博舍

传统人工智能中的三大问题 人工智能包含哪些内容和方法呢

传统人工智能中的三大问题

基于神经网络和大样本统计规律的深度学习越来越走入瓶颈,人工智能的发展越来越向基于符号推理和因果推理的传统人工智能回归。AI算法工程师不能把眼光仅仅局限在海量样本的统计规律上,而应该学习并掌握基于符号推理和小样本学习的传统人工智能技术。否则,当深度学习的热点一过,你很可能无法适应企业和市场对AI的新的需求。

本文介绍了传统人工智能要解决的三大问题:问题求解、博弈和谓词逻辑。它们都是基于符号推理和白盒推理的。了解相应的解决方案和算法有助于算法工程师开拓眼界,加深对算法本质的理解,增加解决问题、适应未来需求的能力。

1.传统人工智能的三大问题

人工智能包括传统人工智能和现代人工智能两部分。机器学习、深度学习、遗传算法和强化学习是现代人工智能的主要分支。他们主要解决分类、回归、聚类、关联和生成等问题。而传统人工智能主要解决问题求解、博弈和谓词逻辑三大问题。

传统人工智能之所以重要是因为:

传统人工智能的算法比较成熟、可靠、有效。很多能够用传统人工智能解决的问题就不应该使用复杂且成本高昂的现代人工智能方法。比如求上海到北京之间的最短路径问题,用A*算法就要比深度神经元网络高效得多;传统人工智能更基础。很多应用场景中,现代人工智能方法必须在传统人工智能基础上发挥作用。比如战胜围棋世界冠军李世石的AlphaGo其基础部分仍然是博弈算法,而残差神经元网络(深度学习技术之一)只不过在评价棋局优劣时发挥了作用。作为一个算法工程师,如果你只懂深度学习不懂博弈算法,是很难编写出高效的围棋程序的;深度学习是基于黑盒推理的,往往知其然而不知其所以然。也就是说,它能解决问题,但是我们不知道它为什么能解决问题。而传统人工智能的各种算法一般都是基于白盒推理的,知其然更知其所以然;更重要的是,我们不能以“有没有用”为标准来评价传统人工智能。就像数学中某些当时看来“没有用”的理论和方法一样,当它“有用”时你再去研究它就迟了。2.问题求解2.1状态和状态转化

这里的问题是指可以用状态来描述的,且起始状态和终止状态明确的问题。比如,八数码问题的一个可能的起始状态如下图所示:

 在一个3*3的网格中随机放置了1-8八个数码。其中有一个网格是空着的。这个空网格可以跟上下左右四个方向的任何一个临近的数码交换。但不能跟斜方向上的数码交换。比如上图中空网格可以和右边的那个数码3相交换,得到的子状态就是: 

八数码问题就是研究如何用最少的次数移动空网格,从而使得八个数码最终呈现出如下所示的终止状态:

 

2.2搜索树

问题求解的一个最简单的方法就是构造搜索树。方法是:

把初始状态看成是根结点,构成仅含有一个结点的搜索树T;任选T中的一个候选结点a,把它的所有可能的子结点都挂在a之下。这个过程称为对a的扩展。所谓候选结点就是没有被扩展过的结点;不断重复2)直到找到终止状态,或者没有候选结点为止。

下图就是一个搜索树的例子(其中排除了重复的结点)。尽管上述算法并不能保证给出最少移动次数,甚至我们都不能保证它一定能终止(如果我们不排除重复结点的话),但是它仍然给出了问题求解算法的最基本框架。问题求解的各种算法(比如宽度优先、深度优先、爬山法、分支定界法和A*算法等)就是在这个框架基础上按照不同思路进行优化的结果。

比如宽度优先搜索,就是在算法的第2)步选择距离根结点最近的候选结点优先扩展。这个方法找到的第一个解一定也是最优解。所谓解就是从根结点到终止结点的一个路径。

所谓分支定界法就是在找到一个解之后,就把这个解的路径长度与以前找到的解的路径长度相比较,只保留路径短的那个。以后我们在扩展任何一个结点时,都要看看当前路径的长度是否短于解的路径长度。如果回答是“否“,则当前这个结点就没有必要扩展下去了。

至于其他更高明的算法,比如A*,这里就不再赘述。感兴趣的同学请关注方老师博客http://fanglin.blog.csdn.net。

与八数码问题类似的著名问题还有:

华容道问题:见上图,一个4*5的棋盘上有曹操、卒、马云、......大小不同的棋子。4个卒的大小都是1*1,黄忠、赵云、张飞和马超的大小是1*2,关羽的大小是2*1,曹操最大,大小是2*2。棋盘上还有两个1*1的空格以便棋子移动。游戏的目的是把曹操移到下方关口位置处,从而逃出华容道;八皇后问题:在8*8的国际象棋棋盘上(见下图)如何放置八个皇后使得任意两个皇后都不在同一行、同一列或者同一斜线上;求两个城市之间的最短路径问题;背包问题:给定有限个物品以及每个物品的重量以及价值,比如罐头200克6元,手机125克5000元,等等。另外再给你一个最大负重为2000克的背包。问在不超过最大负重的情况下应该在背包中放置哪些物品从而获得最大的价值?路径规划问题,怎样规划一个或者多个快递小哥的路径使得他们跑最少的路把一堆快递送到客户手中。这个问题还可以扩展到物流规划、船舶航运规划上。

 八皇后问题

 解决这些问题的关键在于如何描述问题的状态以及父状态如何生成子状态。比如最短路径问题中,状态就可以用当前所在的城市表示。城市与城市之间有道路直接连通的就可以构成父子状态的转换。由于道路一般是双向的,则父子状态的转换也是双向的。

而背包问题的状态可以用背包里当前所拥有的所有物品的集合表示。所谓子状态就是往父状态背包里添加任意一个不超重的物品构成的。

3.博弈3.1博弈树

我们通常所说的博弈其实是博弈的最简单形式,即信息全透明的封闭环境下的两人零和博弈。围棋、象棋、国际象棋等都是这样的博弈。而扑克、麻将、多人跳棋等就不是。以下除非特指,所谓博弈都是指这种两人零和博弈。

博弈要解决的问题是:当人类棋手下一步棋之后,电脑该如何应对呢?跟搜索树一样,博弈所采用算法也是从当前的根结点出发构建博弈树。以井字棋为例,井字棋是一种两人轮流在一个3*3的棋盘上下棋的游戏。目的是看谁先把自己的棋连成了一行、一列或者一条斜线。与中国的五子棋类似。以下是井字棋博弈树的部分结构:

井字棋的博弈树  

与搜索树不同的是:

博弈树在扩展过程中,是双方轮流下棋的。而搜索树无需这样的考虑;搜索树通常要考虑从根结点到当前结点的耗费,而A*算法甚至还要考虑从当前结点到可能的终止结点的预期耗费。耗费越小越好。而博弈树通常只考虑当前状态对双方的价值。价值越大越好,价值也称为得分。得分可以小于0(这表示对对方有利);由于我们考虑的仅仅是两人零和博弈,所以当一个状态对一方的价值(或者说得分)是v的话,则同一个状态对另一方的价值就是-v;如果某个状态下,当前走棋的一方已经获胜的话(比如井字棋中己方有三个棋子已经连成一条线),则他的得分就是正无穷大或接近无穷大,而另一方的得分就是负无穷大或接近负无穷大;由于结点的数目会呈几何指数增加,所以博弈树和搜索树一样,都要解决组合爆炸问题。3.2简单博弈算法

简单博弈算法主要思想是:

博弈树上所有结点的得分都相对于当前下棋的一方计算。正得分表示对他有利,负得分表示对对方有利;采用深度优先方法扩展候选结点。也就是说,优先扩展离根结点远的结点;为了避免组合爆炸,当博弈树的高度达到一定高度h时,就停止扩展。此时当前结点的得分采用估算法或者深度学习方法获得。这个问题下面还要谈;当一个结点的所有子结点的得分都确定之后,就可以确定该结点的得分。结点的得分总是等于所有子结点得分中最大得分的相反数。比如,假设所有子结点的得分分别是-3,12,7,-10,则当前结点的得分就是-12。这是因为,博弈算法假设对方是理性的,总是会走对他自己最有利的一步棋。而这一步的得分如果是v的话,对当前下棋的一方就是-v。因为是两人零和博弈嘛!有意思的是,这个方法也可以用来计算当前结点的父结点的得分。包括当前结点在内的所有兄弟节点中最大得分的相反数就是父结点的得分。所谓兄弟结点就是父结点相同的结点。这个过程可以不断地向上传播直到根结点;根结点的所有子结点中得分最大的那个就是计算机的解。

假设下图是一个限高4层的博弈树,其中所有叶子结点的得分都已经估算出来了:

 

    博弈树(叶子结点的得分已被估算出来)

我们的问题是:A、B、C三个结点中,电脑会选择哪个下棋呢?我们只需沿着叶子结点向上,一层一层计算各个结点的得分即可。记住:每个非叶子结点的得分等于其所有子结点中最大得分的相反数。下面是计算结果:

从叶子结点出发向上一层层计算得分 

根据上述结果我们显然知道,电脑应该选择结点A作为自己的应对。

3.3估算得分

可能有人会问,我怎么估算结点的得分呢?这要看你们下的是什么棋。如果是井字棋,一般来说正中间的那个位置特别重要,谁占据了那个位置应该给谁高分。给多少分您就自己看着办吧。如果是象棋,可以计算一下双方的剩余棋力,比如“车”给100分,“兵”给1分。然后以双方的棋力差作为得分。这个方法没有考虑棋子的位置。其他棋类游戏都可以以此类推。

值得一提的是,深度学习方法可以在估算得分时发挥重要作用。AlphaGo等就是采用这个方法解决了围棋的组合爆炸问题。由于这个问题比较复杂,并且超出了本文的讨论范围,这里不再赘述。有兴趣的读者可以参考我以后的文章。

3.4Alpha-Beta剪裁

绝大多数博弈游戏都面临组合爆炸问题。即随着结点的指数级扩展,博弈树的规模很快就达到天文数字。围棋的博弈程序就是基于这个原因才长期得不到解决直到引入深度学习方法。

Alpha-Beta剪裁算法可以部分地解决这个问题。它的核心思想就是:如果当前结点的某个兄弟结点的得分是v,则当前结点的所有子结点的得分都必须小于-v。只要其中有一个子结点的得分大于或者等于-v,则当前结点及其以它为根结点的整个子树都可以从博弈树上删除。如下图:

 Alpha-Beta剪裁示例 

假设D的得分是4,E是D的兄弟结点。则E的子结点F和G的得分都必须小于-4。否则就应该把以E为根结点的子树从博弈树上删除。为什么呢?假设F的得分是-3,这意味着E和所有兄弟结点的最大得分至少是-3即:

max_value>=-3

前面我们讲过,E的得分应该等于-max_value。根据上面公式,我们得出E的得分必然小于等于3,从而小于D的得分4。这意味着我们根本就没有必要去扩展E的任何其他子结点了(比如G),因为即使扩展了G,E的得分也不会大于4。这就是Alpha-Beta剪裁的原理!

所以,使用Alpha-Beta剪裁算法时,博弈树的扩展常采用深度优先策略。这不仅更节省空间(因为没有必要保存整棵博弈树,只需把当前路径上的结点保存在一个堆栈中即可),更重要的是,深度优先策略有助于算法快速找到一个叶子结点,从而能把该结点的得分用来对相关结点进行剪裁。

关于Alpha-Beta剪裁的更多细节请关注方老师的博客。我在实践中使用这个方法实现了包括井字棋、五子棋、黑白棋等游戏的开发,证明了它的有效性。

4.谓词逻辑4.1命题、谓词和规则

谓词逻辑主要研究如何进行逻辑推理。逻辑推理的基础是事实和规则。“张三和李四是朋友”,“太阳总是从东方升起”等就是事实。事实在谓词逻辑中是以命题的形式给出的。比如上述两个事实对应的命题分别是:

Is_Friend(“张三”,“李四”)

Rise_From(“Sun”,”Oriental”)

这里Is_Friends和Rise_From就是谓词,双引号扩起来的是字符串型逻辑常量。

规则形如:

If 条件 then 结论

其中条件和结论都是命题。比如:

IfIs_Friend(X,Y)thenIs_Friend(Y,X)

这个规则的含义是:如果X是Y的朋友,那么Y也是X的朋友。言下之意:朋友是相互的,不存在X是Y的朋友而Y却不是X朋友的情况。其中X和Y都是逻辑变量。

4.2逻辑运算和复合命题

两个谓词之间可以用“and”或者“or”连接,分别表示“与”运算和“或”运算。比如,Is_Father(X,Y)andIs_Father(Y,Z)表示X是Y的父亲,Y是Z的父亲。这样由多个命题经过逻辑运算构成的命题称为复合命题。。

第三个逻辑运算是“not”,表示逻辑“非”操作。它是一个一元运算符。含义自明。

这样我们就可以用复合命题构成复杂的规则。比如:

IfIs_Father(X,Y)andIs_Father(Y,Z)thenIs_Grandpa(X,Z)

这个规则的意思是说:如果X是Y的父亲,Y是Z的父亲,则X是Z的爷爷。

4.3自动逻辑推理

当我们把已知的命题和规则罗列在一起时,就能进行逻辑推理。逻辑推理的方法主要有两种,第一种是著名的三段式。比如,所有的猫都是哺乳动物,凯蒂是一只猫,所以凯蒂是哺乳动物。

第二种是利用规则进行反向推导。比如,假设我们想知道Tom的爷爷是谁。这实际上是求解命题Is_Grandpa(X, “Tom”)中X的值。怎么做呢?首先我们可以寻找所有结论是谓词Is_Grandpa的规则,这样的规则目前只有一条那就是:

IfIs_Father(X,Y)andIs_Father(Y,Z)thenIs_Grandpa(X,Z)

然后把Z=“Tom”代入其条件部分,则原命题Is_Grandpa(X, “Tom”)被替换为求解两个命题:

Is_Father(X,Y)andIs_Father(Y,“Tom”)

而求解这两个命题的方法是递归地调用上述步骤,直到所有命题都可以用三段式解决为止。

我们可以开发一个系统自动完成上述推理过程,这就是自动推理系统。事实上逻辑程序设计语言Prolog就是干这事的。如果你想自己开发一个这样的自动逻辑推理系统,你一定要注意:满足当前命题的规则可能不止一个,你应该在找到第一个答案前把所有可能的路径都走一遍而不是一旦一条路径走不通就下结论说原命题不成立。

递归显然不能满足这个要求,所以自动推理系统通常采用的是回溯法。如果你对如何构建自动推理系统感兴趣,请关注我以后的文章。

4.4高阶谓词逻辑

我们前面所说的谓词逻辑实际是一阶谓词逻辑,也就是说,谓词的参数要么是变量,要么是常量。如果谓词的参数也是谓词,则这样的谓词就是二阶谓词。这已经超出了本文的讨论范围,本文不再赘述。

4.5谓词逻辑的应用

谓词逻辑特别适合构建基于规则的专家系统、决策支持系统和规则系统。这与深度学习基于大量样本的黑盒推理完全不同。深度学习是从特殊(的样本)出发归纳出一般性的结论,谓词逻辑则是从一般性的规则出发推导出特殊情况下的结论,这是两个截然相反的过程。人脑就是这两个过程的完美结合体。

5.结束语

本文简单介绍了传统人工智能的问题求解、博弈和谓词逻辑,目的是帮助非计算机专业的算法工程师开拓眼界增加认知的。要想了解更多的详情还需要你系统学习《人工智能》课程,或者关注我的博客。

人工智能的历史、现状和未来

2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄

2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄

2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国

2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士

人工智能发展的五个主要技术方向是什么

人工智能主要分支介绍

通讯、感知与行动是现代人工智能的三个关键能力,在这里我们将根据这些能力/应用对这三个技术领域进行介绍:

·计算机视觉(CV)

·自然语言处理(NLP)

·在NLP领域中,将覆盖文本挖掘/分类、机器翻译和语音识别。

·机器人

1、分支一:计算机视觉

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。物体检测和人脸识别是其比较成功的研究领域。

当前阶段:

计算机视觉现已有很多应用,这表明了这类技术的成就,也让我们将其归入到应用阶段。随着深度学习的发展,机器甚至能在特定的案例中实现超越人类的表现。但是,这项技术离社会影响阶段还有一定距离,那要等到机器能在所有场景中都达到人类的同等水平才行(感知其环境的所有相关方面)。

发展历史:

2、分支二:语音识别

语音识别是指识别语音(说出的语言)并将其转换成对应文本的技术。相反的任务(文本转语音/TTS)也是这一领域内一个类似的研究主题。

当前阶段:

语音识别已经处于应用阶段很长时间了。最近几年,随着大数据和深度学习技术的发展,语音识别进展颇丰,现在已经非常接近社会影响阶段了。

语音识别领域仍然面临着声纹识别和「鸡尾酒会效应」等一些特殊情况的难题。

现代语音识别系统严重依赖于云,在离线时可能就无法取得理想的工作效果。

发展历史:

百度语音识别:

距离小于1米,中文字准率97%+

支持耳语、长语音、中英文混合及方言

3、分支三:文本挖掘/分类

这里的文本挖掘主要是指文本分类,该技术可用于理解、组织和分类结构化或非结构化文本文档。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

当前阶段:

我们将这项技术归类到应用阶段,因为现在有很多应用都已经集成了基于文本挖掘的情绪分析或垃圾信息检测技术。文本挖掘技术也在智能投顾的开发中有所应用,并且提升了用户体验。

文本挖掘和分类领域的一个瓶颈出现在歧义和有偏差的数据上。

发展历史:

4、分支四:机器翻译

机器翻译(MT)是利用机器的力量自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)。

当前阶段:

机器翻译是一个见证了大量发展历程的应用领域。该领域最近由于神经机器翻译而取得了非常显著的进展,但仍然没有全面达到专业译者的水平;但是,我们相信在大数据、云计算和深度学习技术的帮助下,机器翻译很快就将进入社会影响阶段。

在某些情况下,俚语和行话等内容的翻译会比较困难(受限词表问题)。

专业领域的机器翻译(比如医疗领域)表现通常不好。

发展历史:

5、分支五:机器人

机器人学(Robotics)研究的是机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理。

机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。

当前阶段:

自上世纪「Robot」一词诞生以来,人们已经为工业制造业设计了很多机器人。工业机器人是增长最快的应用领域,它们在20世纪80年代将这一领域带入了应用阶段。在安川电机、Fanuc、ABB、库卡等公司的努力下,我们认为进入21世纪之后,机器人领域就已经进入了社会影响阶段,此时各种工业机器人已经主宰了装配生产线。此外,软体机器人在很多领域也有广泛的应用,比如在医疗行业协助手术或在金融行业自动执行承销过程。

但是,法律法规和「机器人威胁论」可能会妨碍机器人领域的发展。还有设计和制造机器人需要相对较高的投资。

发展历史:

总的来说,人工智能领域的研究前沿正逐渐从搜索、知识和推理领域转向机器学习、深度学习、计算机视觉和机器人领域。

大多数早期技术至少已经处于应用阶段了,而且其中一些已经显现出了社会影响力。一些新开发的技术可能仍处于工程甚至研究阶段,但是我们可以看到不同阶段之间转移的速度变得越来越快。

猜你喜欢:

AI人工智能——科技春晚暗藏的风口行业

什么是人工智能?人工智能和Python有什么关系?

数学不好能学人工智能课程?

黑马程序员AI人工智能培训课程

人工智能核心能力包括哪些层面

随着人工智能技术的高速发展,人工智能技术也在不断的完善,同时人工智能的应用领域也在不断扩张,为了能够更好的运用人工智能技术,需要了解清楚人工智能的核心能力包括哪些层面。

人工智能核心能力包括哪些层面?

从技术层面来看,业界广泛认为,人工智能的核心能力可以分为三个层面,分别是计算智能、感知智能、认知智能。

1、计算智能计算智能即机器具备超强的存储能力和超快的计算能力,可以基于海量数据进行深度学习,利用历史经验指导当前环境。随着计算力的不断发展,储存手段的不断升级,计算智能可以说已经实现。例如AlphaGo利用增强学习技术完胜世界围棋冠军;电商平台基于对用户购买习惯的深度学习,进行个性化商品推荐等。

人工智能核心能力包括哪些层面?

2、感知智能感知智能是指使机器具备视觉、听觉、触觉等感知能力,可以将非结构化的数据结构化,并用人类的沟通方式与用户互动。随着各类技术发展,更多非结构化数据的价值被重视和挖掘,语音、图像、视频、触点等与感知相关的感知智能也在快速发展。无人驾驶汽车、著名的波士顿动力机器人等就运用了感知智能,它通过各种传感器,感知周围环境并进行处理,从而有效指导其运行。

3、认知智能相较于计算智能和感知智能,认知智能更为复杂,是指机器像人一样,有理解能力、归纳能力、推理能力,有运用知识的能力。目前认知智能技术还在研究探索阶段,如在公共安全领域,对犯罪者的微观行为和宏观行为的特征提取和模式分析,开发犯罪预测、资金穿透、城市犯罪演化模拟等人工智能模型和系统;在金融行业,用于识别可疑交易、预测宏观经济波动等。要将认知智能推入发展的快车道,还有很长一段路要走。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇