博舍

什么是人工智能 (AI) 什么是人工智能技术的核心技术

什么是人工智能 (AI)

虽然在过去数十年中,人工智能(AI)的一些定义不断出现,但JohnMcCarthy在2004年的文章 (PDF,127KB)(链接位于IBM外部)中给出了以下定义:"它是制造智能机器,特别是智能计算机程序的科学和工程。AI与使用计算机了解人类智能的类似任务有关,但不必局限于生物可观察的方法"。

然而,在这个定义出现之前数十年,人工智能对话的诞生要追溯到艾伦·图灵(AlanTuring)于1950年出版的开创性作品"计算机器与智能"(PDF,89.8KB)(链接位于IBM外部)。在这篇论文中,通常被称为“计算机科学之父”的图灵提出了以下问题:“机器能思考吗?” 他在这篇文章中提供了一个测试,即著名的“图灵测试”,在这个测试中,人类询问者试图区哪些文本响应是计算机做出的、哪些是人类做出的。虽然该测试自发表之后经过了大量的审查,但它仍然是AI历史的重要组成部分,也是一种在哲学中不断发展的概念,因为它利用了有关语言学的想法。

StuartRussell和PeterNorvig随后继续发表了“人工智能:一种现代方法 ”(链接位于IBM外部),成为AI研究方面的重要教材之一。在这本书中,他们深入探讨了AI的四个潜在目标或定义,基于理性、思考和行动来区分计算机系统:

人类方法:

像人类一样思考的系统像人类一样行动的系统

理想方法:

理性思考的系统理性行动的系统

艾伦·图灵的定义可归入"像人类一样行动的系统"类别。

以最简单的形式而言,人工智能是结合了计算机科学和强大数据集的领域,能够实现问题解决。它还包括机器学习和深度学习等子领域,这些子领域经常与人工智能一起提及。这些学科由AI算法组成,这些算法旨在创建基于输入数据进行预测或分类的专家系统。

目前,仍有许多围绕AI发展的炒作,市场上任何新技术的出现都会引发热议。正如Gartner在其hypecycle技术成熟度曲线(链接位于IBM外部)中指出的那样,自动驾驶汽车和个人助理等产品创新遵循“一个典型的创新周期,从欲望膨胀到期望幻灭、到最终了解创新在市场或领域中的相关性和作用。”正如LexFridman在2019年麻省理工学院演讲中指出的那样(01:08:15)(链接位于IBM外部),我们正处于欲望膨胀高峰期,接近幻灭的谷底期。 

随着对话围绕AI的伦理道德展开,我们可以开始看到幻灭谷底初见端倪。如想了解更多关于IBM在AI伦理对话中的立场,请阅读这里了解更多信息。

人工智能的五大核心技术

计算机视觉、机器学习、自然语言处理、机器人和语音识别是人工智能的五大核心技术,它们均会成为独立的子产业。

 

计算机视觉

计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列,来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理,分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

计算机视觉有着广泛的应用,其中包括:医疗成像分析被用来提高疾病预测、诊断和治疗;人脸识别被Facebook用来自动识别照片里的人物;在安防及监控领域被用来指认嫌疑人;在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多购买选择。

机器视觉作为相关学科,泛指在工业自动化领域的视觉应用。在这些应用里,计算机在高度受限的工厂环境里识别诸如生产零件一类的物体,因此相对于寻求在非受限环境里操作的计算机视觉来说目标更为简单。计算机视觉是一个正在进行中的研究,而机器视觉则是“已经解决的问题”,是系统工程方面的课题而非研究层面的课题。因为应用范围的持续扩大,某些计算机视觉领域的初创公司自2011年起已经吸引了数亿美元的风投资本。

机器学习

机器学习指的是计算机系统无须遵照显式的程序指令,而只依靠数据来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦被发现便可用于预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信用卡欺诈的模式。处理的交易数据越多,预测就会越准确。

 

机器学习的应用范围非常广泛,针对那些产生庞大数据的活动,它几乎拥有改进一切性能的潜力。除了欺诈甄别之外,这些活动还包括销售预测、库存管理、石油和天然气勘探,以及公共卫生等。机器学习技术在其他的认知技术领域也扮演着重要角色,比如计算机视觉,它能在海量图像中通过不断训练和改进视觉模型来提高其识别对象的能力。

现如今,机器学习已经成为认知技术中最炙手可热的研究领域之一,在2011~2014年这段时间内就已吸引了近10亿美元的风险投资。谷歌也在2014年斥资4亿美元收购Deepmind这家研究机器学习技术的公司。

 自然语言处理

自然语言处理是指计算机拥有的人类般的文本处理的能力。比如,从文本中提取意义,甚至从那些可读的、风格自然、语法正确的文本中自主解读出含义。一个自然语言处理系统并不了解人类处理文本的方式,但是它却可以用非常复杂与成熟的手段巧妙处理文本。例如,自动识别一份文档中所有被提及的人与地点;识别文档的核心议题;在一堆仅人类可读的合同中,将各种条款与条件提取出来并制作成表。以上这些任务通过传统的文本处理软件根本不可能完成,后者仅针对简单的文本匹配与模式就能进行操作。

自然语言处理像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合。建立语言模型来预测语言表达的概率分布,举例来说,就是某一串给定字符或单词表达某一

 

特定语义的最大可能性。选定的特征可以和文中的某些元素结合来识别一段文字,通过识别这些元素可以把某类文字同其他文字区别开来,比如垃圾邮件同正常邮件。以机器学习为驱动的分类方法将成为筛选的标准,用来决定一封邮件是否属于垃圾邮件。

因为语境对于理解“timeflies”(时光飞逝)和“fruitflies”(果蝇)的区别是如此重要,所以自然语言处理技术的实际应用领域相对较窄,这些领域包括分析顾客对某项特定产品和服务的反馈,自动发现民事诉讼或政府调查中的某些含义,自动书写诸如企业营收和体育运动的公式化范文,等等。

机器人

将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、制动器以及设计巧妙的硬件中,这就催生了新一代的机器人,它有能力与人类一起工作,能在各种未知环境中灵活处理不同的任务。例如,无人机、可以在车间为人类分担工作的“cobots”等。

语音识别

语音识别主要是关注自动且准确地转录人类的语音技术。该技术必须面对一些与自然语言处理类似的问题,在不同口音的处理、背景噪声、区分同音异形/异义词(“buy”和“by”听起来是一样的)方面存在一些困难,同时还需要具有跟上正常语速的工作速度。语音识别系统使用一些与自然语言处理系统相同的技术,再辅以其他技术,比如描述声音和其出现在特定序列与语言中概率的声学模型等。语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。比如Domino抯Pizza,最近推出了一个允许用户通过语音下单的移动APP。

上述5项技术的产业化,是人工智能产业化的要素。人工智能将是一个万亿级的市场,甚至是10万亿级的市场,将会为我们带来一些全新且容量巨大的子产业,比如机器人、智能传感器、可穿戴设备等,其中最令人期待的是机器人子产业。

机器人应用的分法有很多种,从应用层面可以粗略地分为以下几个类别。第一个类别是工业级机器人,像富士康这种公司已经运用得很好了,因为劳工成本越来越高,用工风险越

 

来越高,而机器人则可以解决这些问题。第二个类别是监护级机器人,它可以在家里和医院里作为病人、老人或孩子的护理,帮助他们做一定复杂程度的事情。中国对监护级机器人需求其实更迫切一些,因为中国人口红利在下降,同时老龄化又不断地上升,这两个矛盾,机器人都可以帮助解决。因此,这个领域的需求在民用市场占比很大。第三个类别就是探险级机器人,用来采矿或者探险等,大大避免了人所要经历的危险。此外还有用来打仗的军事机器人等。

网络媒体BusinessInsider预测,机器人将在许多岗位上取替人类:电话营销员、校对员、手工裁缝师、数学家、保险核保人、钟表修理师、货运代理商、报税员、图像处理人员、银行开户员、图书馆员、打字员等。因为它们的价格竞争力惊人。麦肯锡全球研究院的研究表明,当中国制造业工资每年增长10%~20%时,全球机器人的价格每年下调10%,一台最便宜的低阶机器人只需花费美国人年平均工资的一半。国际研究机构顾能预测:2020年机器人将导致全球新一波失业潮。

同时,人工智能技术的发展还将让许多旧产业获得改头换面式的新生,其中最典型的是汽车产业。汽车产业已存在上百年了,其间的变革也是非常大的,但驾驶汽车的始终是人,可最近几年,随着谷歌等公司的大力投入,机器或者说某种自动化的系统已经有望取代人来驾驶汽车,从而形成一个市场容量巨大的新产业,即无人驾驶汽车产业。这个产业的规模也将是万亿级甚至是10万亿级的。而且,这个产业还将与新能源产业叠加、融合在一起,形成“车联网+能联网+互联网+电动汽车”的复合产业——未来,我们会把插电式汽车和氢燃料汽车作为发电厂使用,从而使新能源汽车成为电网的一部分,成为新能源的供给者,与现在一些装有太阳能发电系统的房屋是太阳能的供给者一样。

毫无疑问,与互联网一样,智能技术会向几乎所有旧产业渗透。华泰证券在一份人工智能产业的研究报告中提及了九大行业:生活服务O2O、医疗、零售业、金融业、数字营销业、农业、工业、商业和在线教育。实际上,将获得新生的旧产业还有许多,如军事、传媒、家居、医疗健康业、生命科学、能源、公共部门……甚至包括受VR/AR(虚拟现实与增强现实)技术发展影响而产生的虚拟产业。

什么是人工智能

狭义人工智能(ANI)

ANI是现有AI技术能够达到的一种人工智能,也被称作弱人工智能。尽管狭义人工智能可执行的任务可能由高度复杂的算法和神经网络驱动,但它们仍然是单一且以目标为导向的。面部识别、网络搜索和自动驾驶汽车都属于狭义人工智能的范畴。之所以将狭义人工智能归类为弱人工智能,不是因为它在应用范围和能力方面存在局限性,而是因为它与具备人类特质这种真正意义上的智能相差甚远。哲学家约翰·塞尔(JohnSearle)认为狭义人工智能“可以用于检验关于思维的假设,但实际上并不属于思维范畴”。

 

通用人工智能(AGI)

 

AGI可以成功执行人类才能完成的智力型任务。与狭义AI系统一样,AGI系统可以从经验中学习,发现和预测模式,但是AGI的智能水平更胜一筹。AGI可以从先前获取的数据或现有算法未解决的各种任务和情况中,推断出这些知识。

 

Summit超级计算机是全球为数不多的可以演示AGI的超级计算机之一。Summit每秒可以执行200千万亿次计算,而人类完成这些计算需要十亿年。要想发挥切实可行的作用,AGI模型不一定需要如此强大的计算能力,只需要达到目前超级计算机的计算水平。

 

超人工智能(ASI)

 

从理论上讲,ASI系统拥有完全的自我意识。除了简单地模仿或理解人类行为之外,它们还能从根本上掌握人类行为。

 

ASI不仅具备这些人类特质,还拥有远胜于人类的处理能力和分析能力,这似乎为我们呈现了一个反乌托邦式的科幻未来,到那时人类将被逐渐淘汰出局。

 

生活在今天的人们也许无法亲历这样的世界,但即便如此,依照人工智能的迅猛发展势头,可以预见人工智能几乎会从所有可衡量的领域全方位碾压人类,因此人类必须慎重考虑人工智能的道德准则和管理措施。正如斯蒂芬·霍金(StephenHawking)所说,“正因为AI有着巨大的潜力,因此必须研究如何在利用其优势的同时避免落入潜在的危险中。”

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇