让人工智能充分赋能经济社会发展
科技部等六部门发文统筹推进场景创新
让人工智能充分赋能经济社会发展
继2017年国务院印发《新一代人工智能发展规划》(以下简称《发展规划》)之后,科技部、教育部、工信部等六部门近日联合发布《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》(以下简称《指导意见》),在业界引发广泛关注。
作为深刻改变人类社会生活的革命性、战略性技术,人工智能在我国发展如何?怎样推动人工智能快速迭代升级?记者进行了采访。
从实验室走向生产生活,人工智能驶入发展快车道
如今,放眼大江南北,“人工智能”不再是一个学术名词,而是人们生产生活中的“常客”。
在旷视科技改造升级后的国药控股广州有限公司物流中心,随处可见人工智能的“身影”:智能移动机器人、智能堆垛机往来穿梭,成为搬运的主力军,智能五面扫描装置可实时读取运动中的药箱上的电子监管码,实现药品流通可追溯……智慧仓储物流不仅为该中心每年节约人力成本上百万元,更显著提高了工作效率,在疫情防控期间实现了医药物资配送的快速响应。
在位于浙江杭州滨江区的计算机视觉公司易思维的实验室,装配了高性能视觉传感器的工业机器人正在模拟汽车流水线的工位上忙碌。明察秋毫的“眼睛”和自主决策的“大脑”,助力冲压、焊接、涂装、总装四大汽车制造环节的智能化升级,既省工省时又提质增效。易思维研发的工业视觉检测成套装备体系,已在上汽大众、一汽大众、特斯拉等数十家国内外厂商的200多个整车厂落地开花,在“冲、焊、涂、总”四大环节上实现系统化应用。
在华为打造的5G智慧煤矿——晋能控股集团塔山煤矿,地下500米的矿井实现了智能互联:智能巡检机器人往来探视,工人可一键呼叫“网约车”、实时手机视频通话。依托“会说话”“能决策”的智能化综放开采设备,塔山煤矿采煤工效提升40%以上。
在日常生活中,人工智能也无处不在:对着手机眨眨眼,几秒内就可以完成身份认证;手环、手表等智能终端,及时提醒用户健康状况……
“《发展规划》实施至今,我国的人工智能已由实验室走向生产生活的方方面面,驶上了发展快车道。”科技部新一代人工智能发展研究中心主任、中国科学技术信息研究所所长赵志耘认为,“生产更高效、生活更精彩”的背后,是人工智能科技的显著进步。“我国在机器学习、计算机视觉、自然语言处理、类脑计算等领域涌现出一批重要理论成果,大规模预训练模型等前沿研究达到国际先进水平,人工智能基础软硬件快速发展,基于自主技术的人工智能产业生态已初步形成。”
科技部新一代人工智能发展研究中心提供的数据显示,5年来我国智能产业规模持续壮大,企业数量以及风险投资额居世界前列:2021年人工智能核心产业规模超过4000亿元,企业超过3000家;人工智能领域风险投资额占全球比重从2013年的不到5%增长到2021年的20%左右,跃居世界第二。
把新技术应用到实践中,通过迭代不断成熟提升
《指导意见》从打造人工智能重大场景、提升人工智能场景创新能力、加快推动人工智能场景开放等方面,统筹推进人工智能场景创新。
“这不仅是稳经济、培育新增长点的权宜之计,更是促进人工智能更高水平应用、更好支撑高质量发展的长远之策。”科技部战略规划司副司长邢怀滨说,“从全国来看,目前仍存在对场景创新认识不到位、重大场景系统设计不足、场景机会开放程度不够、场景创新生态不完善等问题,急需加强人工智能场景创新。”
邢怀滨告诉记者,场景创新是以新技术的创造性应用为导向,以供需联动为路径,实现新技术迭代升级和产业快速增长的过程。“这个‘牛鼻子’有多方面的牵引效应:直接推动人工智能技术的推广应用,加快传统产业的提质升级;在应用中发现新需求、凝练新课题,从需求侧反推人工智能技术体系的提升完善;促进人工智能相关软硬件技术及其标准的对接、贯通,进而形成全国统一的技术生态、产业生态。”
“目前人工智能正处在新的发展阶段,技术日趋成熟可用,各行业对人工智能技术需求迫切。”赵志耘说,在这个阶段,最重要的是把新技术应用到实践中,通过迭代不断成熟提升。“场景创新作为一种目标导向、应用导向的研发新机制,既有利于引导学术界更好地聚焦行业问题、优化研发方向,也有利于引导企业尽快把理论成果、技术成果快速转化为行业效果。”
易思维创始人兼CEO郭寅认为,人工智能是一门强应用相关的技术学科,从最早的雏形发展到今天,都离不开在各类应用场景中发现问题、解决难题、迭代技术,人工智能技术发展与场景应用创新是个相互促进、螺旋上升的过程。“随着《指导意见》的实施,我国人工智能技术将迎来加快迭代升级的新热潮。”
加快构建全链条、全过程的人工智能行业应用生态
8月15日,科技部启动支持建设新一代人工智能示范应用场景,发布了智慧农场、智能港口、智能矿山、智能工厂等首批支持的十大应用场景。
“人工智能的应用场景涉及生产、生活的方方面面,不能眉毛胡子一把抓。我们坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康谋篇布局,以充分挖掘人工智能的价值。”邢怀滨说,“按照提高生产能效、改善工作方式、方便群众生活等主要标准,我们希望尽快打造形成一批可复制、可推广的标杆型示范应用场景,加快构建全链条、全过程的人工智能行业应用生态,让人工智能充分赋能经济社会发展。”
“人工智能是渗透面广、带动性强、影响深刻的新生事物,政府和市场要各司其职、协同发力,真正把充分发挥市场作用和更好发挥政府作用有机结合起来。”邢怀滨强调,一方面,要坚持企业在场景创新全过程中的主体地位,鼓励企业放手去干、去闯;另一方面,政府要与学术界、企业界紧密合作,在相关社会伦理、规则制定、法制完善等方面履职尽责。
“中国拥有全球最齐全的产业体系和超大规模的消费市场,丰富繁多的应用场景为人工智能提供了巨大的用武之地。”邢怀滨表示,“经过全社会的共同努力,中国一定能在新一代人工智能这个赛道上跑出好成绩。”(记者赵永新)
【纠错】【责任编辑:吴咏玲】人工智能的创新发展与社会影响
党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明了方向。2018世界人工智能大会9月17日在上海开幕,习总书记致信祝贺并强调指出人工智能发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。深入学习领会习总书记关于人工智能的一系列重要论述,务实推进我国《新一代人工智能发展规划》,有效规避人工智能“鸿沟”,着力收获人工智能“红利”,对建设世界科技强国、实现“两个一百年”的奋斗目标具有重大战略意义。
一、引言
1956年人工智能(ArtificialIntelligence,简称AI)的概念被正式提出,标志着人工智能学科的诞生,其发展目标是赋予机器类人的感知、学习、思考、决策和行动等能力。经过60多年的发展,人工智能已取得突破性进展,在经济社会各领域开始得到广泛应用并形成引领新一轮产业变革之势,推动人类社会进入智能化时代。美国、日本、德国、英国、法国、俄罗斯等国家都制定了发展人工智能的国家战略,我国也于2017年发布了《新一代人工智能发展规划》,发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏等地政府也相继出台推动人工智能发展的相关政策文件,社会各界对人工智能的重大战略意义已形成广泛共识。
跟其他高科技一样,人工智能也是一把双刃剑。如何认识人工智能的社会影响,也有“天使派”和“魔鬼派”之分。“天使派”认为,人工智能领域的科技创新和成果应用取得重大突破,有望引领第四次工业革命,对社会、经济、军事等领域将产生变革性影响,在制造、交通、教育、医疗、服务等方面可以造福人类;“魔鬼派”认为,人工智能是人类的重大威胁,比核武器还危险,有可能引发第三次世界大战。2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。
总体上看,已过花甲之年的人工智能当前的发展具有“四新”特征:以深度学习为代表的人工智能核心技术取得新突破、“智能+”模式的普适应用为经济社会发展注入新动能、人工智能成为世界各国竞相战略布局的新高地、人工智能的广泛应用给人类社会带来法律法规、道德伦理、社会治理等方面一系列的新挑战。因此人工智能这个机遇与挑战并存的新课题引起了全球范围内的广泛关注和高度重视。虽然人工智能未来的创新发展还存在不确定性,但是大家普遍认可人工智能的蓬勃兴起将带来新的社会文明,将推动产业变革,将深刻改变人们的生产生活方式,将是一场影响深远的科技革命。
为了客观认识人工智能的本质内涵和创新发展,本报告在简要介绍人工智能基本概念与发展历程的基础上,着重分析探讨人工智能的发展现状和未来趋势,试图揭示人工智能的真实面貌。很显然,在当下人工智能蓬勃发展的历史浪潮中如何选择中国路径特别值得我们深入思考和探讨。因此,本报告最后就我国人工智能发展态势、存在问题和对策建议也进行了阐述。
二、人工智能的发展历程与启示
1956年夏,麦卡锡(JohnMcCarthy)、明斯基(MarvinMinsky)、罗切斯特(NathanielRochester)和香农(ClaudeShannon)等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能”这一概念,标志着人工智能学科的诞生。人工智能的目标是模拟、延伸和扩展人类智能,探寻智能本质,发展类人智能机器。人工智能充满未知的探索道路曲折起伏,如何描述1956年以来60余年的人工智能发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能60余年的发展历程划分为以下6个阶段:
一是起步发展期:1956年-20世纪60年代初。人工智能概念在1956年首次被提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、LISP表处理语言等,掀起了人工智能发展的第一个高潮。
二是反思发展期:60年代-70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入了低谷。
三是应用发展期:70年代初-80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入了应用发展的新高潮。
四是低迷发展期:80年代中-90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:90年代中-2010年。由于网络技术特别是互联网技术的发展,信息与数据的汇聚不断加速,互联网应用的不断普及加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念,这些都是这一时期的标志性事件。
六是蓬勃发展期:2011年-至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器(GraphicsProcessingUnit,简称GPU)等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越科学与应用之间的“技术鸿沟”,图像分类、语音识别、知识问答、人机对弈、无人驾驶等具有广阔应用前景的人工智能技术突破了从“不能用、不好用”到“可以用”的技术瓶颈,人工智能发展进入爆发式增长的新高潮。
通过总结人工智能发展历程中的经验和教训,我们可以得到以下启示:
(一)尊重学科发展规律是推动学科健康发展的前提。科学技术的发展有其自身的规律,顺其者昌,违其者衰。人工智能学科发展需要基础理论、数据资源、计算平台、应用场景的协同驱动,当条件不具备时很难实现重大突破。
(二)基础研究是学科可持续发展的基石。加拿大多伦多大学杰弗里·辛顿(GeoffreyHinton)教授坚持研究深度神经网络30年,奠定人工智能蓬勃发展的重要理论基础。谷歌的DeepMind团队长期深入研究神经科学启发的人工智能等基础问题,取得了阿尔法狗等一系列重大成果。
(三)应用需求是科技创新的不竭之源。引领学科发展的动力主要来自于科学和需求的双轮驱动。人工智能发展的驱动力除了知识与技术体系内在矛盾外,贴近应用、解决用户需求是创新的最大源泉与动力。比如专家系统人工智能实现了从理论研究走向实际应用的突破,近些年来安防监控、身份识别、无人驾驶、互联网和物联网大数据分析等实际应用需求带动了人工智能的技术突破。
(四)学科交叉是创新突破的“捷径”。人工智能研究涉及信息科学、脑科学、心理科学等,上世纪50年代人工智能的出现本身就是学科交叉的结果。特别是脑认知科学与人工智能的成功结合,带来了人工智能神经网络几十年的持久发展。智能本源、意识本质等一些基本科学问题正在孕育重大突破,对人工智能学科发展具有重要促进作用。
(五)宽容失败应是支持创新的题中应有之义。任何学科的发展都不可能一帆风顺,任何创新目标的实现都不会一蹴而就。人工智能60余载的发展生动地诠释了一门学科创新发展起伏曲折的历程。可以说没有过去发展历程中的“寒冬”就没有今天人工智能发展新的春天。
(六)实事求是设定发展目标是制定学科发展规划的基本原则。达到全方位类人水平的机器智能是人工智能学科宏伟的终极目标,但是需要根据科技和经济社会发展水平来设定合理的阶段性研究目标,否则会有挫败感从而影响学科发展,人工智能发展过程中的几次低谷皆因不切实际的发展目标所致。
三、人工智能的发展现状与影响
人工智能经过60多年的发展,理论、技术和应用都取得了重要突破,已成为推动新一轮科技和产业革命的驱动力,深刻影响世界经济、政治、军事和社会发展,日益得到各国政府、产业界和学术界的高度关注。从技术维度来看,人工智能技术突破集中在专用智能,但是通用智能发展水平仍处于起步阶段;从产业维度来看,人工智能创新创业如火如荼,技术和商业生态已见雏形;从社会维度来看,世界主要国家纷纷将人工智能上升为国家战略,人工智能社会影响日益凸显。
(一)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定领域的人工智能技术(即专用人工智能)由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域,统计学习是专用人工智能走向实用的理论基础。深度学习、强化学习、对抗学习等统计机器学习理论在计算机视觉、语音识别、自然语言理解、人机博弈等方面取得成功应用。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,语音识别系统5.1%的错误率比肩专业速记员,人工智能系统诊断皮肤癌达到专业医生水平,等等。
(二)通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。虽然包括图像识别、语音识别、自动驾驶等在内的专用人工智能领域已取得突破性进展,但是通用智能系统的研究与应用仍然是任重而道远,人工智能总体发展水平仍处于起步阶段。美国国防高级研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)把人工智能发展分为三个阶段:规则智能、统计智能和自主智能,认为当前国际主流人工智能水平仍然处于第二阶段,核心技术依赖于深度学习、强化学习、对抗学习等统计机器学习,AI系统在信息感知(Perceiving)、机器学习(Learning)等智能水平维度进步显著,但是在概念抽象(Abstracting)和推理决策(Reasoning)等方面能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
(三)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,在其2017年的年度开发者大会上,谷歌明确提出发展战略从“MobileFirst”(移动优先)转向“AIFirst”(AI优先);微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿,麦肯锡报告2016年全球人工智能研发投入超300亿美元并处于高速增长,全球知名风投调研机构CBInsights报告显示2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
(四)创新生态布局成为人工智能产业发展的战略高地。信息技术(IT)和产业的发展史就是新老IT巨头抢滩布局IT创新生态的更替史。例如,传统信息产业IT(InformationTechnology)代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网IT(InternetTechnology)代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等,目前智能科技IT(IntelligentTechnology)的产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动AI技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理GPU服务器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。在技术生态方面,人工智能算法、数据、图形处理器(GraphicsProcessingUnit,简称GPU)/张量处理器(TensorProcessingUnit,简称TPU)/神经网络处理器(NeuralnetworkProcessingUnit,NPU)计算、运行/编译/管理等基础软件已有大量开源资源,例如谷歌的TensorFlow第二代人工智能学习系统、脸书的PyTorch深度学习框架、微软的DMTK分布式学习工具包、IBM的SystemML开源机器学习系统等;此外谷歌、IBM、英伟达、英特尔、苹果、华为、中国科学院等积极布局人工智能领域的计算芯片。在人工智能商业和应用生态布局方面,“智能+X”成为创新范式,例如“智能+制造”、“智能+医疗”、“智能+安防”等,人工智能技术向创新性的消费场景和不同行业快速渗透融合并重塑整个社会发展,这是人工智能作为第四次技术革命关键驱动力的最主要表现方式。人工智能商业生态竞争进入白热化,例如智能驾驶汽车领域的参与者既有通用、福特、奔驰、丰田等传统龙头车企,又有互联网造车者如谷歌、特斯拉、优步、苹果、百度等新贵。
(五)人工智能上升为世界主要国家的重大发展战略。人工智能正在成为新一轮产业变革的引擎,必将深刻影响国际产业竞争格局和一个国家的国际竞争力。世界主要发达国家纷纷把发展人工智能作为提升国际竞争力、维护国家安全的重大战略,加紧积极谋划政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。无论是德国的“工业4.0”、美国的“工业互联网”、日本的“超智能社会”、还是我国的“中国制造2025”等重大国家战略,人工智能都是其中的核心关键技术。2017年7月,国务院发布了《新一代人工智能发展规划》,开启了我国人工智能快速创新发展的新征程。
(六)人工智能的社会影响日益凸显。人工智能的社会影响是多元的,既有拉动经济、服务民生、造福社会的正面效应,又可能出现安全失控、法律失准、道德失范、伦理失常、隐私失密等社会问题,以及利用人工智能热点进行投机炒作从而存在泡沫风险。首先,人工智能作为新一轮科技革命和产业变革的核心力量,促进社会生产力的整体跃升,推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域发展积极正面影响。与此同时,我们也要看到人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?另外在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。
由于人工智能与人类智能密切关联且应用前景广阔、专业性很强,容易造成人们的误解,也带来了不少炒作。例如,有些人错误地认为人工智能就是机器学习(深度学习),人工智能与人类智能是零和博弈,人工智能已经达到5岁小孩的水平,人工智能系统的智能水平即将全面超越人类水平,30年内机器人将统治世界,人类将成为人工智能的奴隶,等等。这些错误认识会给人工智能的发展带来不利影响。还有不少人对人工智能预期过高,以为通用智能很快就能实现,只要给机器人发指令就可以干任何事。另外,有意炒作并通过包装人工智能概念来谋取不当利益的现象时有发生。因此,我们有义务向社会大众普及人工智能知识,引导政府、企业和广大民众科学客观地认识和了解人工智能。
四、人工智能的发展趋势与展望
人工智能经过六十多年的发展突破了算法、算力和算料(数据)等“三算”方面的制约因素,拓展了互联网、物联网等广阔应用场景,开始进入蓬勃发展的黄金时期。从技术维度看,当前人工智能处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有数据、能耗、泛化、可解释性、可靠性、安全性等诸多瓶颈,创新发展空间巨大,从专用到通用智能,从机器智能到人机智能融合,从“人工+智能”到自主智能,后深度学习的新理论体系正在酝酿;从产业和社会发展维度看,人工智能通过对经济和社会各领域渗透融合实现生产力和生产关系的变革,带动人类社会迈向新的文明,人类命运共同体将形成保障人工智能技术安全、可控、可靠发展的理性机制。总体而言,人工智能的春天刚刚开始,创新空间巨大,应用前景广阔。
(一)从专用智能到通用智能。如何实现从狭义或专用人工智能(也称弱人工智能,具备单一领域智能)向通用人工智能(也称强人工智能,具备多领域智能)的跨越式发展,既是下一代人工智能发展的必然趋势,也是国际研究与应用领域的挑战问题。2016年10月美国国家科学技术委员会发布了《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。DeepMind创始人戴密斯·哈萨比斯(DemisHassabis)提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年7月成立了通用人工智能实验室,100多位感知、学习、推理、自然语言理解等方面的科学家参与其中。
(二)从人工智能到人机混合智能。人工智能的一个重要研究方向就是借鉴脑科学和认知科学的研究成果,研究从智能产生机理和本质出发的新型智能计算模型与方法,实现具有脑神经信息处理机制和类人智能行为与智能水平的智能系统。在美国、欧盟、日本等国家和地区纷纷启动的脑计划中,类脑智能已成为核心目标之一。英国工程与自然科学研究理事会EPSRC发布并启动了类脑智能研究计划。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。人机混合智能得到了我国新一代人工智能规划、美国脑计划、脸书(脑机语音文本界面)、特斯拉汽车创始人埃隆·马斯克(人脑芯片嵌入和脑机接口)等的高度关注。
(三)从“人工+智能”到自主智能系统。当前人工智能的研究集中在深度学习,但是深度学习的局限是需要大量人工干预:人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据(非常费时费力)、用户需要人工适配智能系统等。因此已有科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类AI”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低AI人员成本。
(四)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、材料等传统科学的发展。例如,2018年美国麻省理工学院启动的“智能探究计划”(MITIntelligenceQuest)就联合了五大学院进行协同攻关。
(五)人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来十年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,在现有基础上能够提高劳动生产率40%;美、日、英、德、法等12个发达国家(现占全球经济总量的一半)到2035年,年经济增长率平均可以翻一番。2018年麦肯锡的研究报告表明到2030年人工智能新增经济规模将达到13万亿美元。
(六)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出未来五年人工智能提升各行业运转效率,其中教育业提升82%,零售业71%,制造业64%,金融业58%。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
(七)人工智能领域的国际竞争将日趋激烈。“未来谁率先掌握人工智能,谁就能称霸世界”。2018年4月,欧盟委员会计划2018-2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略》重点推动物联网建设和人工智能的应用。世界军事强国已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即提出谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
(八)人工智能的社会学将提上议程。水能载舟,亦能覆舟。任何高科技也都是一把双刃剑。随着人工智能的深入发展和应用的不断普及,其社会影响日益明显。人工智能应用得当、把握有度、管理规范,就能有效控制负面风险。为了确保人工智能的健康可持续发展并确保人工智能的发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,深入分析人工智能对未来经济社会发展的可能影响,制定完善的人工智能法律法规,规避可能风险,确保人工智能的正面效应。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。
五、我国人工智能的发展态势与思考
我国当前人工智能发展的总体态势良好。中国信通院联合高德纳咨询公司(Gartner)于2018年9月发布的《2018世界人工智能产业发展蓝皮书》报告统计,我国(不含港澳台地区)人工智能企业总数位列全球第二(1040家),仅次于美国(2039家)。在人工智能总体水平和应用方面,我国也处于国际前列,发展潜力巨大,有望率先突破成为全球领跑者。但是我们也要清醒地看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
一是高度重视。党和国家高度重视并大力发展人工智能。党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明方向。2016年7月习总书记明确指出,人工智能技术的发展将深刻改变人类社会生活,改变世界,应抓住机遇,在这一高技术领域抢占先机。在党的十九大报告中,习总书记强调“要推动互联网、大数据、人工智能和实体经济深度融合”。在2018年两院院士大会上,习总书记再次强调要“推进互联网、大数据、人工智能同实体经济深度融合,做大做强数字经济”。在2017年和2018年的《政府工作报告》中,李克强总理都提到了要加强新一代人工智能发展。2017年7月,国务院发布了《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动,人工智能将成为今后一段时期的国家重大战略。发改委、工信部、科技部、教育部、中央网信办等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
二是态势喜人。根据2017年爱思唯尔(Elsevier)文献数据库SCOPUS统计结果,我国在人工智能领域发表的论文数量已居世界第一。从2012年开始,我国在人工智能领域新增专利数量已经开始超越美国。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成全球人工智能投融资规模最大国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。近两年,清华大学、北京大学、中国科学院大学、浙江大学、上海交通大学、南京大学等高校纷纷成立人工智能学院。2015年开始的中国人工智能大会(CCAI)已连续成功召开四届、规模不断扩大,人工智能领域的教育、科研与学术活动层出不穷。
三是差距不小。我国人工智能在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在较大差距。英国牛津大学2018年的一项研究报告指出中国的人工智能发展能力大致为美国的一半水平。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,存在“头重脚轻”的不均衡现象。在Top700全球AI人才中,中国虽然名列第二,但入选人数远远低于占一半数量的美国。据领英《全球AI领域人才报告》统计,截至2017年一季度全球人工智能领域专业技术人才数量超过190万,其中美国超过85万,我国仅超过5万人,排名全球第7位。2018年市场研究顾问公司CompassIntelligence对全球100多家AI计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国制定完善人工智能相关法律法规的进程需要加快,对可能产生的社会影响还缺少深度分析。
四是前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
人类社会已开始迈入智能化时代,人工智能引领社会发展是大势所趋,不可逆转。经历六十余年积累后,人工智能开始进入爆发式增长的红利期。伴随着人工智能自身的创新发展和向经济社会的全面渗透,这个红利期将持续相当长的时期。现在是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧需要深入思考。
(一)树立理性务实的发展理念。围棋人机大战中阿尔法狗战胜李世石后,社会大众误以为人工智能已经无所不能,一些地方政府、社会企业、风险资金因此不切实际一窝蜂发展人工智能产业,一些别有用心的机构则有意炒作并通过包装人工智能概念来谋取不当利益。这种“一拥而上、一哄而散”的跟风行为不利于人工智能的健康可持续发展。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。根据高德纳咨询公司发布的技术发展曲线,当前智能机器人、认知专家顾问、机器学习、自动驾驶等人工智能热门技术与领域正处于期望膨胀期,但是通用人工智能及人工智能的整体发展仍处于初步阶段,人工智能还有很多“不能”,实现机器在任意现实环境的自主智能和通用智能仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此发展人工智能不能以短期牟利为目的,要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,并务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
(二)加强基础扎实的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。在此发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。根据2017年爱思唯尔文献数据库SCOPUS统计结果,尽管我国在人工智能领域发表的论文数量已经排名世界第一,但加权引文影响力则只排名34位。为了客观评价我国在人工智能基础研究方面的整体实力,我们搜索了SCI期刊、神经信息处理系统大会(ConferenceonNeuralInformationProcessingSystems,简称NIPS)等主流人工智能学术会议关于通用智能、深度学习、类脑智能、脑智融合、人机博弈等关键词的论文统计情况,可以清楚看到在人工智能前沿方向中国与美国相比基础实力存在巨大差距:在高质量论文数量方面(按中科院划定的SCI一区论文标准统计),美国是中国的5.34倍(1325:248);在人才储备方面(SCI论文通讯作者),美国是中国的2.12倍(4804:2267)。
我国应对标国际最高水平,建设面向未来的人工智能基础科学研究中心,重点发展原创性、基础性、前瞻性、突破性的人工智能科学。应该鼓励科研人员瞄准人工智能学科前沿方向开展引领性原创科学研究,通过人工智能与脑认知、神经科学、心理学等学科的交叉融合,重点聚焦人工智能领域的重大基础性科学问题,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
(三)构建自主可控的创新生态。美国谷歌、IBM、微软、脸书等企业在AI芯片、服务器、操作系统、开源算法、云服务、无人驾驶等方面积极构建创新生态、抢占创新高地,已经在国际人工智能产业格局中占据先机。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。美国对中兴通讯发禁令一事充分说明自主可控“核高基”技术的重要性,我国应该吸取在核心电子器件、高端通用芯片及基础软件方面依赖进口的教训,避免重蹈覆辙,着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如军民融合、产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。
另外,我们需要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过标准实施加速人工智能驱动经济社会转型升级的进程。
(四)建立协同高效的创新体系。我国经济社会转型升级对人工智能有重大需求,但是单一的创新主体很难实现政策、市场、技术、应用等方面的全面突破。目前我国学术界、产业界、行业部门在人工智能发展方面各自为政的倾向比较明显,数据资源开放共享不够,缺少对行业资源的有效整合。相比而言,美国已经形成了全社会、全场景、全生态协同互动的人工智能协同创新体系,军民融合和产学研结合都做得很好。我国应在体制机制方面进一步改革创新,建立“军、政、产、学、研、用”一体的人工智能协同创新体系。例如,国家进行顶层设计和战略规划,举全国优势力量设立军事智能的研发和应用平台,提供“人工智能+X”行业融合、打破行业壁垒和行政障碍的激励政策;科技龙头企业引领技术创新生态建设,突破人工智能的重大技术瓶颈;高校科研机构进行人才培养和原始创新,着力构建公共数据资源与技术平台,共同建设若干标杆性的应用创新场景,推动成熟人工智能技术在城市、医疗、金融、文化、农业、交通、能源、物流、制造、安全、服务、教育等领域的深度应用,建设低成本高效益广范围的普惠型智能社会。
(五)加快创新人才的教育培养。发展人工智能关键在人才,中高端人才短缺已经成为我国人工智能做大做强的主要瓶颈。另外,我国社会大众的人工智能科技素养也需要进一步提升,每一个人都需要去适应人工智能时代的科技浪潮。在加强人工智能领军人才培养引进的同时,要面向技术创新和产业发展多层次培养人工智能创新创业人才。《新一代人工智能发展规划》提出逐步开展全民智能教育项目,在中小学阶段设置人工智能课程。目前人工智能科普活动受到各地学校的欢迎,但是缺少通俗易懂的高质量人工智能科普教材、寓教于乐的实验设备和器材、开放共享的教学互动资源平台。国家相关部门应高度重视人工智能教育领域的基础性工作,增加投入,组织优势力量,加强高水平人工智能教育内容和资源平台建设,加快人工智能专业的教学师资培训,从教材、教具、教师等多个环节全面保障我国人工智能教育工作的开展。
(六)推动共担共享的全球治理。人工智能将重塑全球政治和经济格局,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能将进一步拉大发达国家和发展中国家的生产力发展水平差距。美国、日本、德国等通过人工智能和机器人的技术突破和广泛应用弥补他们的人力成本劣势,希望制造业从新兴国家回流发达国家。目前看,我国是发展中国家阵容中唯一有望成为全球人工智能竞争中的领跑者,应采取不同于一些国家的“经济垄断主义、技术保护主义、贸易霸凌主义”路线,尽快布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合国家“一带一路”战略,向亚洲、非洲、南美等经济欠发达地区输出高水平、低成本的“中国智造”成果、提供人工智能时代的中国方案,为让人工智能时代的“智能红利”普惠人类命运共同体做出中国贡献!
(七)制定科学合理的法律法规。要想实实在在收获人工智能带来的红利,首先应保证其安全、可控、可靠发展。美国和欧洲等发达国家和地区十分重视人工智能领域的法律法规问题。美国白宫多次组织这方面的研讨会、咨询会;特斯拉等产业巨头牵头成立OpenAI等机构,旨在以有利于整个人类的方式促进和发展友好的人工智能;科研人员自发签署23条“阿西洛马人工智能原则”,意图在规范人工智能科研及应用等方面抢占先机。我国在人工智能领域的法律法规制定及风险管控方面相对滞后,这种滞后局面与我国现阶段人工智能发展的整体形势不相适应,并可能成为我国人工智能下一步创新发展的一大掣肘。因此,有必要大力加强人工智能领域的立法研究,制定相应的法律法规,建立健全公开透明的人工智能监管体系,构建人工智能创新发展的良好法规环境。
(八)加强和鼓励人工智能社会学研究。人工智能的社会影响将是深远的、全方位的。我们当未雨绸缪,从国家安全、社会治理、就业结构、伦理道德、隐私保护等多个维度系统深入研究人工智能可能的影响,制定合理可行的应对措施,确保人工智能的正面效应。应大力加强人工智能领域的科普工作,打造科技与伦理的高效对话机制和沟通平台,消除社会大众对人工智能的误解与恐慌,为人工智能的发展营造理性务实、积极健康的社会氛围。
六、结束语
人工智能经过60多年的发展,进入了创新突破的战略机遇期和产业应用的红利收获期,必将对生产力和产业结构以及国际格局产生革命性影响,并推动人类进入普惠型智能社会。但是,我们需要清醒看到通用人工智能及人工智能的整体发展仍处于初级阶段,人工智能不是万能,人工智能还有很多“不能”。我们应当采取理性务实的发展路径,扎实推进基础研究、技术生态、人才培养、法律规范等方面的工作,在开放中创新,在创新中发展,全速跑赢智能时代,着力建设人工智能科技强国!
(主讲人系中国科学院院士)
新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
作者:徐云峰
catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]中国人工智能(AI)发展历程、AI产业重点发展区域、重点发展城市及中国AI产业地区发展总结及展望
1、AI的发展历程
人工智能(ArtificialIntelligence)指由人类制造出来的机器所展现出来的智能,试图通过计算机来模拟人的思维过程和行为。目前这一领域主要包括计算机视觉、自然语言处理、跨媒体分析推理、智适应学习、群体智能、自主无人系统、智能芯片和脑机接口等关键技术,将为人类的生产生活带来革命性的转变。自1956年达特茅斯会议第一次提出人工智能的概念以来,人工智能的发展经历了三次浪潮:第一次浪潮(1956-1974):算法雏形初现第一次浪潮的主要成就是算法、方法论及早期人工智能系统。其中最为杰出的代表就是贝尔曼公式(增强学习的雏形)和感知机(深度学习的雏形)。早期人工智能系统主要是用机器证明的办法去证明和推理一些知识,第一次浪潮中实现效果最好的就是定理证明。这一时期出了很多人工智能系统,如STUDENT(1964年)、ELIZA(1966年),前者能够实现应用题的证明,后者可以实现简单的人机对话。但随着计算能力的不足、社会资本的退出、政府资助的下降,人工智能迎来第一次寒冬。第二次浪潮(1974-2006):专业化发展较第一次浪潮而言,第二次浪潮朝着更为专业化的方向发展,侧重于借用领域专家的知识来武装自己。这一时期的主要成就是人工智能计算机、多层神经网络和BP反向传播等方算法的突破及语音识别和语言翻译等领域。第二次浪潮更专注于解决实际问题,不再专注于理论知识的证明。由于人工智能应用的范畴依旧有限,人工智能的浪潮在90年代开始逐渐消退。第三次浪潮(2006-至今):基于互联网大数据的深度学习与前两次浪潮不同,第三次浪潮依靠的是计算机性能的提升和海量数据的不断积累,其核心是深度学习的突破。2016年的AlphaG和2017年的AlphaGMaster这两个智能程序的胜出,促使着人工智能逐渐成为当下炙手可热的研究领域。依靠算法、大数据、计算力的作用,人工智能迎来第三次浪潮。此外,深度学习在语音识别、图像识别、自然语言理解等领域均取得了突破性进展,再加上海量数据提供测试样本和强大计算能力的支持,人工智能开始向前高速发展。人工智能发展历史
2、AI是中国弯道超车的好机会智研咨询发布的《2020-2026年中国AI芯片产业运营现状及发展前景分析报告》数据显示:众所周知,国内科技企业往往都是先从低端产品做起来,再逐步往上游延伸。比如先从EM做到系统集成,然后再做上游关键零部件,最后积累实力才涉及更基础的研发。AI的浪潮中,最核心的就是算法,大家都在算法上角逐,使得基础研究到技术开发到系统集成扁平化,研究比一般的企业更加贴近市场,这会带来全新的变化:企业创始人和核心管理团队都必须是技术大牛,企业的文化更加高效,从而极大降低管理成本。在基础研究领域中,国、内AI的水平在迅速提升,中美是最有可能引领该潮流的两个国家,AI是中国弯道超车的好机会。过去二十年间,全球众多国家和地区广泛地参与到人工智能领域的基础性研究中,其中中国和美国的论文产出位于全球的第一、二位,且是位于第三位的英国产出量的倍以上。英国、日本、德国、印度、法国、加拿大、意大利、西班牙、韩国、台湾、澳大利亚构成了该领域论文产出的第二梯队。数据来源:公开资料整理
虽然论文多,但是国际人工智能杰出人才集中投入于美、英、德、法等少数发达国家,排名前十的国家AI人才投入占据总量的63.6%。美国在人工智能杰出人才投入量上依旧遥遥领先,占据世界总体的25%,。中国排名第六,杰出人才占比过低。此外高强度人才投入的企业集中在美国,中国仅有华为一家企业进入前20。国际人工智能人才投入主要以计算机软硬件开发企业为主体,美国相关行业发轫于19世纪末,IBM、微软、谷歌等公司皆为行业巨头,在世界范围内拥有广泛的影响能力,成为集聚人工智能领域人才的企业前三甲,英特尔、通用电气、惠普、霍尼韦尔、思科、高通、苹果等美国知名企业也榜上有名。德国的西门子、SAP、软件、博世三家企业入驻前20,主要以大型制造企业为主。3、中国AI产业整体分布特征中国AI企业集中分布在京津、长三角、珠角及中西部几个重点省份。数据来源:公开资料整理
数据来源:公开资料整理
4、中国AI企业主要集中在应用层中国AI企业主要集中在应用层(AI应用终端及AI应用行业解决方案),占比接近80%;技术层的企业主要集中在计算机视觉领域,占比近70%;应用层企业中,机器人、无人机、AI+医疗、AI+教育、AI+金融、AI+制造等领域占比较大。数据来源:公开资料整理
中国AI企业发展尚处于早期,主要集中在A轮和天使轮按地域划分来看,北京、广东、上海、浙江、江苏、安徽等地发展较快,已经聚集一批发展到中后期甚至上市的企业,山东因为AI领域的企业主要是由传统制造业转型成工业机器人或者AI+制造企业,中后期企业占比相对较高。数据来源:公开资料整理
5、中国AI产业重点发展区域环渤海地区北京优势明显并将赋能周边,地区发展空间巨大环渤海地区依托北京的发展优势,未来会有较大的发展空间。北京AI产业链发展相对成熟、全国领先,在各细分领域已经发展出一批优秀企业,而山东、天津等地传统产业发展成熟,制造业基础雄厚,未来北京的龙头企业都可以赋能环渤海地区的传统产业升级,进而带动环渤海地区整个AI产业的发展。数据来源:公开资料整理
数据来源:公开资料整理
G60科创走廊,长三角一体化给长三角地区AI产业的发展带来很大的集聚效应,并且在些AI细分领域已经形成龙头优势,计算机视觉、智能语音、芯片、AI+安防、机器人、AI+医疗等产业都已经全国领先,其中不乏科创板及主板、创业板A股上市公司。数据来源:公开资料整理
长三角地区AI企业细分领域及区域分布热力图
数据来源:公开资料整理
珠三角地区龙头企业带动产业整体发展智能终端优势明显珠三角地区的AI产业主要集中在深圳,得益于华为、中兴、大疆等龙头企业的带动作用,带动了周边相关产业的发展,同时深圳的先进AI技术又能赋能东莞、中山、佛山等地传统制造业的智能化改造和升级进一步推动周边整个地区的AI产业发展,随着南沙自贸区的成立和国家战略地位的作用凸显,广州AI产业快速崛起,进一步与整个珠三角地区协同。数据来源:公开资料整理
数据来源:公开资料整理
中西部地区主要聚集在高校和人才优势明显的核心城市中西部地区AI产业发展较好的省份主要有:陕西、四川、湖北、重庆、湖南等地,这些省份的AI企业主要聚集在省会城市,主要依托当地高等学校的优质的人才资源、科研技术资源及当地传统产业基础。数据来源:公开资料整理
数据来源:公开资料整理
6、中国AI产业重点发展城市重点城市的AI企业数量占到了全国AI企业总数的89.5%我国AI企业主要集中在北京、上海、深圳等主要城市,人才、科研实力、产业环境、资本环境、政府的行动是影响的主要因素。数据来源:公开资料整理
数据来源:公开资料整理
7、中国AI产业地区发展总结及展望第-梯队:北京、上海、深圳、杭州总结:经济、政策、人才、科研实力、产业环境、资本环境的全面优势使得四个城市的创新创业高度、速度均远超其他城市,进而AI产业发展的规模及成熟度远高于其他城市;展望:资本环境是影响第一梯队城市AI产业发展壮大的重要因素,AI作为典型的2B型企业,发展速度较慢,客户靠结寨扎营式的逐步积累,因此发展到盈利一般需要较长的时间,需要资本的持续扶持。数据来源:公开资料整理
第二梯队:苏州、广州、南京、天津、合肥、成都、武汉总结:人才是制约这些地区AI产业发展的重要因素,基础层和技术领域需要的高端技术人才、产业智能化改造的应用型人才受限于当地的人才培育环境、人才引进力度、当地的生活环境、薪资水平等诸多因素的影响;其中,广州天津、南京、成都、武汉等城市缺乏大型科技企业的支持,初创企业数量和规模不明显,进而较难通过大型企业赋能周边企业的发展,难以形成产业集聚的效应。展望:政府是推动当地AI产业发展的最重要力量;力度更大的国内外AI人才引进计划辅以本地化的人才培养是这些城市解决人才短缺问题可以采取的手段;通过与领先企业联合成立实验室、成立合资公司、邀请领头企业参与本地项目是这些城市提升本地科研技术水平、赋能当地产业、形成产业集聚的必要手段;当地与AI可应用产业吻合度高的产业基础更雄厚,本地化的数字化基础设施水平更高的地区更容易实现迅速发展,形成自己的优势产业。数据来源:公开资料整理
其他:胺、庆、长沙、郑州总结:这些地区的AI产业大多处于萌芽或者刚起步的阶段,人才短缺、技术实力不足、资本环境较差、政策支持力度不足是导致这些地区AI产业发展落后的主要因素;部分地区也依赖本地化的优势资源,形成了一些当地的较为特色的细分产业,如西安的无人机产业、长沙的智能制造设备、郑州的智能终端等。展望:政府是推动当地AI产业发展的最重要力量,政府需要结合本地的产业特色做好战略规划,可以不用追求AI产业的全面发展,重力发展具有本地优势的可以与AI产业结合的产业更有优势,也更有利于推动本地AI产业的整体发展水平;结合本地的实际情况,出台专门的引进本地亟需的AI人才的手段;根据实际情况,引进龙头的AI企业,赋能当地相关产业的智能化的改造升级,赋能当地企业的发展,同时推动相关产业整体水平的提升,形成产业集聚。数据来源:公开资料整理
2023年中国人工智能行业区域市场现状及竞争格局分析 北上广地区龙头企业较多
人工智能行业主要上市公司:阿里巴巴(BABA)、腾讯(00700.HK)、科大讯飞(002230)、赛为智能(300044)、科大智能(300222)、海康威视(002415)、四维图新(002405)等
本文核心数据:人工智能企业在全国都市圈的分布、主要省市/城市人工智能企业数量占比
1、京津冀、长三角和珠三角城市群AI企业集聚,引领产业发展
根据中国新一代人工智能发展战略研究院发布的最新《中国新一代人工智能科技产业发展报告2021》数据显示,截至2020年,我国人工智能企业主要分布在京津冀、长江三角洲和珠江三角洲三大都市圈,占比分别为31.02%,30.23%和26.39%。
依托科技创新和互联网产业发展优势,京津冀、长江三角洲和珠江三角洲地区在人工智能科技产业的发展中走在了全国的前列。
由此可见,中国人工智能区域发展与国家区域战略高度协同相互促进,区域要素汇聚加速人工智能产业引领。京津冀、长三角和粤港澳大湾区已成为我国人工智能发展的三大区域性引擎,成渝城市群、长江中游城市群也展现出人工智能发展的区域活力,产业集聚区初显区域引领和协同作用。
2、北上广深AI企业数量较多
具体来看,在各省市自治区中,人工智能企业主要分布在北京市、广东省、上海市、浙江省、江苏省、四川省、山东省、湖北省、福建省和湖南省。其中,北京市占比最高,为29.73%;其次是广东省,占比为26.39%,主要分布在深圳市和广州市;排名第三的是上海市,占比为14.07%;排名第四的是浙江省,占比为8.81%,主要集中在杭州市。
从主要城市来看,人工智能企业分布密集的城市是北京市、上海市、深圳市和广州市,占比分别为29.73%,14.07%,13.99%和8.14%,是中国人工智能科技产业发展的前沿城市。西部地区的成都市和中部地区的武汉市同样是人工智能企业数量排名靠前的城市。
3、北上广地区人工智能产业链发展相对完善,细分领域龙头企业较多
从产业链来看,北京作为中国集聚人工智能企业最多的区域,其人工智能产业的链条已经比较完善,覆盖了整个产业链环节,且在产业链的重点细分领域均出现了行业龙头企业。
其中,基础层中传感器的行业龙头京东方科技,AI芯片的行业龙头中星微电子、寒武纪、地平线、四维图新等,云计算的百度云、金山云、世纪互联等,数据服务的百度数据众包、京东众智、数据堂等;
技术层的机器学习龙头百度IDL、京东DNN等,计算机视觉的商汤科技、旷视科技等,自然语言处理的百度、搜狗、紫平方等,语音识别的出门问问、智齿科技等;
应用层的人工智能重点企业也涉及了各个领域。北京正在逐步形成具有全球影响力的人工智能产业生态体系。此外,上海和广东地区人工智能产业链代表企业分布也较为广泛。
更多数据及分析请参考于前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》,同时前瞻产业研究院还提供产业大数据、产业研究、产业链咨询、产业图谱、产业规划、园区规划、产业招商引资、IPO募投可研、招股说明书撰写等解决方案。