人工智能的创新发展与社会影响
党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明了方向。2018世界人工智能大会9月17日在上海开幕,习总书记致信祝贺并强调指出人工智能发展应用将有力提高经济社会发展智能化水平,有效增强公共服务和城市管理能力。深入学习领会习总书记关于人工智能的一系列重要论述,务实推进我国《新一代人工智能发展规划》,有效规避人工智能“鸿沟”,着力收获人工智能“红利”,对建设世界科技强国、实现“两个一百年”的奋斗目标具有重大战略意义。
一、引言
1956年人工智能(ArtificialIntelligence,简称AI)的概念被正式提出,标志着人工智能学科的诞生,其发展目标是赋予机器类人的感知、学习、思考、决策和行动等能力。经过60多年的发展,人工智能已取得突破性进展,在经济社会各领域开始得到广泛应用并形成引领新一轮产业变革之势,推动人类社会进入智能化时代。美国、日本、德国、英国、法国、俄罗斯等国家都制定了发展人工智能的国家战略,我国也于2017年发布了《新一代人工智能发展规划》,发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏等地政府也相继出台推动人工智能发展的相关政策文件,社会各界对人工智能的重大战略意义已形成广泛共识。
跟其他高科技一样,人工智能也是一把双刃剑。如何认识人工智能的社会影响,也有“天使派”和“魔鬼派”之分。“天使派”认为,人工智能领域的科技创新和成果应用取得重大突破,有望引领第四次工业革命,对社会、经济、军事等领域将产生变革性影响,在制造、交通、教育、医疗、服务等方面可以造福人类;“魔鬼派”认为,人工智能是人类的重大威胁,比核武器还危险,有可能引发第三次世界大战。2018年2月,牛津大学、剑桥大学和OpenAI公司等14家机构共同发布题为《人工智能的恶意使用:预测、预防和缓解》的报告,指出人工智能可能给人类社会带来数字安全、物理安全和政治安全等潜在威胁,并给出了一些建议来减少风险。
总体上看,已过花甲之年的人工智能当前的发展具有“四新”特征:以深度学习为代表的人工智能核心技术取得新突破、“智能+”模式的普适应用为经济社会发展注入新动能、人工智能成为世界各国竞相战略布局的新高地、人工智能的广泛应用给人类社会带来法律法规、道德伦理、社会治理等方面一系列的新挑战。因此人工智能这个机遇与挑战并存的新课题引起了全球范围内的广泛关注和高度重视。虽然人工智能未来的创新发展还存在不确定性,但是大家普遍认可人工智能的蓬勃兴起将带来新的社会文明,将推动产业变革,将深刻改变人们的生产生活方式,将是一场影响深远的科技革命。
为了客观认识人工智能的本质内涵和创新发展,本报告在简要介绍人工智能基本概念与发展历程的基础上,着重分析探讨人工智能的发展现状和未来趋势,试图揭示人工智能的真实面貌。很显然,在当下人工智能蓬勃发展的历史浪潮中如何选择中国路径特别值得我们深入思考和探讨。因此,本报告最后就我国人工智能发展态势、存在问题和对策建议也进行了阐述。
二、人工智能的发展历程与启示
1956年夏,麦卡锡(JohnMcCarthy)、明斯基(MarvinMinsky)、罗切斯特(NathanielRochester)和香农(ClaudeShannon)等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能”这一概念,标志着人工智能学科的诞生。人工智能的目标是模拟、延伸和扩展人类智能,探寻智能本质,发展类人智能机器。人工智能充满未知的探索道路曲折起伏,如何描述1956年以来60余年的人工智能发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能60余年的发展历程划分为以下6个阶段:
一是起步发展期:1956年-20世纪60年代初。人工智能概念在1956年首次被提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、LISP表处理语言等,掀起了人工智能发展的第一个高潮。
二是反思发展期:60年代-70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入了低谷。
三是应用发展期:70年代初-80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入了应用发展的新高潮。
四是低迷发展期:80年代中-90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:90年代中-2010年。由于网络技术特别是互联网技术的发展,信息与数据的汇聚不断加速,互联网应用的不断普及加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年IBM深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念,这些都是这一时期的标志性事件。
六是蓬勃发展期:2011年-至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器(GraphicsProcessingUnit,简称GPU)等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越科学与应用之间的“技术鸿沟”,图像分类、语音识别、知识问答、人机对弈、无人驾驶等具有广阔应用前景的人工智能技术突破了从“不能用、不好用”到“可以用”的技术瓶颈,人工智能发展进入爆发式增长的新高潮。
通过总结人工智能发展历程中的经验和教训,我们可以得到以下启示:
(一)尊重学科发展规律是推动学科健康发展的前提。科学技术的发展有其自身的规律,顺其者昌,违其者衰。人工智能学科发展需要基础理论、数据资源、计算平台、应用场景的协同驱动,当条件不具备时很难实现重大突破。
(二)基础研究是学科可持续发展的基石。加拿大多伦多大学杰弗里·辛顿(GeoffreyHinton)教授坚持研究深度神经网络30年,奠定人工智能蓬勃发展的重要理论基础。谷歌的DeepMind团队长期深入研究神经科学启发的人工智能等基础问题,取得了阿尔法狗等一系列重大成果。
(三)应用需求是科技创新的不竭之源。引领学科发展的动力主要来自于科学和需求的双轮驱动。人工智能发展的驱动力除了知识与技术体系内在矛盾外,贴近应用、解决用户需求是创新的最大源泉与动力。比如专家系统人工智能实现了从理论研究走向实际应用的突破,近些年来安防监控、身份识别、无人驾驶、互联网和物联网大数据分析等实际应用需求带动了人工智能的技术突破。
(四)学科交叉是创新突破的“捷径”。人工智能研究涉及信息科学、脑科学、心理科学等,上世纪50年代人工智能的出现本身就是学科交叉的结果。特别是脑认知科学与人工智能的成功结合,带来了人工智能神经网络几十年的持久发展。智能本源、意识本质等一些基本科学问题正在孕育重大突破,对人工智能学科发展具有重要促进作用。
(五)宽容失败应是支持创新的题中应有之义。任何学科的发展都不可能一帆风顺,任何创新目标的实现都不会一蹴而就。人工智能60余载的发展生动地诠释了一门学科创新发展起伏曲折的历程。可以说没有过去发展历程中的“寒冬”就没有今天人工智能发展新的春天。
(六)实事求是设定发展目标是制定学科发展规划的基本原则。达到全方位类人水平的机器智能是人工智能学科宏伟的终极目标,但是需要根据科技和经济社会发展水平来设定合理的阶段性研究目标,否则会有挫败感从而影响学科发展,人工智能发展过程中的几次低谷皆因不切实际的发展目标所致。
三、人工智能的发展现状与影响
人工智能经过60多年的发展,理论、技术和应用都取得了重要突破,已成为推动新一轮科技和产业革命的驱动力,深刻影响世界经济、政治、军事和社会发展,日益得到各国政府、产业界和学术界的高度关注。从技术维度来看,人工智能技术突破集中在专用智能,但是通用智能发展水平仍处于起步阶段;从产业维度来看,人工智能创新创业如火如荼,技术和商业生态已见雏形;从社会维度来看,世界主要国家纷纷将人工智能上升为国家战略,人工智能社会影响日益凸显。
(一)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定领域的人工智能技术(即专用人工智能)由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,因此形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域,统计学习是专用人工智能走向实用的理论基础。深度学习、强化学习、对抗学习等统计机器学习理论在计算机视觉、语音识别、自然语言理解、人机博弈等方面取得成功应用。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,语音识别系统5.1%的错误率比肩专业速记员,人工智能系统诊断皮肤癌达到专业医生水平,等等。
(二)通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。虽然包括图像识别、语音识别、自动驾驶等在内的专用人工智能领域已取得突破性进展,但是通用智能系统的研究与应用仍然是任重而道远,人工智能总体发展水平仍处于起步阶段。美国国防高级研究计划局(DefenseAdvancedResearchProjectsAgency,简称DARPA)把人工智能发展分为三个阶段:规则智能、统计智能和自主智能,认为当前国际主流人工智能水平仍然处于第二阶段,核心技术依赖于深度学习、强化学习、对抗学习等统计机器学习,AI系统在信息感知(Perceiving)、机器学习(Learning)等智能水平维度进步显著,但是在概念抽象(Abstracting)和推理决策(Reasoning)等方面能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。
(三)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,在其2017年的年度开发者大会上,谷歌明确提出发展战略从“MobileFirst”(移动优先)转向“AIFirst”(AI优先);微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿,麦肯锡报告2016年全球人工智能研发投入超300亿美元并处于高速增长,全球知名风投调研机构CBInsights报告显示2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。
(四)创新生态布局成为人工智能产业发展的战略高地。信息技术(IT)和产业的发展史就是新老IT巨头抢滩布局IT创新生态的更替史。例如,传统信息产业IT(InformationTechnology)代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网IT(InternetTechnology)代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等,目前智能科技IT(IntelligentTechnology)的产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动AI技术生态的研发布局,全力抢占人工智能相关产业的制高点。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理GPU服务器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。在技术生态方面,人工智能算法、数据、图形处理器(GraphicsProcessingUnit,简称GPU)/张量处理器(TensorProcessingUnit,简称TPU)/神经网络处理器(NeuralnetworkProcessingUnit,NPU)计算、运行/编译/管理等基础软件已有大量开源资源,例如谷歌的TensorFlow第二代人工智能学习系统、脸书的PyTorch深度学习框架、微软的DMTK分布式学习工具包、IBM的SystemML开源机器学习系统等;此外谷歌、IBM、英伟达、英特尔、苹果、华为、中国科学院等积极布局人工智能领域的计算芯片。在人工智能商业和应用生态布局方面,“智能+X”成为创新范式,例如“智能+制造”、“智能+医疗”、“智能+安防”等,人工智能技术向创新性的消费场景和不同行业快速渗透融合并重塑整个社会发展,这是人工智能作为第四次技术革命关键驱动力的最主要表现方式。人工智能商业生态竞争进入白热化,例如智能驾驶汽车领域的参与者既有通用、福特、奔驰、丰田等传统龙头车企,又有互联网造车者如谷歌、特斯拉、优步、苹果、百度等新贵。
(五)人工智能上升为世界主要国家的重大发展战略。人工智能正在成为新一轮产业变革的引擎,必将深刻影响国际产业竞争格局和一个国家的国际竞争力。世界主要发达国家纷纷把发展人工智能作为提升国际竞争力、维护国家安全的重大战略,加紧积极谋划政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。无论是德国的“工业4.0”、美国的“工业互联网”、日本的“超智能社会”、还是我国的“中国制造2025”等重大国家战略,人工智能都是其中的核心关键技术。2017年7月,国务院发布了《新一代人工智能发展规划》,开启了我国人工智能快速创新发展的新征程。
(六)人工智能的社会影响日益凸显。人工智能的社会影响是多元的,既有拉动经济、服务民生、造福社会的正面效应,又可能出现安全失控、法律失准、道德失范、伦理失常、隐私失密等社会问题,以及利用人工智能热点进行投机炒作从而存在泡沫风险。首先,人工智能作为新一轮科技革命和产业变革的核心力量,促进社会生产力的整体跃升,推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域发展积极正面影响。与此同时,我们也要看到人工智能引发的法律、伦理等问题日益凸显,对当下的社会秩序及公共管理体制带来了前所未有的新挑战。例如,2016年欧盟委员会法律事务委员会提交一项将最先进的自动化机器人身份定位为“电子人(electronicpersons)”的动议,2017年沙特阿拉伯授予机器人“索菲亚”公民身份,这些显然冲击了传统的民事主体制度。那么,是否应该赋予人工智能系统法律主体资格?另外在人工智能新时代,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题都需要我们从法律法规、道德伦理、社会管理等多个角度提供解决方案。
由于人工智能与人类智能密切关联且应用前景广阔、专业性很强,容易造成人们的误解,也带来了不少炒作。例如,有些人错误地认为人工智能就是机器学习(深度学习),人工智能与人类智能是零和博弈,人工智能已经达到5岁小孩的水平,人工智能系统的智能水平即将全面超越人类水平,30年内机器人将统治世界,人类将成为人工智能的奴隶,等等。这些错误认识会给人工智能的发展带来不利影响。还有不少人对人工智能预期过高,以为通用智能很快就能实现,只要给机器人发指令就可以干任何事。另外,有意炒作并通过包装人工智能概念来谋取不当利益的现象时有发生。因此,我们有义务向社会大众普及人工智能知识,引导政府、企业和广大民众科学客观地认识和了解人工智能。
四、人工智能的发展趋势与展望
人工智能经过六十多年的发展突破了算法、算力和算料(数据)等“三算”方面的制约因素,拓展了互联网、物联网等广阔应用场景,开始进入蓬勃发展的黄金时期。从技术维度看,当前人工智能处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有数据、能耗、泛化、可解释性、可靠性、安全性等诸多瓶颈,创新发展空间巨大,从专用到通用智能,从机器智能到人机智能融合,从“人工+智能”到自主智能,后深度学习的新理论体系正在酝酿;从产业和社会发展维度看,人工智能通过对经济和社会各领域渗透融合实现生产力和生产关系的变革,带动人类社会迈向新的文明,人类命运共同体将形成保障人工智能技术安全、可控、可靠发展的理性机制。总体而言,人工智能的春天刚刚开始,创新空间巨大,应用前景广阔。
(一)从专用智能到通用智能。如何实现从狭义或专用人工智能(也称弱人工智能,具备单一领域智能)向通用人工智能(也称强人工智能,具备多领域智能)的跨越式发展,既是下一代人工智能发展的必然趋势,也是国际研究与应用领域的挑战问题。2016年10月美国国家科学技术委员会发布了《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。DeepMind创始人戴密斯·哈萨比斯(DemisHassabis)提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年7月成立了通用人工智能实验室,100多位感知、学习、推理、自然语言理解等方面的科学家参与其中。
(二)从人工智能到人机混合智能。人工智能的一个重要研究方向就是借鉴脑科学和认知科学的研究成果,研究从智能产生机理和本质出发的新型智能计算模型与方法,实现具有脑神经信息处理机制和类人智能行为与智能水平的智能系统。在美国、欧盟、日本等国家和地区纷纷启动的脑计划中,类脑智能已成为核心目标之一。英国工程与自然科学研究理事会EPSRC发布并启动了类脑智能研究计划。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。人机混合智能得到了我国新一代人工智能规划、美国脑计划、脸书(脑机语音文本界面)、特斯拉汽车创始人埃隆·马斯克(人脑芯片嵌入和脑机接口)等的高度关注。
(三)从“人工+智能”到自主智能系统。当前人工智能的研究集中在深度学习,但是深度学习的局限是需要大量人工干预:人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据(非常费时费力)、用户需要人工适配智能系统等。因此已有科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类AI”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低AI人员成本。
(四)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、材料等传统科学的发展。例如,2018年美国麻省理工学院启动的“智能探究计划”(MITIntelligenceQuest)就联合了五大学院进行协同攻关。
(五)人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来十年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,在现有基础上能够提高劳动生产率40%;美、日、英、德、法等12个发达国家(现占全球经济总量的一半)到2035年,年经济增长率平均可以翻一番。2018年麦肯锡的研究报告表明到2030年人工智能新增经济规模将达到13万亿美元。
(六)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出未来五年人工智能提升各行业运转效率,其中教育业提升82%,零售业71%,制造业64%,金融业58%。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。
(七)人工智能领域的国际竞争将日趋激烈。“未来谁率先掌握人工智能,谁就能称霸世界”。2018年4月,欧盟委员会计划2018-2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略》重点推动物联网建设和人工智能的应用。世界军事强国已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即提出谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。
(八)人工智能的社会学将提上议程。水能载舟,亦能覆舟。任何高科技也都是一把双刃剑。随着人工智能的深入发展和应用的不断普及,其社会影响日益明显。人工智能应用得当、把握有度、管理规范,就能有效控制负面风险。为了确保人工智能的健康可持续发展并确保人工智能的发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,深入分析人工智能对未来经济社会发展的可能影响,制定完善的人工智能法律法规,规避可能风险,确保人工智能的正面效应。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。
五、我国人工智能的发展态势与思考
我国当前人工智能发展的总体态势良好。中国信通院联合高德纳咨询公司(Gartner)于2018年9月发布的《2018世界人工智能产业发展蓝皮书》报告统计,我国(不含港澳台地区)人工智能企业总数位列全球第二(1040家),仅次于美国(2039家)。在人工智能总体水平和应用方面,我国也处于国际前列,发展潜力巨大,有望率先突破成为全球领跑者。但是我们也要清醒地看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。
一是高度重视。党和国家高度重视并大力发展人工智能。党的十八大以来,习近平总书记把创新摆在国家发展全局的核心位置,高度重视人工智能发展,多次谈及人工智能的重要性,为人工智能如何赋能新时代指明方向。2016年7月习总书记明确指出,人工智能技术的发展将深刻改变人类社会生活,改变世界,应抓住机遇,在这一高技术领域抢占先机。在党的十九大报告中,习总书记强调“要推动互联网、大数据、人工智能和实体经济深度融合”。在2018年两院院士大会上,习总书记再次强调要“推进互联网、大数据、人工智能同实体经济深度融合,做大做强数字经济”。在2017年和2018年的《政府工作报告》中,李克强总理都提到了要加强新一代人工智能发展。2017年7月,国务院发布了《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动,人工智能将成为今后一段时期的国家重大战略。发改委、工信部、科技部、教育部、中央网信办等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。
二是态势喜人。根据2017年爱思唯尔(Elsevier)文献数据库SCOPUS统计结果,我国在人工智能领域发表的论文数量已居世界第一。从2012年开始,我国在人工智能领域新增专利数量已经开始超越美国。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成全球人工智能投融资规模最大国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。近两年,清华大学、北京大学、中国科学院大学、浙江大学、上海交通大学、南京大学等高校纷纷成立人工智能学院。2015年开始的中国人工智能大会(CCAI)已连续成功召开四届、规模不断扩大,人工智能领域的教育、科研与学术活动层出不穷。
三是差距不小。我国人工智能在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在较大差距。英国牛津大学2018年的一项研究报告指出中国的人工智能发展能力大致为美国的一半水平。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,存在“头重脚轻”的不均衡现象。在Top700全球AI人才中,中国虽然名列第二,但入选人数远远低于占一半数量的美国。据领英《全球AI领域人才报告》统计,截至2017年一季度全球人工智能领域专业技术人才数量超过190万,其中美国超过85万,我国仅超过5万人,排名全球第7位。2018年市场研究顾问公司CompassIntelligence对全球100多家AI计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国制定完善人工智能相关法律法规的进程需要加快,对可能产生的社会影响还缺少深度分析。
四是前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出到2030年,人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。
人类社会已开始迈入智能化时代,人工智能引领社会发展是大势所趋,不可逆转。经历六十余年积累后,人工智能开始进入爆发式增长的红利期。伴随着人工智能自身的创新发展和向经济社会的全面渗透,这个红利期将持续相当长的时期。现在是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧需要深入思考。
(一)树立理性务实的发展理念。围棋人机大战中阿尔法狗战胜李世石后,社会大众误以为人工智能已经无所不能,一些地方政府、社会企业、风险资金因此不切实际一窝蜂发展人工智能产业,一些别有用心的机构则有意炒作并通过包装人工智能概念来谋取不当利益。这种“一拥而上、一哄而散”的跟风行为不利于人工智能的健康可持续发展。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。根据高德纳咨询公司发布的技术发展曲线,当前智能机器人、认知专家顾问、机器学习、自动驾驶等人工智能热门技术与领域正处于期望膨胀期,但是通用人工智能及人工智能的整体发展仍处于初步阶段,人工智能还有很多“不能”,实现机器在任意现实环境的自主智能和通用智能仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此发展人工智能不能以短期牟利为目的,要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,并务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。
(二)加强基础扎实的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。在此发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。根据2017年爱思唯尔文献数据库SCOPUS统计结果,尽管我国在人工智能领域发表的论文数量已经排名世界第一,但加权引文影响力则只排名34位。为了客观评价我国在人工智能基础研究方面的整体实力,我们搜索了SCI期刊、神经信息处理系统大会(ConferenceonNeuralInformationProcessingSystems,简称NIPS)等主流人工智能学术会议关于通用智能、深度学习、类脑智能、脑智融合、人机博弈等关键词的论文统计情况,可以清楚看到在人工智能前沿方向中国与美国相比基础实力存在巨大差距:在高质量论文数量方面(按中科院划定的SCI一区论文标准统计),美国是中国的5.34倍(1325:248);在人才储备方面(SCI论文通讯作者),美国是中国的2.12倍(4804:2267)。
我国应对标国际最高水平,建设面向未来的人工智能基础科学研究中心,重点发展原创性、基础性、前瞻性、突破性的人工智能科学。应该鼓励科研人员瞄准人工智能学科前沿方向开展引领性原创科学研究,通过人工智能与脑认知、神经科学、心理学等学科的交叉融合,重点聚焦人工智能领域的重大基础性科学问题,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。
(三)构建自主可控的创新生态。美国谷歌、IBM、微软、脸书等企业在AI芯片、服务器、操作系统、开源算法、云服务、无人驾驶等方面积极构建创新生态、抢占创新高地,已经在国际人工智能产业格局中占据先机。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。美国对中兴通讯发禁令一事充分说明自主可控“核高基”技术的重要性,我国应该吸取在核心电子器件、高端通用芯片及基础软件方面依赖进口的教训,避免重蹈覆辙,着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如军民融合、产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。
另外,我们需要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过标准实施加速人工智能驱动经济社会转型升级的进程。
(四)建立协同高效的创新体系。我国经济社会转型升级对人工智能有重大需求,但是单一的创新主体很难实现政策、市场、技术、应用等方面的全面突破。目前我国学术界、产业界、行业部门在人工智能发展方面各自为政的倾向比较明显,数据资源开放共享不够,缺少对行业资源的有效整合。相比而言,美国已经形成了全社会、全场景、全生态协同互动的人工智能协同创新体系,军民融合和产学研结合都做得很好。我国应在体制机制方面进一步改革创新,建立“军、政、产、学、研、用”一体的人工智能协同创新体系。例如,国家进行顶层设计和战略规划,举全国优势力量设立军事智能的研发和应用平台,提供“人工智能+X”行业融合、打破行业壁垒和行政障碍的激励政策;科技龙头企业引领技术创新生态建设,突破人工智能的重大技术瓶颈;高校科研机构进行人才培养和原始创新,着力构建公共数据资源与技术平台,共同建设若干标杆性的应用创新场景,推动成熟人工智能技术在城市、医疗、金融、文化、农业、交通、能源、物流、制造、安全、服务、教育等领域的深度应用,建设低成本高效益广范围的普惠型智能社会。
(五)加快创新人才的教育培养。发展人工智能关键在人才,中高端人才短缺已经成为我国人工智能做大做强的主要瓶颈。另外,我国社会大众的人工智能科技素养也需要进一步提升,每一个人都需要去适应人工智能时代的科技浪潮。在加强人工智能领军人才培养引进的同时,要面向技术创新和产业发展多层次培养人工智能创新创业人才。《新一代人工智能发展规划》提出逐步开展全民智能教育项目,在中小学阶段设置人工智能课程。目前人工智能科普活动受到各地学校的欢迎,但是缺少通俗易懂的高质量人工智能科普教材、寓教于乐的实验设备和器材、开放共享的教学互动资源平台。国家相关部门应高度重视人工智能教育领域的基础性工作,增加投入,组织优势力量,加强高水平人工智能教育内容和资源平台建设,加快人工智能专业的教学师资培训,从教材、教具、教师等多个环节全面保障我国人工智能教育工作的开展。
(六)推动共担共享的全球治理。人工智能将重塑全球政治和经济格局,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能将进一步拉大发达国家和发展中国家的生产力发展水平差距。美国、日本、德国等通过人工智能和机器人的技术突破和广泛应用弥补他们的人力成本劣势,希望制造业从新兴国家回流发达国家。目前看,我国是发展中国家阵容中唯一有望成为全球人工智能竞争中的领跑者,应采取不同于一些国家的“经济垄断主义、技术保护主义、贸易霸凌主义”路线,尽快布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合国家“一带一路”战略,向亚洲、非洲、南美等经济欠发达地区输出高水平、低成本的“中国智造”成果、提供人工智能时代的中国方案,为让人工智能时代的“智能红利”普惠人类命运共同体做出中国贡献!
(七)制定科学合理的法律法规。要想实实在在收获人工智能带来的红利,首先应保证其安全、可控、可靠发展。美国和欧洲等发达国家和地区十分重视人工智能领域的法律法规问题。美国白宫多次组织这方面的研讨会、咨询会;特斯拉等产业巨头牵头成立OpenAI等机构,旨在以有利于整个人类的方式促进和发展友好的人工智能;科研人员自发签署23条“阿西洛马人工智能原则”,意图在规范人工智能科研及应用等方面抢占先机。我国在人工智能领域的法律法规制定及风险管控方面相对滞后,这种滞后局面与我国现阶段人工智能发展的整体形势不相适应,并可能成为我国人工智能下一步创新发展的一大掣肘。因此,有必要大力加强人工智能领域的立法研究,制定相应的法律法规,建立健全公开透明的人工智能监管体系,构建人工智能创新发展的良好法规环境。
(八)加强和鼓励人工智能社会学研究。人工智能的社会影响将是深远的、全方位的。我们当未雨绸缪,从国家安全、社会治理、就业结构、伦理道德、隐私保护等多个维度系统深入研究人工智能可能的影响,制定合理可行的应对措施,确保人工智能的正面效应。应大力加强人工智能领域的科普工作,打造科技与伦理的高效对话机制和沟通平台,消除社会大众对人工智能的误解与恐慌,为人工智能的发展营造理性务实、积极健康的社会氛围。
六、结束语
人工智能经过60多年的发展,进入了创新突破的战略机遇期和产业应用的红利收获期,必将对生产力和产业结构以及国际格局产生革命性影响,并推动人类进入普惠型智能社会。但是,我们需要清醒看到通用人工智能及人工智能的整体发展仍处于初级阶段,人工智能不是万能,人工智能还有很多“不能”。我们应当采取理性务实的发展路径,扎实推进基础研究、技术生态、人才培养、法律规范等方面的工作,在开放中创新,在创新中发展,全速跑赢智能时代,着力建设人工智能科技强国!
(主讲人系中国科学院院士)
人工智能的发展与未来
随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。
现如今,各种AI产品已经逐步进入了我们的生活|Pixabay
19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。
20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。
至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。
智能,是一种特殊的物质构造形式。
就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?
图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。
英国数学家,计算机学家图灵
这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。
虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。
1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。
而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。
而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。
而这之后,人工智能的发展也与图灵的想象有所不同。
现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。
但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。
人工智能让芯片的处理能力得以提升|Pixabay
从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。
虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。
参考文献
[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.
[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.
[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.
[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.
[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.
[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987
作者:张雨晨
编辑:韩越扬
[责编:赵宇豪]大脑进化的尽头,人工智能会代替人类吗我们该如何看待这个问题
0分享至未来的某一天,人工智能有没有可能取代人类,成为地球上的主宰?在电影《我,机器人》中,一台超级计算机掌控了整个地球。这种计算机控制人类的情况会不会真的发生呢?机器真的有一天会取代我们成为地球的主人吗?
人工智能,顾名思义,是人类创造的智能机器。人工智能是一种模仿人的思维动作,来为人类服务的智慧机器。科学家通过计算机语言编写程序,对机器搭建神经网络,然后通过多次实验进行深度学习,以达到机器能够完成我们人类所能完成的事。随着上世纪四十年代世界第一台计算机诞生,到如今的计算机科学飞速发展,人工智能便产生了。随着科技发展的进步,越来越多的智能产品逐渐诞生,才短短几十年的功夫。人工智能已经渗透在我们生活中的各个领域,在医疗技术、生活、出行、信息处理等方面,都涉及到人工智能。并成为未来世界的发展趋势之一。
我们人类的大脑生长有一个极限,当大脑自然进化达到终点时,就意味着人类的智力也达到了终点。但计算机的处理能力则不同,计算机以两年翻一倍的指数级增长。科学家预计到2030年,计算机的信息加工速度就会超过现在的人脑。将来,随着计算机储存越来越多的知识,将取代人脑越来越多的功能。也许有一天,电脑能够复制大脑的传导通路,能够进化和自学,甚至产生自我意识和知觉,就像我们经常在科幻电影中看到的那些机器智能,它们虽然是被人类所创造,但是它们却拥有了超越人类的智慧和思维。
2016年谷歌开发的机器人ALPHAGO战胜了世界围棋顶尖选手李世石。曾轰动了全世界,把人类对人工智能的警惕推向了又一个高潮,这也代表机器人的智商正是超越我们人类。最近几年,随着云计算、大数据、深度学习等新技术的提出和应用,使得人工智能飞速发展。现在的智能机器人越来越新型,它们可以说话,可以做事,可以模仿一切人类能做的,甚至能做到人类不能做的事情。它们只要有程序,就仿佛有了自己的思想,可以自己决定要说什么,干什么。而人工智能分为两类:弱人工智能和强人工智能。弱人工智能是单一做一项任务的智能。不能自主进行系统更新,需要我们人类对其进行维护。强人工智能则是最综合的,强人工智能能够独立进行思考,学习新的东西,总结规律经验。其具有计算能力强、记忆能力强,学习能力强的特点。人工智能在大部分领域已经超过了人类的水平。
随着科学技术越来越先进,人工智能也会越来越强大。对此,许多人都持有不同的观点。著名天文物理学家霍金都认为人工智能可以模仿人类智能,不久的将来会超越人类智能,未来人类得到人工智能的帮助,或者被藐视和边缘化,甚至被毁灭,这都是有可能的。马克思和比尔盖茨则认为人工智能会主宰世界。他们认为不是因为智能才有野性,而是智能本身就是自由的产物。人工智能终将会跨过智能的门槛。到那时,他们会变得思维自主,不再受人类约束,企图主宰世界。当然也有人认为,人工智能是人类制造的,人工智能没有自我意识,更不会凭空产生自我意识,它没有抽象思维,人工智能所做的只是“模仿”。它们的一切都掌握在人类手中。它们是为了人类服务而设计的。不可能会超越人类,主宰地球。
人类研究人工智能,希望人工智能像人一样,甚至超过人的各种能力,但超越人类之后,人类究竟会不会像落后的种族被屠戮淘汰掉?这个问题谁也不能回答,但你绝对不能说这是杞人忧天。不管怎么说,人类和人工智能的冲突是未来的事情,现在是人类控制着人工智能,这才是最重要的。就目前而言,人工智能确实给我们带来了不少有利的影响。人工智能依托大数据以及本身很强的逻辑与计算能力,可以胜任很多繁琐的工作,使人类从枯燥乏味的工作中解脱出来。也在众多领域中做出了独特的贡献。关于人工智能,朋友们你们有什么不一样的看法,请在评论区写下你们的想法?如果您喜欢我的视频,请记得帮忙点赞、关注、评论和转发。谢谢您的支持。
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.
/阅读下一篇/返回网易首页下载网易新闻客户端人工智能会取代人类吗
会这样吗?蔡华伟绘
不久前,在中国乌镇围棋峰会上,人工智能程序“阿尔法狗”与排名世界第一的中国围棋职业九段棋手柯洁对战,以3∶0的总比分大获全胜。在此之前,它曾经以4∶1的总比分击败过同为围棋世界冠军的韩国职业九段棋手李世石,并在中国棋类网站上以“大师”为注册账号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩。两年来,“阿尔法狗”横扫中日韩围棋棋坛,并且每次表现都堪称完美。
一直以来,就有人工智能的发展会威胁到人类生存的观点,而“阿尔法狗”能在典型的反映人类智慧的围棋比赛中屡屡打败人类,更是加重了一些人的担忧。
那么,人工智能对人们工作、生活的直接影响到底有多大?它具备了人的部分能力,甚至比人类做得更好,未来会不会和人类抢“饭碗”,甚至对我们产生威胁?
具有不可
比拟的优势
未来人工智能可在金融投资、医疗诊断、企业经营、军事指挥等方面进行高水平的预测和决策
人工智能会取代人类吗?应当说,这种担忧也有一定道理。
近年来,人工智能各方面的发展都在逐渐完善,应用也越来越多,并且在很多方面的表现都超越了人类。
比如,2015年9月,腾讯财经推出了自动化新闻写作机器人。它能根据算法在第一时间自动生成稿件,瞬时输出分析和研判,一分钟内就能将重要资讯和解读送达用户。
还有,备受关注的微软小冰,作为一个虚拟伴侣型机器人,它能够模拟人的语气与人对话,聊天时让人感觉这就是一个活生生的人而并非机器。
此外,据外媒报道,摩根大通已经开发出一款金融合同解析软件,原来律师和信贷人员每年需要36万小时才能完成的工作,该软件只需几秒就能完成,且错误率大大降低。
青岛智能产业研究院智慧教育研究所副所长刘希未说:“在问题求解方面,人工智能程序已经能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。在无人驾驶方面,人工智能已经可以实现长距离复杂路况下的自主驾驶。”
“未来在认知层次,人工智能还将会有广阔应用空间,例如人工智能可在金融投资、医疗诊断、企业经营、军事指挥等方面进行高水平的预测和决策。”中国科学院自动化研究所研究员孙哲南说。
而著名物理学家史蒂芬・霍金则认为人工智能给人类社会带来的冲击将更为巨大。2016年底,他在英国《卫报》发表文章预言说:“工厂的自动化已经让众多传统制造业工人失业,人工智能的兴起很有可能会让失业潮波及中产阶级,最后只给人类留下护理、创造和监管等工作。”
这样的判断还有待未来验证,不过,相比人类智慧,人工智能的确有着不可比拟的优势。
刘希未说:“和人脑相比,人工智能算法应对数值和符号计算更加精确快速,稳定可靠。特别是对于有确定规则的计算问题,人工智能可以远远超出人脑的计算速度,也更容易找到最优的解答。比如,在数值计算,图形、语音、生物特征、行为姿态等方面的识别,甚至更加复杂的预测推理任务方面,人工智能都有超越人脑的优秀表现。”
不会取代
甚至威胁人类
人工智能不具备感性思维,无法跨越到意识领域
那么,人工智能真的会因此而取代人类本身,甚至对我们产生威胁吗?记者采访的几位专家都给出了否定的答案。
首先,专家们认为,当前的计算机架构和编程模式具有本质上的劣势,使得人工智能无法实现与人脑情感、意志、心态、情绪、经验等方面的自然交互。本质上,人工智能仅仅是物质世界范畴的概念,无法跨越到意识领域。
1981年荣获诺贝尔生理学奖的罗杰・斯佩里博士曾发布著名的“左右脑分工理论”,认为人脑的左右半球有着不同分工:左半脑擅长分析、逻辑、演绎、推理等理性抽象思维;右半脑擅长直觉、情感、艺术、灵感等感性形象思维。迄今为止,人工智能的所有智能化表现仅仅在模仿人类左半脑的理性思维模式,而完全不具备右半脑的感性思维。
“也就是说,目前的人工智能技术还很难应对具有显著人类主观意识影响的社会文化和意识领域的各类问题,而人脑却可以通过长期在复杂社会环境下的学习成长轻松应对这类问题。”刘希未说。
他进一步举例说,比如人工智能至今也还没有创作出真正具有人性境界的作品。“电脑与人脑,毕竟有着机械性与生命灵性的本质区别,因此,电脑创作与人脑创作之间尚存在着难以逾越的鸿沟。个性化是人类文学艺术创作的生命,而已有电脑创作系统尚无个性可言,只不过是对已有的艺术作品的模仿、复制与重组。”
那么,随着人工智能的不断发展完善,将来是否有可能实现这种自发的情感智能呢?
“情感智能化分成两个层面,一个是让机器本身具有情感,另外一个是让机器理解人的情感,两者是不一样的”,中国科学院自动化研究所研究员易建强说,“让机器去理解人的情感,这件事是有可能做到的。目前有一部分机器人系统能够做到部分理解场景、环境及对话内容,并根据其结果做出相应的反应或者表情。但要机器人或人工智能系统完全达到人类的水平,有自发的情感和创造性,那是很难实现的,或者说不可能实现。”
中国自动化协会副理事长、秘书长王飞跃对此表示认同,“我个人认为100年内无法实现,或许永远不可能实现,除非重新定义什么是人的情感、理解、推理等等。原因很简单,人们现在都还不清楚这些情感的内涵、产生的过程及其方式。”
将成为人类
发展的加速器
人工智能的确会对人类就业造成一定冲击,但人类的工作不会消失,而是转变为新的形式
科学家们还认为,人工智能技术只是人类智慧创造的一种新型工具,它有助于人类更快做出突破,提高我们应对那些亟待解决的全球性难题的能力。
“我们需要人工智能这个强大的工具来帮助处理复杂问题,预测未知,支持我们实现以往不可能的目标。”王飞跃说。
专家们表示,很多划时代的科技成果必然引发人们生活方式的改变,短期内很可能难以被接受,但若放眼历史长河,就会发现,所有重大的科技革命无一例外地都最终成为人类发展的加速器,同时也是人类生活品质提高的根本保障。
“人工智能技术的出现也同样如此,它的确会对人类的就业造成一定冲击。比如,人工智能更适合处理简单重复、规则确定或者通过案例学习可以找到有效处理规则的问题。像安检、看病理切片和监控视频审核等交给人工智能更为高效可靠,这些工种也因此比较容易受到冲击和替代。”不过,易建强表示,不必因此就担心它会彻底取代人类。“以第一次工业革命为例,它不仅仅是让人类的既有工作被取代,同时会制造出足够多的新的就业机会。大多数情况下,工作不是消失了,而是转变为新的形式。”
易建强说,马车被汽车取代就是一个非常典型的例子。当年,汽车开始进入大城市并逐渐普及的过程中,曾经在数百年的时间里充当出行工具的马车,面临着“下岗”威胁。但后来的事实证明,新兴起的汽车行业拥有比传统马车行业多出数千倍甚至数万倍的产值和工作机会。
“现阶段,在一个真正实现人工智能的工作场景中,传统劳动者也并未被‘下岗’,只是改变了角色而已。仍然需要人类对人工智能的表现进行监控,进行情报采集与分析,以及开展预测性的实验与评估,引导性的过程管理与控制。”王飞跃说,“我相信将来人类90%以上的工作是由人工智能提供的,就像今天我们大多数的工作是由计算机和各种其它机器提供的一样。”
《人民日报》(2017年07月07日20版)
(责编:易潇、沈光倩)分享让更多人看到
人类为什么不会被人工智能取代?
来源:人机与认知实验室
〔摘要〕文章旨在对人工智能的技术本质进行分析,以回应为什么人类不会被人工智能取代的问题。通过历史分析的方法,以“器官投影说”等技术哲学思想作为分析工具,回顾了人工智能技术的历程。发现在理论上,人工智能的研究加深了对人类智能的模仿的同时,更倾向于由机器与人类共建智能系统的解决方案;实践中,人机关系也从“分离”更多地走向“交融”。因此,人类除了能在本质层面上作为人工智能这种人工物所模仿的终极目的而存在,还能在个体层面上作为大的人工智能系统的行动者发挥智慧功能,人类不会被人工智能取代。
〔关键词〕人工智能;器官投影;人机融合
一、“人类是否会被人工智能取代”的当代回应
随着计算机科技的高速发展,“人工智能”的研究取得了长足的进步。随着“阿尔法狗”在人类引以为傲的围棋领域中让人间棋圣尽尝败果,“微软小冰”以诗人的身份混迹文学圈乃至出版诗集却一直未被人发现,人工智能谱曲、播报新闻的案例亦是屡见不鲜……人工智能的一切进展在反映科技事业的长足进步的同时,也让人类智能的优越性受到挑战,关于“人类将被人工智能取代”的恐慌也在社会上流行。
那么人类是否会被人工智能取代?人们从不同的视角给出了各自的答案:
基于人工智能目前在现实实践活动中的表现及其发展趋势,有人认为人工智能可以取代人类。如互联网行业先驱李开复曾预测“未来10年估计有50%的人类工作将会受到人工智能的影响……预计将有90%的人被人工智能取代”。新闻传播领域,匡文波与韩廷宾结合“腾讯Dreamwriter”和“新华社快笔小新”在新闻采写中的表现认为“未来某些领域消息写作有可能会被人工智能所取代”。而在文学艺术领域,袁跃兴根据“微软小冰”人工智能成功发表诗篇甚至出版诗集却一直没被人识破而慨叹“‘人工智能’技术已经发起了对人类文学尊严的挑战”。
也有人基于人类思维或情感的特殊性,认为人类不会被人工智能所取代。此类观点的基本预设便是,人工智能并不能理解人类情感,甚至认为人工智能并无人类一般的“智慧”。如黄欣荣认为“机器毕竟是机器,在体力、智力方面胜过人类,但在情感、意志等方面,机器还无法匹敌人类,因为人工智能目前仍是有智力没智慧”。徐英瑾也“并不倾向于认为人工智能取代人类……现有的人工智能并不具备灵活运用各个领域的知识进行综合判断的能力,而几乎我们能够想到的大多数人类所执行的工作任务,都需要执行者以相对灵活的方式来调配各个领域内的知识”。刘润坤则基于人类审美能力的独特性指出“人工智能在未来相当长的一段时间无法取代艺术家,其根本原因就在于机器创作没有灵魂”。
总体来看,认为人类会被人工智能取代的一方,其主要出发点是人工智能的现实功用,尤其是当人类和人工智能都可以完成类似于驾驶汽车这类的活动,且人工智能可以有更低的失误率时,人工智能在社会分工层面取代人类将极可能实现。而认为人工智能不可取代人类者,则是坚持认为人类与机器在本质上存在的差异,比如虽然人工智能完全可以完成一副画作,但它们只是通过一些机械的动作完成色彩与线条的搭配,永远是“知其然不知其所以然”。
但两方的回应都具有明显的不完备性。对于认为人工智能可以取代人类的一方,即便人工智能的很多功能可以实现对人类的替代,但是依据“多重可实现原则”可知,人工智能实现这些功能的机制可能与人类完全不同。这就意味着人工智能与人类社会的对接方式不一定与人类一致,甚至在某些潜在的情境下人工智能会与人类社会无法兼容。对于认为人工智能无法取代人类的一方而言,所有对于人类理性、情感或自由意志的坚信更像一种形而上学的预设。因此即便人工智能创作出如梵高、塞尚再世级别的画作,人类依旧可以用“没有灵魂”来进行拒斥或批判。但这种观点本身缺乏论证,关于人类特性的预设也显得带有神秘的不可知论的特征。
综合以上,上述两方面回应的共同缺陷在于,他们的探讨并未结合人工智能的发展历程,因而脱离了对人工智能的构建机制的研究。这就让人类智能和人工智能之间的比较,像是两个“黑箱”之间的对话,人们并不能更好地理解人工智能之于人类的挑战性和人类之于人工智能的独特性。基于此,本文将从人工智能的技术本质的角度探究,“人类是否会被人工智能取代”的问题。
二、对人类的模仿:人工智能的技术起点
阿兰·图灵是第一位真正提出,如何验证机器已经产生人类思维的实验标准的科学家。在图灵的思想实验中,计算机程序或者说是广义的机器人是在与人进行一场精致的“模仿游戏”,即在人与机器的双盲对话中,机器不断模仿人类的语言习惯,以欺骗参与对话的人类,让人类相信自己是在与人而非机器对话。这一思想实验后来在计算机科学的发展中,被发展成为广义的“图灵测试”。按照这种标准,一旦机器通过图灵测试,就可以判定机器具有和人相一致的思维能力,这种观点被称为“强人工智能”的观点。
围绕着机器通过了图灵测试,是否就可以判定机器的思维机制与人类相同,人工智能哲学界引发争论,其中又尤以塞尔的“中文屋”思想实验较为著名。
“中文屋”思想实验的主要预设是,在一个大家看不见内在构造的屋子前,只要人们对其说出某些中文,屋子中就会给出相对应的中文回应,这给人一种屋子中的人或事物非常精通中文的感觉。但一种可能的情景却是,屋子中有一套完备的中英文的对照规则手册,屋子中的人或其他事物根据手册指示,先找到接收到的中文所对应的英文,再基于对照手册的指示对外给出一个中文的回应,这样即便屋子中的人或事物不懂中文,也会看似精通中文。
塞尔的“中文屋”思想实验就是在论证,即便机器人或者计算机可能在某些方面的表现不亚于人类,但是依旧不能说机器已经理解人类的思维方式。“一个弱意义上的人工智能程序只是对认知过程的模拟,程序自身并不是一个认知过程。”换言之“弱人工智能”的主要观点就是,人工智能可以在行为上模仿人类,但不代表它能像人类思维一般实现自我理解。
上述只是强弱人工智能之争的最基本内容,在人工智能哲学的后续发展中,关于“规则手册是否真的可能存在”“理解了规则手册是否相当于理解中文”等问题还引发了后续的诸多争论。相关的论述至今已经汗牛充栋,但本文的重点并不是细述强弱人工智能观点的分歧,而是试图发现它们都可接受的理论共识。
“图灵测试”最终的判断标准,是人工智能有没有骗过人类,或者更准确地说,就是人工智能是否已经掌握与人相似的表述方式。更广义地理解这一标准,也就是判定一个程序或机器人的设计好坏的标准在于,它的行为与表现究竟有多么接近人类。这样一来,即便是一个最终没能通过“图灵测试”的人工智能设计也具有积极的意义,因为它可能已经在接近人类的方向上又迈进了一步,它也完全可以保留自身的优势,在其最接近人类的方面做进一步的加强,甚至可能在这一方面超过人类。
也有人认为,塞尔的“中文屋”在很大程度上只是在给人类找回最后的颜面。因为如果只是在某些专业领域,比如数学计算或者棋类竞技上做一个长期的开发,人类很可能不是人工智能的对手。但即便如此,人类依旧可以有充分的理由认为,机器并不具有人类一般的智能,因为人工智能至多只是“规则手册”的良好执行者,并不真正理解其自身的行为。
综上可以发现,强弱人工智能观点的分歧,其实主要在于人工智能相较于人类智能的完备度的认可上。这反而彰显了它们在底层有这样一些最基本的共识:第一,人类智能是人工智能发展一直所参照和模仿的对象;第二,人工智能发展的完备程度只能以人类作为参照甚至以人类能否接受作为最终标准。 因此在这种意义上来讲,人工智能完全可以被视为人类智能的“投影”,这与技术工具发明的“器官投影说”相通。“人类在长期的劳动、生活过程中,学会了利用身边的各种器物以弥补我们自身的不足,进而还学会了主动制造原来不存在的各种工具和器械来增强人体自身的功能……人类发明、制造工具其实最初都是按照自身的某个器官做摹本。”只是人工智能的发明是以人类的智能器官———按照生理学或医学的概念范式就是大脑,按照哲学的概念范式就是心灵———作为模仿对象。
力主模仿人类“大脑”或“心灵”的人工智能研究,要提升研究水平的前提就是要有“投影”人类智能的方法。接下来的问题就是,人工智能研究中,这种“投影”的策略是什么?
三、对人类智能从浅到深的“投影”:人工智能的技术策略
按照器官投影说的说法,“投影”至少有两层含义,“一方面,人体器官的形状和功能‘投影’在工具中……另一方面,人体器官的尺寸、比例被抽象和放大到工具中”。在一般技术工具的发明和制造过程中,这两种“投影”都已经被应用到淋漓尽致的地步。以日常用来盛水或食物的碗为例,其原型就是人的双手捧起水或食物时聚拢在一起的形状,碗的发明就是实现了这种盛放物品的功能。同时,碗在实际的制作中口宽底窄,依然是配合人类的手型,但是又会依据碗的用途的不同,而放大或缩小相应的尺度。
但是人工智能想要投影人类智能并非易事。如果作为器官来看,人类的思维器官是最具复杂性和神秘性的脑。尤其在人工智能发展的初期,医学或生理学能够对大脑做出的解读并不多,这就让人工智能研究对于人类智能的投影只局限在表象层面的人类的行为。随着计算机技术水平的提高,人工智能的研究就走向对人类认知器官的某些特定功能的专门模仿。到了医学可以对脑有一个更深层次的解读,并且计算机技术可以实现对于脑更深层的模仿后,人工智能又来到一个新的纪元。
(一)对人类行为的投影
在心理学的预设当中,人类的行为是一种对于人类思维状态的表征。因此当人工智能可以对于人类的行为进行模仿时,也就在一定程度上实现了对于人类智能的模仿。
较初级的人工智能产物一般都是在极力模仿人类的各种行为。一些工业领域常用的智能维修机器人更是主要只是模仿人类操作器物的行为。很明显的是,单纯依靠此类人工智能技术并不能通过图灵意义上的“模仿游戏”的测试。从本质上说,此类人工智能产物是对于人类的“感知—动作系统”的模仿,更主要的是实现对于人类肢体动作的模仿。图灵的“模仿游戏”重点检测的则是更深层次的,机器对于人类“语言—思维系统”的模仿。
但是此类人工智能技术依然具有存在的意义,它在现如今的人工智能的整体设计当中主要充当一种辅助技术,尤其在人形机器人的肢体的设计与生产环节,因此相关研究依然在提升其技术精度,并仍被广泛应用于人形机器人的设计生产之中。
(二)对人类特定智慧功能的投影
此类的研究依然可以暂时悬置人类的认知器官的真实构造这一问题,而是直接“利用计算机作为硬件平台,通过编制聪明软件来模拟人类智力功能”。此类研究策略可以让人类的认知器官继续保持一种相对的“黑箱”状态,只要保证计算机硬件平台可以在输出端给出与人类的判断尽可能相似的结果就好。
贯穿其中的研究策略在很多的专门领域当中取得较好的成效,目前已经在实践领域当中有广泛使用的人工智能产品,实际上就是采用此类的研究策略。诸如大家所熟知的京东、阿里巴巴和腾讯集团推出的智能客服,以及华为的“YOYO智能助手”和小米的“小AI同学”等,实际上就是在实现对于人类某些方面的语言功能的模仿。
此类研究的局限性就在于它总是只能解决某一专门领域的问题,比如一个智能家居助手可以解决的问题是将室内温度调整到20℃,但是它可能并不能理解温度数据与人类关于“寒冷”“炎热”的感受,更不能体会“老人怕冷”“孩子怕热”这类的亲情关怀。
(三)针对人脑的技术投影
随着近现代生理学尤其是脑科学的发展,对于人类认知器官的认识也逐渐走向了精细化。信息技术的高度发达,让计算机系统的搭建也可以形成对于人类认知器官的深层次模仿。近年来,随着“在不同方向上观测不同认知任务下脑部神经的活动变化并获得相关类脑智能数据已成为可能……发展类脑智能现已成为人工智能学科以及计算机应用相关领域研究的热点”。例如前文中提到的阿尔法狗的构建理论基础,就是人工神经网络技术的深度学习策略,类脑人工智能是其技术实质。除了人工神经网络技术外,“参考人脑神经元结构和人脑感知认知方式来设计的”类脑芯片也在成为目前人工智能领域研究的重点,并且芯片的运算机制已经愈发地接近人脑思考问题的方式。
基于人类脑科学研究成果而发展出来的此类人工智能技术,被称作“类脑智能”。此类技术不再只是从模仿外部的人类的行为或功能来实现机器的智能涌现,而是直接着眼于人类智能的发端,对脑的结构进行更深层次的模仿。类脑智能的研究可谓是人工智能目前最前沿的进展之一。但是直到目前为止,针对人类复杂的大脑的研究尚处于起步阶段,要实现对人脑的整体解读仍需要一个很长周期的研究。
综上所述,人工智能研究的认识论基础是技术哲学意义上的“器官投影说”,脑科学的最新研究进展成为人工智能更精细化投影人类认知器官的理论工具。当然,认识论层面上的理论基础或理论预设都会带有一定的理想化的特征,尤其只是在近些年脑科学的新进展才更好地支撑了人工智能研究的发展。在此前和未来的很长一段时间里,人工智能的研究主要还是要集中在与人类相似的智能功能的实现层面上,而未必是内在结构上与人类认知器官的高度一致上。因此,这里实际上需要分析的问题是,当人工智能的结构构建必然与人类智慧器官自身存在差异的前提下,人工智能自身是否会有相应的局限,人类又可以通过扮演怎样的角色来协助人工智能突破这样的局限呢?
四、从分离到交融:人工智能与人的现实关联
一个人工智能产物能够存在于社会,必然因为它可以实现某些方面的功能,从而满足社会某些方面的需求。这些相应功能可以实现的实质就是,人与人工智能,同客观世界之间以特定的形式发生相互关联,并且在不同的情境下人与人工智能之间的关系将有所不同。
(一)作为世界的一部分的人工智能
在诸如前文中所提到的各种研究环节,人工智能实际上都被视为一种待研究的对象来看待。其实不仅在研究阶段,到了应用层面也同样需要经历一个人对人工智能的认识和熟悉的过程。这就像我们拿到一台新的个人计算机,对于操作界面和随机功能均有一个必要的熟悉过程一般,一个新的人工智能产物走入到生产生活中,人类作为操控者或者说工作上的“合作伙伴”,需要将人工智能作为一个崭新的客体来进行研究。
此时的人工智能相当于世界的一份子,对于人处于一种几乎未知的状态,人与人工智能也在一种比较充分的分离状态之下。
(二)作为人与世界的媒介的人工智能
关于人工智能最为常见的应用模式,就是让人工智能代替人类去从事一些与外在世界之间的交互。比如人类派出探险机器人去探测星体表面,此时的机器人就是以人类的代理者的身份去完成人类的指令。在此类的应用之中,人类将自己的指令翻译成人工智能可以理解的计算机指令,人工智能完成相应的行动;在反馈环节中,人工智能则是依靠自身携带的各类传感器,将其收集到的各类信息传递给人类以备后续分析。
作为中介的人工智能带有一定的被动性,多数时候只能服从于人类的操控。这种意义上来说,此类人工智能更像是人类的欲望或意向性的转移者。它们也同样可以被视为世界向人类传递信息的媒介,它将那些人类肉身难以轻易企及的处所的信息传递给了人类。
人与作为世界的媒介的人工智能之间,会因为“使用”这种行为而发生交互,“使用”一旦停止人机将再次分离。
(三)作为人的“身体”的人工智能
称人工智能可以作为人类的“身体”,并不只是意味着人工智能产物已然植入人类身体(虽然在技术层面这早已可以实现),而是重点说明人工智能在应用层面给人带来的体验。
这种体验时常让人不会轻易察觉到人工智能技术的存在,它“展现出部分透明性,它不是人类关注的中心……经过短时期的适应之后,你不会感觉到它的存在……它已经成为身体体现的一部分,具有人的身体的某部分特征,它成为人类身体的延伸”。最常见的例子就是,如今的智能手机基本都具有导航功能,并且很多的导航程序都已经具有了很明显的人工智能特征。人在行走的过程中,其实已经让导航软件加强甚至替代了自己的“方向感”或“路感”。当一个人来到陌生的城市,也很少将辨识方位视为需要提前很久去完成的准备工作。
“方向感”本身属于人类智能的一部分,智能导航程序相当于加强了这种能力,但是在日常生活中,使用者会不自觉地将智能程序加成的“方向感”深以为然地视为自己天然具备的能力,这就是人工智能作为人类“身体”出现的最普遍的表现。
作为人的“身体”的人工智能,其影响力不仅在于实际的操作层面,而且在于它已经在人类的认知层面形成一种清晰的意向,让人类与其不自觉地相同一。
(四)人作为人工智能的“部件”
前文提到的“人工智能”总好像有一些很具象化的特征,也就是所有的人工智能产物似乎都有一个比较清晰的形态。不可否认的是,为了让人机交互显得更加友好,人工智能产品在其交互界面的设计上的确非常有人类色彩,如以人类的语音作为向导、仿照人类的形态制作输入输出设备等。
但实际上,人工智能系统的实际构造可能远比使用过程中所看到的界面要复杂得多。尤其是在分布式网络日益发达、大数据应用日益成熟的今天,理论上整个的网络信息平台都可能成为人工智能的数据库或云计算组件。因此,网络上的人类用户,在一定程度上就可能成为人工智能系统的某个空间节点上的部件一般的存在。并且需要注意的是“人比机器的优势之一就是:可以从较少的数据中更早地发现事物的模式”。也就是说作为人工智能“部件”的人类,一方面可以减轻实际应用层面上人工智能的计算压力,另一方面也在技术层面上搭建了以网络联结为基础的人机混合的智能系统结构。
人类充当人工智能系统的“部件”的原因大致上有两个:其一,就是实现应用目标的便利性的诱惑,毕竟在语言翻译等领域让人工智能短期内达到人类母语水平并不现实。在具体情境下,不一定非要人工智能通过模型计算给出合理的结果,直接转述人类在相应情境下的回应,可以更经济也更快速地实现应用需求。其二,就是目前人工智能领域研究的现实局限,前文提到的类脑人工智能的发展前景极具诱惑,其研发的基础就在于“以脑科学和信息科学的基本理论为指导……标记、获取、分析……精细脑网络结构与功能信息”。但攻克这项工程需要的可能是全人类长期的共同努力,突破人工智能的局限性不可能在一朝一夕,于是更可行的解决方案就是让人类作为宏观的人工智能系统的“部件”完成操作任务。
由此,在实际的应用层面上,随着人工智能功能的完善和大数据技术等的全面加持,人与人工智能之间不会再是泾渭分明的“分离”状态,而是随着彼此之间依赖的加深(人将人工智能默认为自身的功能,人工智能借助人类智慧的优势更快完成操作任务),人与人工智能实际上走向了一种“融合”的状态之中。
(五)从模仿到共建:人机融合的现实趋势
如前文所言,最理想的人工智能研究,其实是通过脑科学的“逆工程”制造出一个完整的人工生命,“这是对于传统的,通过具有某些特定功能的计算机子系统来分析性地构建智能系统的人工智能研究的替代方案。”
但是人工智能事业的发展,不能等待着此类研究的彻底完备,而是需要在实践中提升智能系统的问题解决能力,“这迫使我们要做出具体的工程决策,充分考虑抽象和具象的对象之间,以及观察的和理论的现象之间的关系”。在现实层面上,实际上需要被考虑的是人工智能性能的提升问题,既然“人机交互所产生的融合双重智能可以……提升人工智能系统的性能……更加高效地解决复杂问题”,那么人机融合就应该是被选择的趋势。
一个现代的人工智能系统不再应该被简单地视为与人类孤立的技术产物,而更应该被视为一个人类智慧与机器智慧所共建的广义的网络系统。这一网络系统的特征与巴黎学派的拉图尔、卡龙和劳等人所提出的“行动者网络”非常类似。“‘行动者网络’本身是一种‘异质型’网络,即人类行动者和非人行动者平等构成网络,在具体的科技活动中……平等地影响着网络,并且通过对于网络的‘协同’或‘背叛’影响网络的运作”。人与非人行动者会因为他们有共同的行为意向而联结在一起,并作为整体共同实现相应的实践目标。
并且应该与“行动者网络”理论的预设相一致的是,对于一个有某种明确的应用目的的智能系统而言,人与机器应该处于一种相对平等的状态之中。这里的“相对平等”的实现很可能是一种动态的总体的平等,即在某些具体的情境下,可能人类的主观意愿占据主导。但是在另一些情境下,机器的计算目标则更加重要。人类与机器在联结性和目的性等层面上发生的耦合,是人机共同构建智能系统的基础,它们之间彼此的协同促进,是共同提升系统功能的基本方法。
那么基于以上认识,我们又可以从何种意义上说明人类不会被人工智能取代呢?
五、结语:人有人的用处,人机共建新系统
人工智能是科学高度发展的智能化产物,其自身的本质依旧是技术人工物。任何广义的人工物,都具有主导其功能与构成的形式和质料。
从技术发展史的角度来说,人工智能的研究起步于对人类智能的模仿,因此人类的形式就是其追求的终极的形式,只是它用以实现人类智能的质料又与人类的肉身大相径庭。比如各类金属或有机材料是构建人工智能的机械身体的物质质料,各类运算机制和计算方法则是实现计算机智能的语言质料。这些现实的差异,以及人工智能后来所取得的一系列进步,让我们开始习惯于用一种对立甚至敌对的眼光去审视人类模仿自己而创造的各种人工智能产物。但不能忽视的却是,技术人工物得以持存的原因是某些目的性的实现。此时一个更加现实的问题就是,当人类不是以一种对立的姿态看待人工智能,而是以一种相互交融的态势与人工智能发生关联将会发生怎样的变化?
人类其实不单单可以作为人工智能所模仿的形式而存在,也可以作为技术系统当中真实有效的质料或部件。脱离开对人工智能的具象化的刻板预设,让人类、计算机和手机等智能单元都成为数据运算的可能参与者,这将是一种能让人工智能更快提升功能的解决方案。因此,在技术人工物的视角下审视人工智能的发展,其实质就是提供实现某类功能的可行的解决方案。在这种意义上来说,人非但不会存在被取代的可能,更可以与技术产物相互交融构建新的系统,人类智能不仅是人工智能研究中终极意义上的形式与目的,也是智慧功能实现层面上可以带来现实意义的行动者。
维纳用《人有人的用处》这一书名,来提示人们在控制论和信息论背景下应该重新思考“人”的概念。这里我们用“人有人的用处”来回应,为什么在现实的实践的视角下,人类不会被人工智能取代。当人类摒弃了人与机器的对立态度,在一个可以平等进行信息交换与计算的网络上共建一个人工智能系统,人类既能依旧作为智能系统的终极目的而发挥类本质层面上的导引作用,又可以在个体层面上履行新的社会分工责任———人将仍然有人的用处。
〔参考文献〕
[1]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.[2]匡文波,韩廷宾.消息写作有可能被人工智能取代[J].新闻论坛,2017,(4):32-35.
[3]袁跃兴.“人工智能”技术能否取代诗人?[N].北京日报,2017-06-22(18).
[4]黄欣荣.人工智能对人类劳动的挑战及其应对[J].理论探索,2018,(5):15-21.
[5]徐英瑾.人工智能无法全面取代人类[N].第一财经日报,2018-09-18(A11).
[6]刘润坤.人工智能取代艺术家?——从本体论视角看人工智能艺术创作[J].民族艺术研究,2017,30(2):71-76.
[7]梅剑华.理解与理论:人工智能基础问题的悲观与乐观[J].自然辩证法通讯,2018,40(4):1-8.
[8]黄欣荣.卡普技术哲学的三个基本问题[J].自然辩证法研究,2012,28(8):27-31.
[9]王楠,王前.“器官投影说”的现代解说[J].自然辩证法研究,2005,21(2):1-4,17.
[10]钟义信.范式转变:AlphaGo显露的AI创新奥秘[J].计算机教育,2017,(10):9-14.
[11]宋小芹,王莉丽,张卫星.基于机会认知的类脑智能数据挖掘机制[J].计算机仿真,2016,33(11):375-378.
[12]陶建华,陈云霁.类脑计算芯片与类脑智能机器人发展现状与思考[J].中国科学院院刊,2016,31(7):803-811.
[13]吴国林.后现象学及其进展——唐·伊德技术现象学述评[J].哲学动态,2009,(4):70-76.
[14]刘伟,厍兴国,王飞.关于人机融合智能中深度态势感知问题的思考[J].山东科技大学学报(社会科学版),2017,19(6):10-17.
[15]骆清铭.脑空间信息学—连接脑科学与类脑人工智能的桥梁[J].中国科学,2017,47(10):1015-1024.
[16]Correia,L.Fromnaturaltoartificiallife[J].RevistaPortuguesadeFilosofia,2010:789-802.
[17]King,R.D.RiseoftheRoboScientists[J].ScientificAmerican,2011,304(1):72-77.
[18]李平,杨政银.人机融合智能:人工智能3.0[J].清华管理评论,2018,(Z2):73-82.[19]毕丞.行动者网络理论在科技传播领域中应用的可行性研究[J].自然辩证法研究,2014,30(3):76-82.
本文摘自:北京科技大学学报(社会科学版)2019年4月第35卷第2期
【毕丞:北京科技大学哲学教师】
未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”