人工智能分类浅谈
文章目录前言一、什么是人工智能?二、人工智能的分类1.按学派分类2.按能力分类3.按业务领域分类4.按学习方式分类5.按实时分类6.按学习步骤来分7.按学习技巧来分8.按学习轮次来分9.按模型种类来分10.按任务来分11.按模型来分前言本文将粗略介绍人工智能的分类
一、什么是人工智能?通过学习掌握了某种技能的机器,我们认为他具备了人工智能。
二、人工智能的分类1.按学派分类符号主义:又被称为逻辑主义,心理学派,专家系统。该学派认为人工智能是源于数学逻辑的,该学派认为人类认知和思维的基本单元为符号,把这种符号输入到能处理符号的计算机中,从而模拟人的认知过程来实现人工智能。
连接主义:又被称为仿生学。该学派是基于神经网络及网络间的连接学习算法的智能模拟方法。
行为主义:又被称为进化主义或控制论学派。研究的是一个群体的行为。
2.按能力分类弱人工智能:只能处理单一的问题,该模型如果被训练为识别猫狗分类,那么他就只能够处理这个问题。
强人工智能:在各个方面都能够和人类相比。
超人工智能:在各个方面的远超人类。
3.按业务领域分类信号领域
图像领域:识别/侦测,跟踪,切割,生成
语音领域:
自然语义
自动化
4.按学习方式分类有监督:每条数据都有对应的标签。如在训练手写数字识别的时候我会告诉网络传入的图片所对应的数字。高效但成本高
无监督:在训练网络的时候,只给网络对应的数据没有标签,不告诉网络图片对应的数字。成本低而且泛化性能较好但效率低
半监督:输入网络的数据只有部分数据有标签。(少量包含标签的大量无标签的)
自监督
5.按实时分类在线学习:推理和学习是同时进行的。
离线学习:学习完成之后在使用。
6.按学习步骤来分非端到端学习:数据在输入模型之前需要认为进行特征提取。传入模型的不是原始数据,而是经过处理之后的特征。特征提取比较难,对最终的结果影响大。
端到端学习:数据直接输入模型得到输出,特征提取是由模型自己提取的。当任务比较复杂的时候学习起来比较困难。
7.按学习技巧来分迁移学习:在已经训练好的基础上继续学习新的任务。如某个模型已经学会了识别猫狗,我们在这个基础上继续学习识别飞机,船等。
元学习:元学习学习的数据的本质特征
级联学习:将任务进行分解来进行学习
递增学习:逐级增加学习的难度
对抗学习:两个网络相互竞争从而来进行学习
合作学习:分工合作学习
8.按学习轮次来分N-shot/Few-shot
one-shot
zero-shot
9.按模型种类来分判别模型
生成模型
10.按任务来分回归/拟合/函数逼近:当模型的输出为一个具体的数值时为回归任务如预测物体的所在的坐标点时。
分类
聚类:聚类和分类本质上都是把数据分开,区别时聚类为无监督学习。我不知道这堆数据里面有几个类别也不知道哪些是具体的哪一类的数据。
特征提取/降维/主成分分析
生成创作
评估与规划
决策
11.按模型来分统计:传统的机器学习,非端到端学习
仿生:神经网络
2023年人工智能领域发展七大趋势
2022年人工智能领域发展七大趋势
有望在网络安全和智能驾驶等领域“大显身手”
人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。
美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。
增强人类的劳动技能
人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。
比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。
总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。
更大更好的语言建模
语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。
2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。
众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。
网络安全领域的人工智能
今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。
随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。
人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。
人工智能与元宇宙
元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。
人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。
低代码和无代码人工智能
2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。
美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。
自动驾驶交通工具
数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。
特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。
此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。
创造性人工智能
在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。
2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)
【纠错】【责任编辑:吴咏玲】