,而且在一些业务中将会作为“数字劳动力”发挥主导作用。进而言之,在人工智能时代,智能设备将越来越多地替代人的劳动,人机协作的关系将越来越显著。
表12018年、2022年人与设备的工作时间占比值单位:%
资料来源:作者根据世界经济论坛《职业前景报告2018》整理。
在人工智能时代,一些职业及一些工作被替代是不可避免的趋势,因此劳动者必须对职业及工作选择有清楚的认知。美国管理学学者达文波特(T.H.Davenport)和卡比(J.Kirby)认为,人工智能时代劳动者的工作定位,即如何选择能实现自身价值的职业,有五种方式,分别为:一是升级方式,即提升管理素质和掌握超越计算机的大局思维,向高级管理岗位发展。这要求对经营系统有透彻的理解,并需要有充分的计算机知识与技能。随着人工智能质量的提高、数量的增加,高级管理岗位的事务性工作将被大幅度替代,因此升级到高级管理岗位的人数会比以往少;二是转移方式,即转移到不能程序化、结构化的工作领域。现阶段,人工智能设备尚不能完全替代人的劳动,因此工作流程中会保留一些人的岗位。但随着人工智能水平的提高,这些岗位也将逐渐被替代,因此,这些岗位的劳动者,要有充分的危机感;三是介入方式,即学习计算机的程序化决策过程,掌握监视和调整计算机功能的新型能力,以现场管理者的身份介入基本上由人工智能实施的作业过程中;四是集中方式,即以计算机程序尚未渗透到的领域为唯一标准来选择职业或工作。这种方式要求特殊、高超的人类智慧及技能,需要早期、长期训练,甚至需要天赋;五是前进方式,指与时俱进,加大学习力度,研究开发能改变当前领域工作效率的高水平智能机器(T.H.DavenportandJ.Kirby,2015)。从与人工智能的关系看,升级方式、介入方式和前进方式,都需要学习人工智能技术。对这些人群,国家应该对他们的学习进行资助。转移方式中劳动者没有学习新技术的欲望或能力,他们的收入可能会减少,就业也不稳定,国家应从就业政策角度进行援助。集中方式需要从中小学起通过个性化教育对这方面的人才进行培养。
二、人工智能时代的能力需求
随着人工智能在生产过程中的普遍应用,人在生产中的地位不断发生变化,大量程序化作业、甚至越来越多的非程序化作业都将由自动化设备实施,而人必须能够驾驭智能设备,发现和解决工作流程中的问题,对智能设备进行更新创造,从而使其更好地服务于人类社会。从劳动者角度看,必须具备符合人工智能时代所需要的能力,才能使自己的劳动付出变得更有价值;从企业角度看,具有符合人工智能时代能力的员工,是创造价值所不可缺少的人力资源,值得大力引进和培养;从社会角度看,劳动队伍和后备力量都具备符合人工智能时代要求的能力,就可以稳定就业,促进社会经济持续发展。关于能力,可以对有认知能力和社会情感能力的基础理论进行研究。为了探讨能力与社会需求的关系,能力被分成诸多子能力,以验证与不同技术条件的适配性。在解析这些研究之后,笔者将提出符合人工智能时代要求的能力要件,以便为理论研究和政策决策提供参考。
(一)能力的两个方面
理论上看,人的能力一般包含两个方面。一个方面被称为认知能力,另一个方面是非认知能力。其中关于非认知能力有着几种不同的命名,如社会情感能力、软能力、社会能力、人格特质、性格(Heckman,Kautz,2012)。以下将沿用经济合作与发展组织(OECD)(2015)的表述样式,用“社会情感能力”来表示非认知能力。该研究认为,认知是关于获取和应用知识经验的过程,而认知能力就是所有与获取和应用知识经验有关的能力。认识能力有三个层次:第一层是基本能力,如模式识别、计算和记忆;第二层是获取能力,如检索、分类和解释;第三层是应用能力,如思考、推理和概念化。这三层能力的复杂程度从低到高、依次递进。与认知能力不同的是,社会情感能力是对目标实现、社会协作和情感控制产生影响的人格特征。例如,目标实现方面的忍耐、自律、意愿;社会协作方面的沟通、开放、体贴;情感控制方面的自尊、灵活、自信等。
在实际中,人是认知能力和社会情感能力的载体。换言之,这两种能力在人的身体中同时存在,相互影响、相互作用,形成了人的脑力活动和肢体行为。例如,批判性思考就是两种能力合二为一的结果。批判性思考既有认知能力的特点,即能够客观地进行逻辑推理,严守成本收益原则,冷静地进行战略分析。同时,因为批判性思考的对象是现实中的新问题,仅仅依靠过去的经验和教科书手法是不够的,还必须对新现象持有开放心态,根据具体情况,灵活改变思路和行动,而这些特点正是社会情感能力范畴的内容(池迫浩子,宫本晃司,2015)。
(二)能力需求变化与预测
技术进步使得工作环境发生变化,对劳动者的能力需求也出现了新变化。20世纪70年代以来,以大型计算机、电脑终端和互联网为代表的信息通信技术迅速发展,制造业以及服务业的生产过程大为改观,这使得对劳动者的社会情感能力的需求显著提高(Deming,2015)。在1980-2012年间,需要高度社会情感能力的职业就业人数占美国所有就业人数的比例增长了近12个百分点,而只需要认知能力的职业就业人数占比减少了3个百分点。另外,需要高度社会情感能力的职业的工资增长也比其他职业更快,并且2000年以后的增幅大于2000年之前。这是因为生产过程自动化,岗位任务重组,人员重新分配,团队形式增加,而社会情感能力可以降低协调成本,加强不同作业领域的有效合作。
以数字技术为轴心的自动化设备的应用,不仅要求劳动者提高社会情感能力的水平,同时也要求其认知能力和社会情感能力综合水平的提高。维因伯格(Weinberger,2014)利用美国职业大典的数据,对1977-2002年间各职业就业人员具有的计算能力、人际能力以10阶段法进行了赋值,根据数值把职业分为了两类,一类是计算能力与人际能力赋值均高于5的职业,一类是两种能力中一方赋值高于5而另一方赋值低于5的职业。分析发现,两种能力赋值均高于5的职业的就业人数增加,仅一种能力赋值高于5的职业的就业人数减少。该研究还以1972年和1992年的高中3年级中的两个年级层为对象,考察了各层人群的高中数学成绩、领导经验和高中毕业7年后的工资之间的关系。结果表明,同时具有数学能力和领导经验的人的工资在增加,只有一方面能力的人的工资没有变化,不具有这两方面能力的人的工资在减少。这个结论揭示了能力间互补的重要性,即认知能力与社会情感能力,不是各自单独产生价值,而是相互组合(互补)来产生更大的价值。技术进步并没有否定人的任何一方面的能力,而是要求在提高各自水平的基础上达到新高度的互补。由此可以推论出,兼有两种能力的劳动者在以人工智能为轴心的新技术时代将为社会所需,他们的劳动价值会得到社会认可。
表22018年、2022年关键能力需求
资料来源:世界经济论坛《职业前景报告2018》。
以上的推论不仅在以往的数据研究中得到了验证,在近未来的预测研究中也得出了同样的结论。世界经济论坛的《职业前景报告2018》发表了313家跨国企业管理高层的调查数据,从中可以看出2022年需要的关键能力中,属于认知能力的有8个,分别是:分析性思考与创新,主动学习与战略性学习,创造性、独特性和主动性,技术设计与编程,批判性思考与分析,解决复杂问题,问题推理与构思,系统分析与评估。与2018年相比,技术设计与编程、系统分析与评估是新增项目,反映出人工智能时代对劳动者的数字技能的强烈需求,揭示了劳动力素质提高的方向。而领导力和社会影响、情绪性智商属于社会情感能力的范畴。这两个能力同时出现在2018年、2022年两个时间段里,由此可以说,社会情感能力在未来的人工智能技术环境中是不可缺少的。只要生产过程中有人的存在,只要市场及组织内部环境不断变化,就需要社会情感能力去发现问题、运用技术技能去解决问题从而实现劳动的价值。另一方面,包括脑力、肢体在内的基本认知能力的需求将会减少,如操作灵活性、持久性与准确性,视觉、听觉与说话,读、写、算等能力。一些基本操作能力的需求也会减少,如财务和物资资源管理、设备安装与维护、质量管理与安全管理等能力。这些能力基本用于实施程序化业务,其工作的操作标准简单明了,个人发挥创造性的空间较少,从能力层次看,虽然属于知识经验应用能力范畴,但处于低级层次。
世界经济论坛在2016年对人工智能时代的能力需求变化进行了探讨。当时的研究报告指出,高层次认知能力不仅在当时受到重视,而且在2020年对其的需要将会进一步增加。而对于与肢体相关的能力,专家大都认为其需求将会减少。尤其是设备维护、质量管理与安全管理等能力,2016年报告中还有五成的人认为需求会处于稳定状况(世界经济论坛,2016)。由于2016年、2018年的调查方式不同,因此不能对其进行严格的对比,但可以看到能力变化的趋势,即对高层次认知能力的需求一直处于增强趋势,而对设备安装与维护等低层次能力的需求则明显减弱,这反映出人工智能时代对能力的高层次化有着越来越强的需求。
巴克什(Bakhshi)等利用美国和英国数据预测了两国2030年各职业的就业增长和职业所需的能力(Bakhshietal,2017)。该研究中的职业能力包括120项。美英两国各职业最为重视的能力有15项(见表3)。从表3看,美国和英国总体情况类似。在美国,与人际交往有关的能力会越来越重要,这些能力包括指导、社交知觉/认识、协调、服务导向、主动倾听,以及相关知识,如心理学和人类学、教育和培训、治疗和咨询、哲学和神学。认知能力范畴中的应用能力也会越来越重要,如要求能够了解当前和未来形势并且能够做出行动规划(战略性学习);能够了解新信息对当前和未来问题的解决与决策发挥影响(主动学习);能够提出有关某个主题的许多想法(思想流利性)。在英国,有10项属于认知能力范畴中的应用能力,这些能力是判断和决策、思想流利性、主动学习、战略性学习、原创性、系统评价、推理、解决复杂问题、系统分析、批判性思考。在人工智能技术更为广泛应用的近未来,劳动者只有充分具备这些能力,才能够有效解决新环境中出现的新问题,并且能够有针对性地提出新想法,积极吸收新信息;能够识别社会技术系统的变化,了解社会技术系统各环节的互连和反馈关系并采取正确行动。另外,英国对于人际交往的能力也非常重视,这些能力包括指导、协调,以及相关知识,如教育和培训等。
表32030年美国、英国各职业中最重要的15项能力
资料来源:作者根据Bakhshi等(2017)整理。
2017年,日本人才咨询公司阿德卡(Adecco)对309家上市公司管理高层进行了抽样调查,收集到了两个时间点(调查时间点为2017年、人工智能普遍应用的2035年)对各种能力的需求程度。结果显示(见表4),2035年最需要的前10项重要能力中,5项为认知能力,包括创造性、分析性思考与抽象性思考、解决复杂问题、信息收集和解决简单问题。5项是社会情感能力,分别是人际关系、灵活性、挑战精神、领导力和积极性与主体性。2017年的前10项重要能力中,4项为认知能力,依次是分析性思考与抽象性思考、解决复杂问题、创造性和信息收集;6项是社会情感能力,如人际关系、积极性与主体性、挑战精神、团队工作与协调性、灵活性和目标实现意愿。从数量看,不论是2017年还是2035年,认知能力和社会情感能力的排名基本相当,表明无论什么时代,均衡能力结构都是必要的。从内容看,不论是2017年还是2035年,认知能力和社会情感能力的子项目基本相同,反映出企业能力需求具有一定的稳定性。从个别能力变化看,有两个突出现象,一个是认知能力中,创造性需求的大幅上升。这表明在人工智能时代企业将进行业务重组,要求员工在高价值工作领域创新工作方式和取得突破;另一个是社会情感能力中,对灵活性的需求有所提升。这反映出企业需要员工充分发挥主动性,去发现生产流程中的问题、发现新的社会需求,而不仅仅是执行指令。
表42017年、2035年最需要的前10项重要能力
资料来源:作者根据西村崇(2017)整理。
(三)符合时代要求的能力要件
综合以上研究,笔者认为,在人工智能时代,能力的首要内容应该是与人工智能有关的新知识、新技能。此外要在人工智能的学习与应用过程中提高社会情感能力,主要是指与人沟通的方法与相关知识。再者,劳动者的能力结构要向高层次升级,应重点发展高层次认知能力。具体概括为两个方向:一是应用人工智能技术创造新产品、新服务的能力,这里称作创造性思维能力;二是发现新问题和解决新问题的能力,这里称作环境应变能力,包括主动学习与战略性学习、解决复杂问题等。在人工智能时代,对于劳动者而言,重要的是使能力结构升级以符合技术发展需要,不仅认知能力要达到新水平,还要与工作方式变化相匹配,而且与人工智能技术互补的社会情感能力也要同步发展。鉴于此,人工智能时代的能力要件可归纳为以下四个方面。
1.人工智能知识
正如读、写、算是工业社会所必须的基本能力一样,对于要在人工智能技术条件下工作的劳动者而言,人工智能的基础知识是不可缺少的。这是以往时代所没有的全新的能力。所谓的人工智能知识,首先是数学知识。因为人工智能的基础就是数理模型,主要包括概率、统计、线形代数等内容;其次是数据科学,是在计算机上收集、解析数据的知识和技能,需要有数理和计算机语言知识,需要计算机操作能力。有了这两方面的知识,就可以形成关于人工智能的新技能:能够使用程序语言,利用既成模块,编制、操作或使用具有简单的感应、解析、反馈等智慧行为的自动化装备。劳动者掌握了人工智能的新技能,不仅可以理解新设备的基本机制,甚至可以研究更先进的人工智能、或利用人工智能来提高生产效率。根据领域、岗位、业务的不同,涉及人工智能的内容会有所不同。国家的教育、经济以及科技部门应该与企业联手设计内容、层次不同的教材,设定认知资格制度,作为评价人才的标杆。
2.社会交流能力
在人工智能时代,要创造新价值,人际或社会交流能力愈发显得重要。创造新产品、新服务及新的工作模式,意味着要对现状有充分的了解,利用人工智能对现状进行改变、重组。这需要周边很多人及社会的理解、帮助及合作。因此,在人工智能时代,人应该提高自身的社会交流能力,能简明扼要地说明目的,开诚布公地寻求理解与帮助,诚实守信地与人合作。社会交流能力的基础是情感,所以人在情绪、意志等方面的情商以及对于文化艺术的审美都非常重要。人工智能时代社会交流能力的特点,就是大量运用网络社交媒体、互联网等工具。这些工具有其便捷之处,但也存在虚假信息等伦理道德问题以及易受黑客攻击的脆弱性问题。社会交流能力与创造性思维能力一样,需要长时间的培养,需要社会氛围的支撑。社会交流能力的特殊之处在于它涉及性格,而性格有天生的因素。所以,在学校教育以及企业教育中,既要传授基本的交流方法,也要考虑个人性格中的天生因素,因人施教,调动有利因素,培养能够从社会中学习、有益于社会的人才。
3.创造性思维能力
人工智能技术使程序化的工作自动化,把人从单一循环、重度及危险的劳动中解放出来,给予人更多的时间,为人的创造性思维提供了更大的可能性。同时,人也必须发挥自己特有的创造性思维能力,才能在人工智能时代确立自身的存在价值。所谓创造性思维能力,是利用人工智能技术,结合自己所在的特定领域,去发现社会及市场需求,提出关于新产品、新服务以及新工作模式的能力。创造性思维能力包括抽象能力、综合能力和应用能力。抽象能力,就是能够概括出事物本质并发展成为概念的能力。借助抽象能力进行分析和推理,才会产生新的认识。综合能力,就是能够融会贯通,把不同领域的知识连接起来,进行整合、分析和再创造的能力。经济学家熊彼特认为,创新有五种形式,即产品创新、技术创新、原材料创新、市场创新和组织创新,它们无一不是生产要素间组合与创造的结果(约瑟夫·熊彼特,2016)。利用人工智能提出关于新产品、新服务以及新工作模式的设想,是对人工智能与其他知识进行融合与创造的过程,所以需要综合能力。应用能力,是能够把知识应用于解决现实问题,也就是解决问题的能力。其中的关键是有目的意识,能够发现问题,使创造性活动具有经济价值与社会意义。而这恰恰是人类特有的能力,无法用计算机程序再现。创造性思维能力,需要长时间的培养,从幼儿园到大学、甚至到就业之后都必须接受持续的教育或启发。同时,要在家庭教育、学校教育和社会上形成鼓励独创、容许差异的宽松氛围。
4.环境应变能力
环境应变能力,就是能够根据不同情境作出不同决策的能力。在人工智能时代留给人的工作基本上都是非程序化工作,它们不可事先预测,也无法编制操控指南,需要劳动者根据自身掌握的知识、经验、常识以及悟性来灵活行动。现阶段的人工智能可以通过大样本学习来增加经验和提高应变能力,但世界是复杂的,很多变化都带有偶然性,解决方案没有经验可循,这限制了样本数量,从而制约了人工智能应变能力的提高。与人工智能不同的是,人所特有的生命体的构造使得其对事物的理解在很多情况下只需要小样本学习和借助常识就可以完成(李开复,王咏刚,2017)。在以往的人才培养中,人们也注意到了环境应变能力,但人工智能时代的特殊之处在于劳动者要接触更为复杂的数字技术,而数字技术的进步日新月异,人们为了防止知识的陈腐化,要能够主动学习,因为仅仅靠教师或上级安排的在岗或离职学习完全不够,要根据自己的具体情况,不间断地吸取新知识。战略性学习,是具有前瞻性的、有长远目标的学习。这个长远目标,可以是对自己所在领域发展前景的预测、自我发展方向的判断,也可以是对企业战略的理解,提前着手学习新知识,当环境变化时就可以游刃有余地应对。人工智能时代的劳动者往往处于与自动化设备合作的作业环境中,生产过程中的故障不仅有硬件的问题,也有计算控制系统的问题,只有在对硬件、软件充分理解的基础上,才能解决现场工作中的复杂问题。总而言之,人工智能时代的环境应变能力,有其鲜明的时代要求,在学校教育和企业教育中必须使用有针对性的教学方法来培养有用人才。
以上归纳了符合人工智能时代要求的四个方面的能力,这四个方面的能力并不是独立存在的,它们之间有着不可分割的联系。人工智能知识是新时代劳动者能力的基础,有了它才能够驾驭自动化设备,进行新产品、新技术及新价值的创造。创造性思维是人工智能时代劳动者能力的核心,突出显示了人的智慧价值。而社会交流能力和环境应变能力则对人的气质或性格提出了新要求,要求处于人工智能时代的劳动者区别于越来越聪明的自动化设备,在纷繁复杂的社会和飞速变化的技术环境中发挥人的作用。
三、人工智能时代的劳动者能力培养
为了培养与人工智能时代相适应的人才,提高全社会的智慧水平,我们应该在理念、内容以及方式、手段上有所变革。
(一)突出个性化培养理念
在工业时代,大批量单品种生产是主流方式,为了提高效率实施机械化、专业化分工,产生了大量单一循环、目标明确的标准化工作岗位。企业将作业编成操作手册或计算机程序,要求劳动者达到按照手册或程序正确操作的能力标准。在这种体制下,劳动者和设备、产品一样都是标准化管理的对象,因此人才培养也是标准化的。体现在高等教育、职业教育及企业教育上,就是培养能够按照标准进行反复、简单作业的劳动者。教育方法基本上依靠大量、统一的习题,或反复练习。这样的理念与方法培养出来的学生或劳动者,只能做单纯的工作,其不仅在精度、速度方面要输给人工智能,并且会变得只能简单地对工作中的变化作出机械的反应,缺少发现问题、解决问题的能力,更谈不上创造新价值,而这种能力恰恰是人工智能时代的劳动者最需要的。因为程序化的工作都由人工智能完成,需要人来做的正是去发现工作系统的问题,不断地进行更新改进,提高生产效率,或者通过新思路、新方法创造新价值。因此,人工智能时代的人才培养,尤其要重视学习者的创造性思维能力,要在因材施教的理念下,充分发挥个人的潜在优势。
(二)构建人工智能素养教育体系
把人工智能教育贯穿小学、初高中、大学以及工作后的全部阶段,提高全社会的人工智能基本素养。目前,包括中国在内的主要国家都已经在小学及初高中开展计算机编程教育,在大学实施更为专业的人工智能教育。同时,针对在职者的相关教育也极为重要。这是因为人工智能技术对劳动的影响面越来越广泛,工作甚至职业变得愈发不确定,在职者要提前做好转业与转岗的准备。为了维持社会经济的可持续发展,国家应该就全社会、全生涯的人工智能素养教育制定战略规划,集结教育及各行业行政管理部门的力量,从资金、设备、师资、教材、技术资格认定、学习费用补助等诸方面制定具体措施。对于义务教育的中小学阶段,应该完善每个学校的信息网络,要使高速Wi-Fi网络覆盖全部校区,使每个学生都有自己专用的终端设备(电脑或平板电脑)。在教室等集体授课的场所,安装可以触屏输入、可以数据储存传递的电子黑板,在教学过程中使用人工智能设备。当前,教育界中能担任人工智能教学的教师人才十分欠缺。国家应该制定紧急行动计划,至少要在5年内填补中小学相关基础素养课程的空白,使每个学校至少有一名该学科的教师。教师的来源,可以直接从博士毕业生、企业的工程师等专业人才中招聘,可以不受教师资格的约束。在大学阶段,理工科要学习高度的人工智能技术,文科及美术、音乐等学科,也要开设人工智能专业课程,因为今后人工智能将在模拟人的艺术感受方面深入发展,需要既懂艺术又懂人工智能的人才。由于人工智能技术发展很快,要组织学术界和企业界的力量,及时更新课程,并且根据人在不同生涯阶段的特点编制有针对性的教材。应该利用大数据来补充劳动力市场信息系统并监控不断变化的技能需求,以适应所提供的课程与教材(OECD,2016)。要尽快设立国家人工智能技术资格认定制度,使学习成果能在社会上受到评价,提高学习者的学习积极性。对于在职人员的学习,应给予费用和时间上的支持。对于企业实施的员工培训,应该以减免培训费等激励政策给予扶持。
(三)实施问题导向及跨学科合作探讨的学习方式
创造性思维能力、社会交流能力的具体表现是能够利用人工智能技术解决现实问题,以及能够利用人工智能创造新产品、新服务与新工作模式。以往“满堂灌”的学习方式难以培养这些能力,今后应该加强问题导向及跨学科合作探讨方式的学习。所谓问题导向,就是有明确、真实并且具体的现实问题,解决这些问题是学习的目的。这需要企业与学校共同制订学习目标,引导学生进行社会实践。问题导向的学习方式,还需要学习材料具有现实性。数据要真实,设备及材料要先进,教材要能够反映前沿理论与实践。跨学科合作探讨学习包含四个方面,首先是跨学科的学习内容,即学生根据具体问题学习数学、统计、数据、人工智能以及物理、化学、生物、艺术等多学科知识,这需要打破以往文理分科的界限;其次是跨学科的学习成员,即打破以往班级学习约束,组成由不同专业背景学生构成的小组,尤其是大学阶段要尽可能采取这种办法;再次是小组学习方式,即在教师指导下以小组为中心进行讨论和得出解决方案。同时,要构筑互联网学习平台,教师与学生之间、学生与学生之间有充分的提问—反馈—讨论的渠道。跨学科合作探讨形式的学习方法,不仅有利于提高学习自主性和团队合作性,也有助于进行知识碰撞、知识整合和知识创造,从而提高综合能力和应用能力。
现阶段,包括中国在内的一些国家都在进行问题导向及跨学科合作探讨学习方式的实践,诞生了STEAM(Science,Technology,Engineering,Art,Mathematics)教育课程、问题/项目导向型教育课程(Problem/Project-BasedLearning:PBL)、创新思维课程等方法。但这些方式都处在发展过程中,需要专家和学者不断吸取有益经验对其进行改进。日本为了培养人工智能人才,制定了国家战略推行STEAM教育,并研究整理了具体案例,为各学校及企业提供参考材料。如日本某职业高中与企业合作,开展了STEAM教育课程。该课程的项目之一是设计使用便利的人工智能设备,推进智能化农业生产。项目分四个阶段进行。第一阶段引发学生对农业和机器人的兴趣,使用4个课时。教师启发学生考虑联系农业作业的实际需求,确定制作机器人的具体内容。企业技术专家介绍机器人控制语言,演示机器人的动作。学生进行讨论,得出关于制作方向的结论;第二阶段进行机器人控制与数学、物理等学科知识的应用,使用4个课时。具体任务有两个,一个是解剖分析现有农业机械,获得感性、基础认识,再使用控制语言设计机器人基本雏形,另一个是运用数学知识,探讨马达转速与机器人动作的关系,设计控制程序,制作马达。企业技术专家讲解高感度彩色感应器、图像识别等技术,联系物理知识,讲解关于摩擦作用的处理方法;第三阶段学习机器人开发的基本程序,使用4个课时。技术专家讲解现实社会中技术人员如何编写“产品规格书”、通用计算机语言、数据解析工具等,引导学生继续使用控制语言模块制作机器人;第四阶段进行总结和演示,使用4个课时。学生演示、讲解自己制作的机器人的特点以及与农业作业的关联。同时,教师引导学生梳理学习内容,激发今后学习机器人技能的兴趣(经济产业省,2019)。
(四)利用人工智能技术提高学习效率,增强学生的创造性思维能力、社会交流能力
现阶段的人工智能已经可以代替教师对学生进行辅导,提高学生的学习效率,如X-Tech、EdTech、LearnTech等技术。这些工具可以根据每个学生的实际情况,给出不同的学习指导方案,提高学习效率。有国外学校在教学中引进了人工智能系统,学生使用平板电脑阅读数学教材、做习题。人工智能系统收集所有学生的学习信息,包括答案、解题过程、速度、集中力、理解力等,在此基础上判断出每个学生的强、弱项,给出符合个人学习水平的阅读材料和习题,大大提高了学习效率。该学校利用人工智能对小学六年级学生进行了初中一年级上学期的数学课程教育,常规需要14周的学习内容仅用2周就完成了,并且学生们的考试成绩都超过了常规教育的平均点。如果能如此高效地接受知识,学生就可以把时间更多地用在联系实际的项目学习以及体育、艺术等活动上,强化学生创造力和社会交流能力的培养。如果说铅笔、笔记本、橡皮是传统必需的学习工具,那么当前与互联网无障碍连接的电子终端已经成为人工智能时代学习的必要工具。国家应该尽快完善义务教育、高中教育、大学教育和在职教育的电子化环境,引进人工智能设备,提高全社会的学习效率。
目前,人工智能正以前所未有的速度部分或完全替代人的劳动,社会生产率将会大大提高。我们必须精准理解人工智能对职业、劳动和能力的影响,从国家层面制定战略规划,运用市场经济杠杆和政策手段提高包括义务教育、高中教育、高等教育和在职教育在内的生涯教育的人工智能基本素养,维持社会经济的稳定发展。
参考文献
[1]陈明生.人工智能发展、劳动分类与结构性失业研究[J].经济学家,2019(10):66-74.
[2]丁晨.从适应到引领:人工智能时代职业教育发展的机遇、挑战与出路[J].中国职业技术教育,2019(13):53-59.
[3]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.
[4]毛旭,张涛.人工智能与职业教育深度融合的促动因素、目标形态及路径选择[J].教育与职业,2019(24):53-59.
[5]南旭光,汪洋.人工智能时代职业教育治理的限时挑战与路径选择[J].教育与职业,2018(18):25-30.
[6]潘文轩.人工智能技术发展对就业的多重影响及应对措施[J].湖湘论坛,2018(4):146-153.
[7][美]S.J.Russell,P.Norvig.人工智能:一种现代的方法(第3版)[M].殷建平,等译.北京:清华大学出版社,2018.
[8]王君,张于喆,张义博,等.人工智能等新技术进步影响就业的激励与对策[J].宏观经济研究,2017(10):169-181.
[9]万昆.人工智能技术带来的就业风险及教育因应[J].广西社会科学,2019(6):185-188.
[10][奥]约瑟夫·熊彼特.经济发展理论[M].何畏,等译.北京:商务印书馆,2016.
[11]安宅和人.人工知能はビジネスをどう変えるか[J].DiamondHarvardBusinessReview,2015(11):43-58.
[12]池迫浩子,宮本晃司.家庭、学校、地域社会におけるスキルの育成:国際的エビデンスのまとめと日本の教育実践·研究に対する示唆[R/OL].2015-08-27.https://berd.benesse.jp/feature/focus/11-OECD/pdf/FSaES_20150827.pdf.
[13]経済産業省.“未来の教室”実証事業成果報告:ベジタリア株式会社[R/OL].2019-07-12.https://www.learning-innovation.go.jp/verify/z0044/.
[14]野口悠纪雄.AI入門講座[M].東京:東京堂出版,2018.[15]西村崇.AI時代に必要なスキルは「対人関係力」と「創造力」、アデコが調査報告[EB/OL].2017-05-17.https://xtech.nikkei.com/it/atcl/news/17/051701429/.
[16]D.H.Autor,L.F.Levy,R.J.Murnane.Theskillcontentofrecenttechnologicalchange:anempiricalexploration[J].QuarterlyJournalofEconomics,2003(4):1279–1333.
[17]D.H.Autor.Whyaretherestillsomanyjobs?Thehistory andfutureofworkplaceautomation[J].JournalofEconomicPerspectives,2015(3):3–30.
[18]H.Bakhshi,J.M.Downing,M.A.Osborneetal.Thefuture ofskills:employmentin2030[R/OL].2017-12-30.https://futureskills.pearson.com/research/assets/pdfs/technical-report.pdf.
[19]T.H.Davenport,J.Kirby.Beyondautomation[J].Harvard BusinessReview,2015(6):59-65.
[20]D.J.Deming.Thegrowingimportanceofsocialskillsinthelabormarket[J].NBERWorkingPaper,2015:21473.
[21]C.B.Frey,M.A.Osborne.Thefutureofemployment:how susceptiblearejobstocomputerisation?[R].WorkingPaper,OxfordMartinProgrammeonTechnologyandEmployment,2013.
[22]J.J.Heckman,T.Kautz.Hardevidenceonsoftskills[J].LaborEconomics,2012:451-464.
[23]ShotaroTani.Isyourjobrobot-ready?Ourinteractive calculatorletsyoufindouthowthreatenedyouare[R/OL].2017-04-22.https://asia.nikkei.com/Economy/Is-your-job-robot-ready.
[24]C.J.Weinberger.Theincreasingcomplementaritybetweencognitiveandsocialskills[J].TheReviewofEconomicsandStatistics,2014(5):849-861.
[25]WorldEconomicForum.Thefutureofjobs:employment,skillsandworkforcestrategyforthefourthindustrialre-volution[R/OL].2016-01-18.https://reports.weforum.org/future-of-jobs-2016/preface/.
[26]WorldEconomicForum.Thefutureofjobsreport2018:Centrefortheneweconomyandsociety[R/OL].2018-09-17.https://www.weforum.org/reports/the-future-of-jobs-report-2018.
[27]OECD.Skillsforsocialprogress:thepowerofsocialand emotionalskills[R/OL].2015-12-30.OECDSkillsStudies,OECDPublishing,Paris,http://dx.doi.org/10.1787/9789264226159-en.
[28]OECD.Skillsforadigitalworld[R/OL].2016-12-30.https://www.oecd.org/els/emp/Skills-for-a-Digital-World.pdf.
刘湘丽.人工智能时代的工作变化、能力需求与培养[J/OL].新疆师范大学学报(哲学社会科学版),2020(04):1-12[2020-05-20].https://doi.org/10.14100/j.cnki.65-1039/g4.20200518.001.
人工智能未来的九种新兴工作岗位
人工智能正迅速成为区别业务优劣的因素。下面来看看你即将需要为人工智能精英团队填补的关键职位和技能。
[[333384]]
人工智能有望改变各行各业,随之而来许多工作职能会发生巨变。在未来的几年,组织中的许多职位都或多或少在一定程度上要使用人工智能技术,这给精通人工智能的人带来了巨大的新机会。
随着行使职责的IT和业务人员的数量转变,同发生的是出现旨在充分利用组织人工智能战略的新工作。机器学习领域的工程师已经巩固了自身作为人工智能团队必要成员的地位,位居求职网Indeed优秀工作榜首。人工智能专家也是领英2020年新兴工作报告中的最吃香的工作,该工作在过去四年中以每年74%的速度增长,其次则是机器人工程师和数据科学家。
事实上,IDC的分析师RituJyoti称,即使在这次大流行爆发期间,与人工智能相关的工作数量也可能在全球范围内增长13%乃至16%。
Jyoti说:“由于这次大流行的爆发,IDC认为,医疗提供商,教育,保险,制药公司和联邦政府的人工智能支出和就业机会将会增加。”
我们与IT领导者,人工智能专家和行业分析师进行了接触,以了解这样一个事实,即随着人工智能更加牢固地控制企业,企业见证了哪些人工智能职位的兴起。有些先进的公司已经在招兵买马,以洞察成功所需的各种技能。
首席人工智能官
人工智能领导者有很多称谓:人工智能和机器学习副总裁,首席创新官,首席数字官等等。
不管怎么称呼,这些“首席人工智能官”都必须理解认知技术(cognitivetechnologies)是如何影响企业,如何制定公司的人工智能战略并向董事会、企业高管,员工和客户进行解释。他们与首席信息官合作实施该策略,以很大限度地满足企业和所有利益相关者的需求。
网络安全公司Darktrace的首席人工智能官NicoleEagan花费了很多时间与内部技术团队合作,与客户交谈并宣传该公司的人工智能战略,其中包括弄清楚如何通过人工智能来增强人类的工作,例如在威胁检测和威胁调查这两方面。
曾在甲骨文战略小组中担任过战略市场营销高级总监的Eagan说:“我与首席技术官和人工智能实验室一起探索新的研究领域。”
Eagan通过学习在线课程来不断提高自身的人工智能技能,但是她在Darktrace中所起的作用就是更为注重业务,与其创建大量算法和编写代码,不如将人工智能应用于实际问题。她说:“我们的实验室中确实有超过35名具备高等数学,机器学习和人工智能专业知识的博士。”
Zscaler的人工智能兼机器学习副总裁HowieXu提升了自己的技术职称并以商务技能来充实经验。身为思科云计算和网络服务业务部门前负责人的Xu持有斯坦福大学的MBA学位并具备深厚的产品背景。
Xu说:“最初加入Zscaler时,我的职责更为关注技术。“但是,为了充分利用人工智能和机器学习,我不得不继续转变以更加注重业务影响方面的思考。”
Xu认为,在工智能领域有远大抱负的重要人物要专注于这些领域,即在人工智能和机器学习的助力下能将业务价值提高十倍的领域。他说:“在采用技术之前,必须严格遵守业务指标。”
人工智能道德官
人工智能道德官是另一个高级职位,该职位需要与利益相关者展开广泛合作。该职位还可能涉及风险和治理,除技术团队外,该职位可能还要与政府机构,非营利组织,法律团队,用户和隐私小组进行协调。
Salesforce.com的道德人工智能实践架构师KathyBaxter说,人工智能实践者必须对技术充满热情,但也要持合理的怀疑态度。“人工智能不是魔法,也不适用于解决所有的难题。你经常要问的问题不是‘我们能做到吗?’,而是“我们必须要做吗”?Baxter这样说道,他曾在谷歌,易趣和甲骨文从事过用户体验研究工作。
Baxter说,尽管技术素养大有裨益,但人工智能道德官并不需要成为计算机科学家或数据科学家。她说:“具备心理学,社会学,哲学或人机交互等人文背景至关重要。致力于了解受技术,需求,环境和价值影响的每一个人,这一点也非常重要。”
持有人因工程学(humanfactorsengineering)硕士学位和应用心理学学士学位的Baxter也认为将情绪化辩论降温的能力是十分有用的。她说:“当我们谈论道德时,人们会觉得自己的价值观正在受到挑战。能够以包容的方式展开合理的辩论则可能决定了成败。”
Baxter说,在部署人工智能时十分注重道德的公司会创建更安全,更公正的环境。另外,无偏差的人工智能更加准确,可以创造更好的业务绩效。
Baxter补充说:“人工智能法规即将实施,因此,现在创建道德的人工智能实践将使你对合规性做更为充分的准备。”
人工智能业务分析师
ShapeSecurity的全球人工智能负责人ShumanGhosemajumder说,要想从人工智能模型中获得价值,数据科学家必须与业务分析师配合,他已经聘请了业务分析师,他最终会扩大这一领域。
Ghosemajumder说:“人工智能业务分析师必须深刻了解自己所服务的公司及其业务模式和业务流程,因为他们希望为这些公司开发解决方案”。他补充说,他们还必须懂技术语言,从而与数据科学家和数据工程师共事。
人工智能业务运营经理这一相关职位在业务方面负责对使用人工智能的业务流程进行管理和改进。Ghosemajumder说:“人工智能业务运营经理应具备通过人工智能自动化的特定业务流程方面的运营基础知识和经验”,他们还必须能分析由这些操作所生成的数据。
普华永道(PricewaterhouseCoopers)的合伙人兼全球人工智能负责人AnandRao说,要找人负责面向业务的人工智能,这可能比想象的要难。
Rao说:“大学和其他职业培训机构正在竞相培训大量初级技术工人。但是,业务和高级管理人员需要在公司内部培养,而填补这样的职位空缺是很难的。”
首席数据科学家
通常,企业的首席技术科学家一直是人工智能职位的最高职位,其职责不断演变,已经包含了更多的工程和业务方面的技能。
麦肯锡的分析转型主管BrianMcCarthy说:“五年前,数据科学家往往由统计学家担任。如今,数据科学家往往由技术人员担任。”
数据科学家知道要用什么样的数据和算法才能获得优秀结果,他们与数据工程师和软件开发人员合作将这种专业技能转化为可运行的应用程序,他们还与业务部门合作以确保技术满足业务需求。
KennaSecurity的首席数据科学家MichaelRoytman于2012年荣获乔治亚理工学院颁发的运筹学硕士学位,他在该院研究了随机过程和随机优化。然后,他签约成为KennaSecurity的数据科学家并最终晋升为首席数据科学家。
Roytman说:“首席数据科学家正在运用他们的技能来增强整个组织的分析能力。”
人工智能架构师
人工智能架构师(也称为人工智能或机器学习工程师)负责创建用于操作和管理人工智能和机器学习项目的系统。
BT的美国战略学术合作伙伴关系负责人兼麻省理工学院的研究合作关系负责人SteveWhittaker说:“这些人可以大举研究人工智能项目”。他说,获得人工智能和机器学习技能的IT架构师是不二之选。
Whittaker说:“要创建人工智能工程师平台就需要培养运维(DevOps)技能。你必须知道如何大规模地执行,了解敏捷开发并具备流程和数据意识。”
人工智能架构师可能还要负责重建各种业务流程,从而使这些流程更接近业务。
任何自建人工智能或机器学习基础设施的公司都需要人工智能架构师或人工智能平台工程师。Whittaker说:“不仅仅是谷歌,脸书和亚马逊”。他补充说,这个职务近期才诞生,这意味着人们的背景千差万别,从充满新鲜想法的新毕业生到拥有40年实践项目管理经验的人,不一而足。
eSentire的首席技术官DustinHillard希望机器学习工程师在处理大型数据集和云数据处理框架方面具备多年经验,并且能够设计,构建和部署复杂的人工智能系统。
人工智能数据工程师
人工智能和机器学习的存亡都取决于数据。但是它们所需数据的种类和规模可能与其他系统不同,因此任何想要执行高级分析,机器学习或人工智能的组织都需要人工智能数据工程师。
“不得不招聘这些新兴职位的各种公司首先想到了大型组织”,英国电信安全部常务董事KevinBrown这样说道。“它们还想到其他拥有大量数据的组织。例如,由于大流行,医疗行业见证了数据的巨增。”
例如,BT要处理惊人的数据量。例如,在网络安全方面,每秒处理数百万个事件,每天处理约4000次网络攻击。Brown说,本公司聘请的董事总经理只专注于人工智能,战略,人工智能开发人员,研究人员和数据科学家。这些人的背景横跨人工智能的各个功能。
Brown说:“我们要筛选大量的数据来发现异常,而这正是人工智能数据工程师的大展拳脚的地方。我们总是在大海捞针。”
数据制造架构师
从事数据业务的公司提供了更多的专业职位。例如,彭博社(Bloomberg)最近就请人来担任其新设立的职位,即首席技术官(CTO)数据科学团队的数据制造架构师。
数据制造架构师帮助彭博社为其金融服务领域的客户(包括超过325,000彭博终端客户)创建高质量的结构化数据。彭博社的首席技术官办公室的数据科学主管GideonMann表示,数据产生自非结构化且杂乱无章的源头。
Mann说:“这些数字必须准确无误,其标准要高于大多数行业和学术机构。”
Mann说,数据制造架构师(Bloomberg)让深层领域专家在彭博社的全球数据部门中工作。彭博社现在也在招聘许多其他的专门化的人工智能人才,包括人工智能研究科学家,人工智能定量研究科学家,媒体数据科学,高级机器学习工程师和分布式系统高级软件工程师。
彭博社的人工智能工程主管AnjuKambadur说,这些职位要具备人工智能,机器学习,自然语言处理,信息检索和定量金融方面的经验,并且必须具备Python,Java和C++等编程语言方面的专业知识。他补充说,但是沟通,协作和产品开发方面的技能也很重要,“特别是跨组织和跨学科工作和沟通的能力。”
人工智能质量保证经理
正当尖端企业试图弄清如何围绕新生的人工智能实践分配职责时,人工智能领域的相关工作正在不断涌现以满足其需求。其中一些职位尚未设立,并且大多数职位尚无开设标准化课程或尚无形成典型的职业发展道路。
以人工智能质量保证经理这一新兴职位为例,这可以看作是从传统软件质量保证职位演变而来的职位,但是人工智能项目的质量保证却大不相同。例如,尽管某一公司可能会为手头的项目选择错误的算法,但是代码本身很少会成为问题。不完整的,过时或有偏差的训练数据集才是更应注意的东西。
有偏差的数据是一个特别棘手的问题,这些数据不仅会产生不良结果,还会产生监管问题,不良宣传,罚款或诉讼。
Zscaler最近收购的EdgewiseNetworks的首席数据科学家JohnO’Neil表示:“没有人真正了解偏差是如何进入数据的,也没有人了解如何设法从数据中消除偏差。这是一个非常活跃的研究领域。据我所知,如果你想说,规则就摆在这里,如果你遵循这些规则没问题,压根儿就没有说这理儿的地方。”
公民数据科学家
Gartner称,到2024年,人工智能高级用户将填补数据科学家的空缺。正如Gartner所称,这些“公民数据科学家”将能够执行与人工智能相关的任务,因为部署高级分析,机器学习和人工智能所需的工具将变得越来越容易使用。
但是,请勿将公民数据科学家简单地视为一个职业头衔。恰恰相反,对“公民数据科学家”工具(例如AutoML)的使用经验将成为一系列工作职能的工作要求的一部分。
人工智能平台公司DotData的首席执行官兼创始人RyoheiFujimaki说:“对传统意义上的数据科学家进行招募,增员和培训是非常昂贵的。
但IDC三月份公布的调查显示,约有28%的人工智能和机器学习计划失败了,这很大程度上归咎于技能短缺。IDC的Jyoti说:“据报道,缺乏必要专业知识的员工是失败的主要原因之一。”
Jyoti说,也就是说,在人工智能和机器学习方面对工人再培训的需求受到了抑制。
DotData的Fujimaki说,企业越来越需要“公民数据科学家”。