博舍

人工智能、机器学习与深度学习的区别与联系 人工智能各个方向的区别与联系是什么

人工智能、机器学习与深度学习的区别与联系

  你是否也有这样的疑惑,人工智能、机器学习、深度学习以及监督学习等名词之间到底有什么样的联系与区别,以及它们的应用场景呢。下面就通过概念、区别和联系以及应用场景三个方面来具体的分析下他们。

一、概念

1、人工智能

  人工智能(Artificialintelligence)简称AI。人工智能是计算机科学的一个分支,它企图了解智能的本质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

  人工智能目前分为弱人工智能和强人工智能和超人工智能。

  1)弱人工智能:弱人工智能(ArtificialNarrowIntelligence/ANI),只专注于完成某个特定的任务,例如语音识别、图象识别和翻译等,是擅长于单个方面的人工智能。它们只是用于解决特定的具体类的任务问题而存在,大都是统计数据,以此从中归纳出模型。由于弱人工智能智能处理较为单一的问题,且发展程度并没有达到模拟人脑思维的程度,所以弱人工智能仍然属于“工具”的范畴,与传统的“产品”在本质上并无区别。

  2) 强人工智能:强人工智能(ArtificialGenerallnteligence/AGI),属于人类级别的人工智能,在各方面都能和人类比肩,它能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作,并且和人类一样得心应手。

  3)超人工智能:超人工智能(ArtificialSuperintelligence/ASI),在几乎所有领域都比最聪明的人类大脑都聪明许多,包括科学创新、通识和社交技能。在超人工智能阶段,人工智能已经跨过“奇点”,其计算和思维能力已经远超人脑。此时的人工智能已经不是人类可以理解和想象。人工智能将打破人脑受到的维度限制,其所观察和思考的内容,人脑已经无法理解,人工智能将形成一个新的社会。

  目前我们仍处于弱人工智能阶段。

2、机器学习

  机器学习(MachineLearning)简称ML。机器学习属于人工智能的一个分支,也是人工智能的和核心。机器学习理论主要是设计和分析一些让计算机可以自动”学习“的算法。

3、深度学习

  深度学习(DeepLearning)简称DL。最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,如图象、声音、文本。

注意:你可能在接触深度学习的时候也听到过监督学习、非监督学习、半监督学习等概念,下面就顺便对这三个名词解析下:

1)监督学习:用一部分已知分类、有标记的样本来训练机器后,让它用学到的特征,对没有还分类、无标记的样本进行分类、贴标签。多用于分类。

2)非监督学习:所有的数据没有标记,类别未知,让它自己学习样本之间的相似性来进行分类。多用于聚类。

3)半监督学习:有两个样本集,一个有标记,一个没有标记。综合利用有类标的样本(labeledsample)和没有类标的样本(unlabeledsample),来生成合适的分类。

二、区别于联系

  机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。如下图(来源http://baijiahao.baidu.com/s?id=1588563162916669654&wfr=spider&for=pc):

                

下面一张图能更加细分其关系:

注意:在上幅图中,我们可以看下机器学习下的深度学习和监督学习以及非监督学习,那它们之间是什么关系呢,其实就是分类方法不同而已,他们之间可以互相包含。打个比方:一个人按性别可以分为男人和女人,而按年龄来分可以分为老人和小孩子。所以在深度学习中我们可以用到监督学习和非监督学习,而监督学习中可以用到很基础的不含神经元的算法(KNN算法)也可以用到添加了多层神经元的深度学习算法。

三、应用场景

1)    人工智能的研究领域在不断的扩大,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。并且目前的科研工作都集中在弱人工智能这部分。

2)    机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。传统的机器学习算法在指纹识别、人脸检测、特征物体检测等领域的应用基本达到了商业化的要求或特定场景的商业化水平。

3)  深度学习本来并不是一种独立的学习方法,其本身也会用到监督学习和无监督学习方法来训练深度神经网络,但由于近年来改领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习方法。主要应用在互联网、安防、金融、智能硬件、医疗、教育等行业,在人脸技术、图象识别、智能监控、文字识别、语义分析等领域。

关于人工智能,机器学习研究方向的选择心得(干货鸡汤!)

现在人工智能方向,不言而喻,现在可以说21世纪最为火热的研究方向,各个行业也可以说都在向人工智能领域进行跨领域的迁移以及靠拢。到现在AI几乎已经人尽皆知,很多人也会听说AI的算法工程师经常是一说起来就是年薪50W那种,而且干的工作也是高大上,可以说是很多工程师梦寐以求的工作,然而现实真的是这样吗?如果读机器学习的方向,什么方向比较好?这些方向有都是什么用途?今天就让我们来一起谈一谈具体的情况。

机器学习是什么?机器学习的研究方向包括哪些?这些研究方向都是干什么用的?

机器学习的研究方向是在人工智能的研究方向之下的分支,人工智能的概念十分的大,不过机器学习是人工智能的一个最为火爆的方向,机器学习的大方向下包括传统的机器学习算法,KNN,SVM这种算法类型,还有就是人工神经网络,也是就是深度学习的类别,人工智能,机器学习,深度学习的关系,如下图可以进行概括。深度学习方向包括很多,最主要的几大类为计算机视觉(CV),自然语言处理(NLP),推荐系统,语音。在对每一个方向进行一下细致的划分。

(1)计算机视觉(CV)

计算机视觉的研究方向很多,人脸检测,人脸识别,人脸合成,图像识别,目标检测,图像分割,GAN,图像风格迁移,3D目标检测,三维重建,超分辨率·,等等十分多的方向。不仅如此除了图像一些领域外,还包括视频领域的处理等,视频压缩等

(2)自然语言处理(NLP)

自然语言处理的研究方向略少,主要针对的是文本信息,比如机器翻译,文本分类,文本摘要生成,情感分析,文本纠错等

(3)推荐系统

这个方向我个人了解不多,主要的使用用途用于进行个性化的样本推荐

(4)语音方向

语音方向是单独一个方向,用来研究如何用神经网络的办法来进行语音信号的处理,语音的整个领域比较小,主要包括语音识别,语音音色转换等

人工智能的岗位要求是什么?

其实博主本人就是一名985的硕士,经过多方的了解,现在人工智能的就业前景真的是不敢苟同,在几年前的时候,会使用tensorflow,pytorch,可以跑跑模型训练,基本就是一份高薪的工作,但是现在已经不行了,现在的入门要求基本上要比以前高的多,如果是算法岗位。一般来说一定要有顶会的论文,ICML,NIPS,CVPR,AAAI,ICJAI,ACL,这样的顶级会议的论文,基本才能十拿九稳,或者是具有博士学位,其实不难看出,人确实很多,尤其是大厂以及互联网巨头等级的公司,基本上都要顶级的会议论文。其实有的人说,这是顶会劝退,其实不然,互联网公司的岗位也确实有限,每年的毕业生都是接近1千万甚至更多,其中博士,硕士,海归都有,所以相对来说,看一看硬件的条件也是可以理解。

再来可以看看现在ICML,CVPR等顶级会议的投稿量,竞争越来越激烈了,其他的一些专业的也都在进行人工智能方向的转行,如果门槛还不抬高,满足的人太多了。

3.对于一名研究生来说,选什么方向比较合适呢?

首先我们要知道一个情况,高校做人工智能研究的目的是什么,当然是为了出论文,出科研成果。就会来说,每年也会有大量的公司研究院,在CV领域,商汤之类的公司一直都是排行榜前列,他们在这个平台之下来展示自己的业务和科研能力。我个人认为高校研究生的位置比较尴尬,深度学习需要很强大的算力,要有很多的数据,才能做出非常炫酷的效果。但是和公司的研究院来说,高校一般没有那么强大的算力,我记得自己曾经跑过一个模型,Facebook公司的一个模型,他的训练时间是“epoch300,8张Tesla

v100,跑6天,一次完整的迭代差不多是30min”,所以可以看出,像现在比较新的方向,视频理解,三维重建,这种计算量巨大的模型,真的不太适合读研研究,方向比较难,数据也是限制。前一段时间除了GPT-3模型,训练一次的花费可以自己搜索一下。

高校由于算力和数据的限制,一般就是做模型结构的改建,以及领域的迁移与融合方式的改进,比如starGAN网络出现后,有人将starGan从图像迁移到语音领域做出了语音的音色转换。以及一些模型的融合,比如多模态等,相对来说更多的不是财力,而是idea,可以说是用最小的金钱做最多的事情。

如何理性看待所谓的人工智能的人才缺乏?

我们经常可以听到,人工智能的人才匮乏,不错,是的,但是我觉得应该更多的是侧重于“人才”,人工智能行业不需要很多的码农,他需要的是着真正能够带来上线突破的人。用yolo

v3为例子,我们只需要将大量的西瓜图片放入yolov3

的train中,就可以进行训练,并且进行西瓜的泛化识别,也就是说,理论上,提供足够的样本图片,其实任何物品都可以进行识别。也就是说只要提高了yolo

v3的学习能力

,比如map50提高了map60,他对任何的物体识别都会进步。所有人工智能是很少的精英,去做很多的事情,这也是必须把门槛提高的原因了。

5.工业界与学术界的侧重方向区别?

举一个最简单的例子。mnist数据集做手写数字的识别,其实acc98%,到acc99%,工业界还不太在乎的,在实际的使用中,98%的模型,与99%的模型几乎没什么区别。工业界更多的考虑的是实际的使用,环境的影响,例如图像的预处理,以及模型的大小以及速度等,但是98%到99%,对学术界很难(不是说mnist,举例来说,大多数数据集90以上在提高都难)

总结来说,人工智能方向从上升期进入平稳期了,不需要华丽的外表,要的是实在的可用,而且程序员不分贵贱,行行出状元,如果真的喜欢没问题,但是为了高薪酬盲目跟风,已经不推荐了。只要功夫深铁杵磨成针!兴趣是最好的老师。加油!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇