如何认识人工智能对未来经济社会的影响
原标题:如何认识人工智能对未来经济社会的影响人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。
人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。
总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。
作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。
一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。
另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。
当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。
(作者单位:国务院发展研究中心创新发展研究部)
(责编:赵超、吕骞)分享让更多人看到
人工智能六种知识表示法,你必须要了解
3.谓词逻辑表示
虽然命题逻辑(propositionallogic)能够把客观世界的各种事实表示为逻辑命题,但是它具有较大的局限性,不适合于表示比较复杂的问题。谓词逻辑(predicatelogic)允许表达那些无法用命题逻辑表达的事情。
逻辑语句,更具体地说,一阶谓词演算(firstorderpredicatecalculus)是一种形式语言,其根本目的在于把数学中的逻辑论证符号化。如果能够采用数学演绎的方式证明一个新语句是从那些已知正确的语句导出的,那么也就能断定这个新语句也是正确的。
4.语义网络表示
语义网络是知识的一种结构化图解表示,它由节点和弧线或链线组成。节点用于表示实体、概念和情况等,弧线用于表示节点间的关系。
语义网络表示由下列4个相关部分组成:
(1)词法部分决定词汇表中允许有哪些符号,它涉及各个节点和弧线。
(2)结构部分叙述符号排列的约束条件,指定各弧线连接的节点对。
(3)过程部分说明访问过程,这些过程能用来建立和修正描述,以及回答相关问题
(4)语义部分确定与描述相关的(联想)意义的方法,即确定有关节点的排列及其占有物和对应弧线。
5.框架表示
心理学的研究结果表明,在人类日常的思维和理解活动中,当分析和解释遇到新情况时,要使用过去经验积累的知识。这些知识规模巨大而且以很好的组织形式保留在人们的记忆中。例如,当走进一家从未来过的饭店时,根据以往的经验,可以预见在这家饭店将会看到菜单、桌子、服务员等。当走进教室时,可以预见在教室里可以看到椅子、黑板等。
人们试图用以往的经验来分析解释当前所遇到的情况,但无法把过去的经验一一都存在脑子里,而只能以一个通用的数据结构的形式存储以往的经验。这样的数据结构称为框架(frame)。框架提供了一个结构,一种组织。在这个结构或组织中,新的资料可以用经验中得到的概念来分析和解释。因此,框架也是一种结构化表示法。
6.过程表示
语义网络和框架等知识表示方法,均是对知识和事实的一种静止的表达方法,称这类知识表达方式为陈述式知识表达,它强调的是事物所涉及的对象是什么,是对事物有关知识的静态描述,是知识的一种显示表达形式。而对于如何使用这些知识,则通过控制策略来决定。
与知识的陈述式表示相对应的是知识的过程(procedure)表示。所谓过程表示就是将有关某一问题领域的知识,连同如何使用这些知识的方法,均隐式地表达为一个求解题的过程。它所给出的是事物的一些客观规律,表达的是如何求解问题。知识的描述形式就是程序,所有信息均隐含在程序之中。从程序求解问题的效率上来说,过程式表达的效率要比陈述式表达高得多。但因其知识均隐含在程序中,因而难以添加新知识和扩充功能,适用范围较窄。返回搜狐,查看更多
人工智能在日常生活中的12个例子
在下面的文章中,您可以查看我们日常生活中出现的12个人工智能示例。
人工智能(AI)越来越受欢迎,不难看出原因。人工智能有可能以多种不同的方式应用,从烹饪到医疗保健。
虽然人工智能在今天可能是一个流行词,但在明天,它可能会成为我们日常生活的标准一部分。事实上,它已经在这里了。
1.自动驾驶汽车
他们通过使用大量传感器数据、学习如何处理交通和做出实时决策来工作并继续前进。这些汽车也被称为自动驾驶汽车,使用人工智能技术和机器学习来移动,而乘客无需随时控制。
2.智能助手
让我们从真正无处不在的东西开始——智能数字助理。在这里,我们谈论的是Siri、GoogleAssistant、Alexa和Cortana。
我们将它们包含在我们的列表中是因为它们基本上可以倾听然后响应您的命令,将它们转化为行动。
所以,你打开Siri,给她一个命令,比如“给朋友打电话”,她会分析你所说的话,筛选出围绕你讲话的所有背景噪音,解释你的命令,然后实际执行,这一切只需要几个秒。
这里最好的部分是这些助手变得越来越聪明,改进了我们上面提到的命令过程的每个阶段。您不必像几年前那样对命令进行具体化。
此外,虚拟助手在从你的实际命令中过滤无用的背景噪音方面变得越来越好。3.微软项目InnerEye
最著名的人工智能计划之一是由微软运营的一个项目。毫不奇怪,微软是顶尖的人工智能公司之一(尽管它肯定不是唯一的一家)。
微软项目InnerEye是最先进的研究,有可能改变世界。
这个项目旨在研究大脑,特别是大脑的神经系统,以更好地了解它的功能。这个项目的目的是最终能够使用人工智能来诊断和治疗各种神经疾病。
最著名的人工智能计划之一是由微软运营的一个项目。毫不奇怪,微软是顶尖的人工智能公司之一(尽管它肯定不是唯一的一家)。
微软项目InnerEye是最先进的研究,有可能改变世界。
这个项目旨在研究大脑,特别是大脑的神经系统,以更好地了解它的功能。这个项目的目的是最终能够使用人工智能来诊断和治疗各种神经疾病。
4.抄袭
大学生的(或者是教授的)?)噩梦。无论你是内容经理还是给论文评分的老师,你都有同样的问题——互联网让抄袭变得更容易。
那里有几乎无限量的信息和数据,不太谨慎的学生和员工很容易利用这一点。
事实上,没有人能够将某人的文章与所有的数据进行比较和对比。人工智能是一种完全不同的东西。
它们可以筛选数量惊人的信息,与相关文本进行比较,看是否有匹配。
此外,由于这一领域的进步和发展,一些工具实际上可以检查外语来源,以及图像和音频。
5.推荐
你可能已经注意到,某些平台上的媒体推荐越来越好,Netflix、YouTube和Spotify只是三个例子。这要感谢人工智能和机器学习。
我们提到的三个平台都考虑了你已经看到和喜欢的内容。这是容易的部分。然后,他们将其与成千上万的媒体进行比较和对比。他们主要从您提供的数据中学习,然后使用自己的数据库为您提供最适合您需要的内容。
让我们为YouTube简化这个过程,只是作为一个例子。
该平台使用标签等数据,年龄或性别等人口统计数据,以及消费者使用其他媒体的相同数据。然后,它混合和匹配,给你建议。
6.银行业务
如今,许多较大的银行都给你提供了通过智能手机存入支票的选项。你不用真的走到银行,只需轻点几下就可以了。
除了通过手机访问银行账户的明显安全措施外,支票还需要你的签名。
现在银行使用AIs和机器学习软件来读取你的笔迹,与你之前给银行的签名进行比较,并安全地使用它来批准一张支票。
总的来说,机器学习和人工智能技术加快了银行软件完成的大多数操作。这一切都有助于更高效地执行任务,减少等待时间和成本。
7.信用和欺诈
既然我们谈到了银行业,那就让我们稍微谈一下欺诈。银行每天处理大量的交易。追踪所有这些,分析,对一个普通人来说是不可能的。
此外,欺诈交易的形式每天都在变化。有了人工智能和机器学习算法,你可以在一秒钟内分析成千上万的交易。此外,您还可以让他们学习,弄清楚有问题的事务可能是什么样子,并为未来的问题做好准备。
接下来,无论何时你申请贷款或者申请信用卡,银行都需要检查你的申请。
考虑到多种因素,比如你的信用评分,你的金融历史,所有这些现在都可以通过软件来处理。这缩短了审批等待时间,降低了出错率。
8.聊天机器人
许多企业正在使用人工智能,特别是聊天机器人,作为他们的客户与他们互动的方式。
聊天机器人通常被用作公司的客户服务选项,这些公司在任何给定时间都没有足够的员工来回答问题或回应询问。
通过使用聊天机器人,这些公司可以在从客户那里获得重要信息的同时,将员工的时间腾出来做其他事情。
在交通拥挤的时候,像黑色星期五或网络星期一,这些是天赐之物。它们可以让你的公司免于被问题淹没,让你更好地为客户服务。
9.让您远离垃圾邮件
现在,我们都应该感谢垃圾邮件过滤器。
典型的垃圾邮件过滤器有许多规则和算法,可以最大限度地减少垃圾邮件的数量。这不仅能让你免受烦人的广告和尼日利亚王子的骚扰,还能帮助你抵御信用卡欺诈、身份盗窃和恶意软件。
现在,让一个好的垃圾邮件过滤器有效的是运行它的人工智能。过滤器背后的AI使用电子邮件元数据;它关注特定的单词或短语,它关注一些信号,所有这些都是为了过滤掉垃圾邮件。
10.视频摘要
这种日常人工智能在网飞变得非常流行。
也就是说,你可能已经注意到,网站和某些流媒体应用程序上的许多缩略图已经被短视频取代。这变得如此流行的一个主要原因是人工智能和机器学习。
人工智能会为你做这些,而不是让编辑们花费数百个小时来缩短、过滤和切割较长的视频,变成三秒钟的视频。它分析数百小时的内容,然后成功地将其总结成一小段媒体。
11.食谱和烹饪
人工智能在更多意想不到的领域也有潜力,比如烹饪。
一家名为Rasa的公司开发了一种人工智能系统,该系统可以分析食物,然后根据您冰箱和储藏室中的食物推荐食谱。对于喜欢烹饪但又不想花太多时间提前计划膳食的人来说,这种类型的人工智能是一种很好的方式。
12.人脸识别
关于人工智能和机器学习,如果我们可以说一件事,那就是它们使他们接触到的每一项技术都更加有效和强大。面部识别也不例外。现在有许多应用程序使用人工智能来满足他们的面部识别需求。例如,Snapchat使用AI技术通过实际识别呈现为人脸的视觉信息来应用面部过滤器。
Facebook现在可以识别特定照片中的面孔,并邀请人们标记自己或他们的朋友。
而且,当然,考虑用你的脸解锁你的手机。好吧,它需要人工智能和机器学习才能发挥作用。
让我们以AppleFaceID为例。当你设置它的时候,它会扫描你的脸,然后在上面放大约3万个DoS。它使用这些圆点作为标记,帮助它从多个不同的角度识别你的脸。
这使您可以在许多不同的情况和照明环境中用脸部解锁手机,同时防止其他人做同样的事情。
结论
未来就是现在。人工智能技术只会继续发展、壮大,并对每个行业和我们日常生活的几乎每个方面变得越来越重要。如果以上例子是可信的,这只是个时间问题。
未来,人工智能将继续发展,并出现在我们生活的新领域。随着更多创新应用的问世,我们将看到更多人工智能让我们的生活变得更轻松、更有效率的方式!