人工智能入门(二)(简述、理论基础、历史和发展现状)
人工智能的八个理论基础:哲学、数学、经济学、神经科学、心理学、计算机工程、控制理论和控制论、语言学。
数学对人工智能的理论支撑包括三个方面:(1)逻辑学:得出正确结论的形式规则。发展:命题逻辑,即布尔逻辑——一阶逻辑,扩展布尔逻辑,增加了对象和关系——指称理论,揭示如何将逻辑中的对象与对象相关联。(2)计算:研究什么是可计算的。发展:描述可计算的函数——提出计算的易处理性概念——提出了NP完全性理论。NP完全性理论:P(确定多项式时间的问题)、NP(不确定性多项式时间的问题)、NPC(NP完全性问题,是NP中最难的问题)。它是计算复杂性理论中的一个重要概念,它表征某些问题的固有复杂度。一旦确定一类问题具有NP完全性时,就可知道这类问题实际上是具有相当复杂程度的困难问题。(3)概率:研究如何根据不确定信息进行推理。发展:将概率描述为博弈事件中可能的结果——推进这一理论,并引入了新的统计学方法——提出贝叶斯规则,成为不确定性推理的现代方法基础。
神经科学研究大脑如何处理信息:神经科学研究神经系统,尤其是大脑。大脑在记性决策方面(预测和仿真是决策关键)非常优越,且不像软件那样模块化。大脑中神经元的数量基本上固定的,计算机中处理单元的数量每五年增加十倍。
认知心理学研究人类如何思考与行动:把大脑看作是信息处理设备,是研究心智过程的学科。研究方面:注意机制(意识集中在某个有用的感知信息子集的状态)、语言应用(研究语言习得、语言形成的组件、语言使用的语气及其他相关领域)、记忆(包括三个子集:过程、语义和情景)、感知(研究人类物理感知及认知过程)、问题求解、创造力、思考。元感知是关于认知的认知,有两个组成部分:关于认知的知识,以及认知的调节。认知心理学是研究人脑如何接受外部世界的输入,如何处理以及作用等;认知科学则是研究如何在大脑中形成以及转录过程的跨领域学科,关注于通过研究收集数据。
控制理论与控制论研究机器如何能在自身的控制下运行:控制理论是工程与数学的交叉学科分支,研究处理动态系统对输入的行为,以及该行为如何通过反馈进行调整。控制论是跨学科的研究途径,探索调控系统的结构、约束和可能性,1948年被定义为“研究动物与机器的控制与通信的科学”,21世纪被简单解释为“用技术控制任何系统”。
《新一代人工智能伦理规范》发布
9月25日,国家新一代人工智能治理专业委员会发布了《新一代人工智能伦理规范》(以下简称《伦理规范》),旨在将伦理道德融入人工智能全生命周期,为从事人工智能相关活动的自然人、法人和其他相关机构等提供伦理指引。
《伦理规范》经过专题调研、集中起草、意见征询等环节,充分考虑当前社会各界有关隐私、偏见、歧视、公平等伦理关切,包括总则、特定活动伦理规范和组织实施等内容。《伦理规范》提出了增进人类福祉、促进公平公正、保护隐私安全、确保可控可信、强化责任担当、提升伦理素养等6项基本伦理要求。同时,提出人工智能管理、研发、供应、使用等特定活动的18项具体伦理要求。《伦理规范》全文如下:
新一代人工智能伦理规范为深入贯彻《新一代人工智能发展规划》,细化落实《新一代人工智能治理原则》,增强全社会的人工智能伦理意识与行为自觉,积极引导负责任的人工智能研发与应用活动,促进人工智能健康发展,制定本规范。
第一章 总则
第一条 本规范旨在将伦理道德融入人工智能全生命周期,促进公平、公正、和谐、安全,避免偏见、歧视、隐私和信息泄露等问题。
第二条 本规范适用于从事人工智能管理、研发、供应、使用等相关活动的自然人、法人和其他相关机构等。(一)管理活动主要指人工智能相关的战略规划、政策法规和技术标准制定实施,资源配置以及监督审查等。(二)研发活动主要指人工智能相关的科学研究、技术开发、产品研制等。(三)供应活动主要指人工智能产品与服务相关的生产、运营、销售等。(四)使用活动主要指人工智能产品与服务相关的采购、消费、操作等。
第三条 人工智能各类活动应遵循以下基本伦理规范。(一)增进人类福祉。坚持以人为本,遵循人类共同价值观,尊重人权和人类根本利益诉求,遵守国家或地区伦理道德。坚持公共利益优先,促进人机和谐友好,改善民生,增强获得感幸福感,推动经济、社会及生态可持续发展,共建人类命运共同体。(二)促进公平公正。坚持普惠性和包容性,切实保护各相关主体合法权益,推动全社会公平共享人工智能带来的益处,促进社会公平正义和机会均等。在提供人工智能产品和服务时,应充分尊重和帮助弱势群体、特殊群体,并根据需要提供相应替代方案。(三)保护隐私安全。充分尊重个人信息知情、同意等权利,依照合法、正当、必要和诚信原则处理个人信息,保障个人隐私与数据安全,不得损害个人合法数据权益,不得以窃取、篡改、泄露等方式非法收集利用个人信息,不得侵害个人隐私权。(四)确保可控可信。保障人类拥有充分自主决策权,有权选择是否接受人工智能提供的服务,有权随时退出与人工智能的交互,有权随时中止人工智能系统的运行,确保人工智能始终处于人类控制之下。(五)强化责任担当。坚持人类是最终责任主体,明确利益相关者的责任,全面增强责任意识,在人工智能全生命周期各环节自省自律,建立人工智能问责机制,不回避责任审查,不逃避应负责任。(六)提升伦理素养。积极学习和普及人工智能伦理知识,客观认识伦理问题,不低估不夸大伦理风险。主动开展或参与人工智能伦理问题讨论,深入推动人工智能伦理治理实践,提升应对能力。
第四条 人工智能特定活动应遵守的伦理规范包括管理规范、研发规范、供应规范和使用规范。
第二章 管理规范
第五条 推动敏捷治理。尊重人工智能发展规律,充分认识人工智能的潜力与局限,持续优化治理机制和方式,在战略决策、制度建设、资源配置过程中,不脱离实际、不急功近利,有序推动人工智能健康和可持续发展。
第六条 积极实践示范。遵守人工智能相关法规、政策和标准,主动将人工智能伦理道德融入管理全过程,率先成为人工智能伦理治理的实践者和推动者,及时总结推广人工智能治理经验,积极回应社会对人工智能的伦理关切。
第七条 正确行权用权。明确人工智能相关管理活动的职责和权力边界,规范权力运行条件和程序。充分尊重并保障相关主体的隐私、自由、尊严、安全等权利及其他合法权益,禁止权力不当行使对自然人、法人和其他组织合法权益造成侵害。
第八条 加强风险防范。增强底线思维和风险意识,加强人工智能发展的潜在风险研判,及时开展系统的风险监测和评估,建立有效的风险预警机制,提升人工智能伦理风险管控和处置能力。
第九条 促进包容开放。充分重视人工智能各利益相关主体的权益与诉求,鼓励应用多样化的人工智能技术解决经济社会发展实际问题,鼓励跨学科、跨领域、跨地区、跨国界的交流与合作,推动形成具有广泛共识的人工智能治理框架和标准规范。
第三章 研发规范
第十条 强化自律意识。加强人工智能研发相关活动的自我约束,主动将人工智能伦理道德融入技术研发各环节,自觉开展自我审查,加强自我管理,不从事违背伦理道德的人工智能研发。
第十一条 提升数据质量。在数据收集、存储、使用、加工、传输、提供、公开等环节,严格遵守数据相关法律、标准与规范,提升数据的完整性、及时性、一致性、规范性和准确性等。
第十二条 增强安全透明。在算法设计、实现、应用等环节,提升透明性、可解释性、可理解性、可靠性、可控性,增强人工智能系统的韧性、自适应性和抗干扰能力,逐步实现可验证、可审核、可监督、可追溯、可预测、可信赖。
第十三条 避免偏见歧视。在数据采集和算法开发中,加强伦理审查,充分考虑差异化诉求,避免可能存在的数据与算法偏见,努力实现人工智能系统的普惠性、公平性和非歧视性。
第四章 供应规范
第十四条 尊重市场规则。严格遵守市场准入、竞争、交易等活动的各种规章制度,积极维护市场秩序,营造有利于人工智能发展的市场环境,不得以数据垄断、平台垄断等破坏市场有序竞争,禁止以任何手段侵犯其他主体的知识产权。
第十五条 加强质量管控。强化人工智能产品与服务的质量监测和使用评估,避免因设计和产品缺陷等问题导致的人身安全、财产安全、用户隐私等侵害,不得经营、销售或提供不符合质量标准的产品与服务。
第十六条 保障用户权益。在产品与服务中使用人工智能技术应明确告知用户,应标识人工智能产品与服务的功能与局限,保障用户知情、同意等权利。为用户选择使用或退出人工智能模式提供简便易懂的解决方案,不得为用户平等使用人工智能设置障碍。
第十七条 强化应急保障。研究制定应急机制和损失补偿方案或措施,及时监测人工智能系统,及时响应和处理用户的反馈信息,及时防范系统性故障,随时准备协助相关主体依法依规对人工智能系统进行干预,减少损失,规避风险。
第五章 使用规范
第十八条 提倡善意使用。加强人工智能产品与服务使用前的论证和评估,充分了解人工智能产品与服务带来的益处,充分考虑各利益相关主体的合法权益,更好促进经济繁荣、社会进步和可持续发展。
第十九条 避免误用滥用。充分了解人工智能产品与服务的适用范围和负面影响,切实尊重相关主体不使用人工智能产品或服务的权利,避免不当使用和滥用人工智能产品与服务,避免非故意造成对他人合法权益的损害。
第二十条 禁止违规恶用。禁止使用不符合法律法规、伦理道德和标准规范的人工智能产品与服务,禁止使用人工智能产品与服务从事不法活动,严禁危害国家安全、公共安全和生产安全,严禁损害社会公共利益等。
第二十一条 及时主动反馈。积极参与人工智能伦理治理实践,对使用人工智能产品与服务过程中发现的技术安全漏洞、政策法规真空、监管滞后等问题,应及时向相关主体反馈,并协助解决。
第二十二条 提高使用能力。积极学习人工智能相关知识,主动掌握人工智能产品与服务的运营、维护、应急处置等各使用环节所需技能,确保人工智能产品与服务安全使用和高效利用。
第六章 组织实施
第二十三条 本规范由国家新一代人工智能治理专业委员会发布,并负责解释和指导实施。
第二十四条 各级管理部门、企业、高校、科研院所、协会学会和其他相关机构可依据本规范,结合实际需求,制订更为具体的伦理规范和相关措施。
第二十五条 本规范自公布之日起施行,并根据经济社会发展需求和人工智能发展情况适时修订。
国家新一代人工智能治理专业委员会
2021年9月25日
人工智能可能有自主意识了吗
➤大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术
➤不同于当前依赖数据学习的技术路线,新一代人工智能强调在没有经过数据学习的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互
➤当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。在发展科技的同时,必须同步发展我们的规制体系
➤“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”
今年6月,美国谷歌公司软件工程师布莱克·勒莫因称语言模型LaMDA出现自我意识。他认为,LaMDA拥有七八岁孩童的智力,并相信LaMDA正在争取自己作为一个人的权利。
LaMDA是谷歌去年发布的一款专门用于对话的语言模型,主要功能是可以与人类交谈。
为佐证观点,勒莫因把自己和LaMDA的聊天记录上传至互联网。随后,谷歌以违反保密协议为由对其停职。谷歌表示,没有任何证据支持勒莫因的观点。
事实上,“AI(人工智能)是否拥有自主意识”一直争议不休。此次谷歌工程师和LaMDA的故事,再次引发讨论。人们想知道:人工智能技术究竟发展到了怎样的阶段?是否真的具备自主意识?其判定依据是什么?未来我们又该以怎样的能力和心态与人工智能和谐共处?
人工智能自主意识之辨勒莫因认为LaMDA具有意识的原因有三:一是LaMDA以前所未有的方式高效、创造性地使用语言;二是它以与人类相似的方式分享感觉;三是它会表达内省和想象,既会担忧未来,也会追忆过去。
受访专家告诉《瞭望》新闻周刊记者,上述现象仅仅是因为LaMDA所基于的Transformer架构能够联系上下文,进行高精度的人类对话模拟,故能应对人类开放、发散的交谈。
至于人工智能是否已经具备自主意识,判定标准如何,受访专家表示,对人类意识的探索目前仍属于科技前沿,尚未形成统一定义。
清华大学北京信息科学与技术国家研究中心助理研究员郭雨晨说:“我们说人有自主意识,是因为人知道自己在干什么。机器则不一样,你对它输入内容,它只是依照程序设定进行反馈。”
中国社会科学院科学技术哲学研究室主任段伟文认为,一般意义上,人的自我意识是指对自我具备觉知,但如何认识和理解人类意识更多还是一个哲学问题而不是科学问题,这也是很难明确定义人工智能是否具备意识的原因。
被誉为“计算机科学与人工智能之父”的艾伦·图灵,早在1950年就曾提出图灵测试——如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么可以称这台机器具有智能。
这一设想随后被具化为,如果有超过30%参与测试的人以为自己在和人说话而非计算机,就可以认为“机器会思考”。
当前随着技术的发展,已经有越来越多的机器能够通过图灵测试。
但清华大学人工智能国际治理研究院副院长梁正告诉《瞭望》新闻周刊记者,图灵测试只能证明机器在表象上可以做到让人无法分辨它与人类的不同,却不能证明机器能够思考,更不能证明机器具备自主意识。
段伟文表示,目前大体有两种方式判定人工智能是否具有自主意识,一种以人类意识为参照,另一种则试图对机器意识进行全新定义。
若以人类意识为参照,要观察机器能否像人一样整合信息。“比如你在阳光下,坐在河边的椅子上看书,有树影落在脸上,有风吹来,它们会带给你一种整体的愉悦感。而对机器来说,阳光、河流、椅子等,是分散的单一元素。”段伟文说。
不仅如此,段伟文说,还要观察机器能否像人一样将单一事件放在全局中思考,作出符合全局利益的决策。
若跳出人类构建自主意识的范式,对机器意识进行重新定义,则需要明白意识的本质是什么。
段伟文告诉记者,有理论认为如果机器与机器之间形成了灵活、独立的交互,则可以称机器具备意识。也有理论认为,可以不追究机器的内心,仅仅把机器当作行为体,从机器的行为表现判断它是否理解所做事情的意义。“比如机器人看到人类喝咖啡后很精神,下次当它观察到人类的疲惫,能不能想到要为人类煮一杯咖啡?”段伟文说。
但在段伟文看来,这些对机器意识进行重新定义的理论,其问题出在,即便能够证明机器可以交互对话、深度理解,但是否等同于具备自主意识尚未有定论。“以LaMDA为例,虽然能够生成在人类看来更具意义的对话,甚至人可以与机器在对话中产生共情,但其本质仍然是在数据采集、配对、筛选机制下形成的反馈,并不代表模型能够理解对话的意义。”
换言之,即便人工智能可以对人类的语言、表情所传递的情绪作出判断,但这主要应用的是自然语言处理、计算机视觉等技术。
郭雨晨直言,尽管在情感计算方面,通过深度学习的推动已经发展得比较好,但如果就此说人工智能具备意识还有些一厢情愿。“把‘意识’这个词换成‘功能’,我会觉得更加准确。”
技术换道有专家提出,若要机器能思考,先要解决人工智能发展的换道问题。
据了解,目前基于深度学习、由数据驱动的人工智能在技术上已经触及天花板。一个突出例证是,阿尔法围棋(AlphaGo)在击败人类围棋世界冠军后,虽然财力和算力不断投入,但深度学习的回报率却没有相应增长。
一般认为,人工智能可被分为弱人工智能、通用人工智能和超级人工智能。弱人工智能也被称为狭义人工智能,专攻某一领域;通用人工智能也叫强人工智能,主要目标是制造出一台像人类一样拥有全面智能的计算机;超级人工智能类似于科幻作品中拥有超能力的智能机器人。
从产业发展角度看,人工智能在弱人工智能阶段停留了相当长时间,正在向通用人工智能阶段迈进。受访专家表示,目前尚未有成功创建通用人工智能的成熟案例,而具备自主意识,至少需要发展到通用人工智能阶段。
梁正说,大模型、大数据的驱动让人工智能在对话的自然度、趣味性上有了很大突破,但距离具备自主意识还很远。“如果你给这类语言模型喂养大量关于内省、想象等与意识有关的数据,它便更容易反馈与意识有关的回应。”
不仅如此,现阶段的人工智能在一个复杂、专门的领域可以做到极致,却很难完成一件在人类看来非常简单的事情。“比如人工智能可以成为围棋高手,却不具备三岁小孩对陌生环境的感知能力。”段伟文说。
谈及背后原因,受访专家表示,第一是当前人工智能主要与符号世界进行交互,在对物理世界的感知与反应上发展缓慢。第二是数据学习让机器只能对见过的内容有合理反馈,无法处理陌生内容。第三是在数据驱动技术路线下,人们通过不断调整、优化参数来强化机器反馈的精准度,但这种调适终究有限。
郭雨晨说,人类在特定任务的学习过程中接触的数据量并不大,却可以很快学习新技能、完成新任务,这是目前基于数据驱动的人工智能所不具备的能力。
梁正强调,不同于当前主要依赖大规模数据训练的技术路线,新一代人工智能强调在没有经过数据训练的情况下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互。
相比人类意识的自由开放,以往人工智能更多处在封闭空间。尽管这个空间可能足够大,但若超出设定范畴便无法处理。而人类如果按照规则不能解决问题,就会修改规则,甚至发明新规则。
这意味着,如果人工智能能够超越现有学习模式,拥有对自身意识系统进行反思的能力,就会理解自身系统的基本性质,就有可能改造自身的意识系统,创造新规则,从而成为自己的主人。
“人工智能觉醒”背后有关“人工智能觉醒”的讨论已不鲜见,但谷歌迅速否认的态度耐人寻味。
梁正表示:“如果不迅速驳斥指认,会给谷歌带来合规性方面的麻烦。”
据了解,关于人工智能是否有自主意识的争论并非单纯技术领域的学术探讨,而关乎企业合规性的基本坚守。一旦认定公司研发的人工智能系统出现自主意识,很可能会被认为违反第2版《人工智能设计的伦理准则》白皮书的相关规范。
这一由美国电气和电子工程师协会2017年发布的规范明确:“根据某些理论,当系统接近并超过通用人工智能时,无法预料的或无意的系统行为将变得越来越危险且难以纠正。并不是所有通用人工智能级别的系统都能够与人类利益保持一致,因此,当这些系统的能力越来越强大时,应当谨慎并确定不同系统的运行机制。”
梁正认为,为避免社会舆论可能的过度负面解读,担心大家认为它培育出了英国作家玛丽·雪莱笔下的弗兰肯斯坦式的科技怪物,以“不作恶”为企业口号的谷歌自然会予以否认。“不仅如此,尽管这一原则对企业没有强制约束力,但若被认为突破了底线,并对个体和社会造成实质性伤害,很有可能面临高额的惩罚性赔偿,因此企业在合规性方面会更为谨慎。”
我国也有类似管理规范。2019年,国家新一代人工智能治理专业委员会发布《新一代人工智能治理原则——发展负责任的人工智能》,提出人工智能治理的框架和行动指南。其中,“敏捷治理”原则主要针对技术可能带来的新社会风险展开治理,强调治理的适应性与灵活性。
中国信息化百人会成员、清华大学教授薛澜在接受媒体采访时表示,当前人工智能治理面临的最大挑战,是我们没有一套比较成熟的体系来规制其潜在的风险。特别是在第四次工业革命背景下,我国的人工智能技术和其他国家一样都处于发展期,没有现成的规制体系,这样就使得我们在发展科技的同时,必须同步发展我们的规制体系。“这可能是人工智能发展面临最大的挑战。”
在梁正看来,目前很难断言新兴人工智能技术具有绝对风险,但必须构造合理的熔断、叫停机制。在治理中既要具有一定的预见性,又不能扼杀创新的土壤,要在企业诉求和公共安全之间找到合适的平衡点。
毕竟,对人类来说,发展人工智能的目的不是把机器变成人,更不是把人变成机器,而是解决人类社会发展面临的问题。
从这个角度来说,我们需要的或许只是帮助人类而不是代替人类的人工智能。
为了人机友好的未来确保通用人工智能技术有益于人类福祉,一直是人工智能伦理构建的前沿。
薛澜认为,在科技领域,很多技术都像硬币的两面,在带来正面效应的同时也会存在风险,人工智能就是其中一个比较突出的领域。如何在促进技术创新和规制潜在风险之间寻求平衡,是科技伦理必须关注的问题。
梁正提出,有时技术的发展会超越人们预想的框架,在不自觉的情况下出现与人类利益不一致甚至相悖的情况。著名的“曲别针制造机”假说,即描述了通用人工智能在目标和技术都无害的情况下,对人类造成威胁的情景。
“曲别针制造机”假说给定一种技术模型,假设某个人工智能机器的终极目标是制造曲别针,尽管看上去这一目的对人类无害,但最终它却使用人类无法比拟的能力,把世界上所有资源都做成了曲别针,进而对人类社会产生不可逆的伤害。
因此有观点认为,创造出法力高超又杀不死的孙悟空本身就是一种不顾后果的冒险行为。
与其对立的观点则认为,目前这一担忧为时尚早。
“我们对到底什么样的技术路线能够发展出具备自主意识的人工智能尚无共识,现在谈论‘禁止发展’,有种空中楼阁的意味。”梁正说。
商汤科技智能产业研究院院长田丰告诉《瞭望》新闻周刊,现实中人工智能技术伦理风险治理的关键,是产业能够在“预判防范-应用场景-用户反馈-产品改进”中形成市场反馈机制,促成伦理风险识别与敏捷治理。同时,企业内部也需建立完整的科技伦理自律机制,通过伦理委员会、伦理风控流程平台将伦理风险把控落实到产品全生命周期中。
郭雨晨说,人工智能技术发展到目前,仍始终处于人类可控状态,而科技发展的过程本来就伴随对衍生问题的预判、发现和解决。“在想象中的人工智能自主意识出现以前,人工智能技术脚踏实地的发展,已经造福人类社会很多年了。”
在梁正看来,人与人工智能在未来会是一种合作关系,各自具备对方无法达成的能力。“技术归根结底是由人类来发展和把控的。人类和人工智能的未来,是由人类选择的。”
编辑:李华山
2022年08月16日07:42:05