博舍

人工智能的理解 人工智能的理解和认识500字作文怎么写的

人工智能的理解

人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。

更详细的历史参考链接:https://www.jianshu.com/p/501e840619e1

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

——维基百科

总结人工智能的理解:

人工智能(AI)实现过程中,有感知层处理、认知层处理,最后到现实中应用即称应用层。

感知层

感知层包含语音识别与合成和计算机视觉。

语音识别与合成包含:语音识别、信号处理、模式识别、信息处理等。

计算机视觉包含:人脸识别、图像识别、机器识别、视频识别、体感识别等。

认知层

认知层包含自然语言处理、知识图谱、规划与决策等。

自然语言处理包含:文档分析、词法分析、平滑技术、数据稀疏等。

知识图谱包含:可视化、知识工程等。

规划与决策包含:自动规划、推理机制、专家系统等。

应用层

实际应用方面包含机器人、无人驾驶、推荐系统、计算广告、搜索引擎等。

机器人应用包含:聊天机器人、服务机器人、工业机器人等。

无人驾驶应用包含:智能模拟、自动工程等。

推荐系统应用包含:个性推荐、协同过滤等。

计算广告应用包含:广告竞价、数据挖掘、广告交易平台等。

搜索引擎应用包含:智能搜索、统计学法等。

弱人工智能

    弱人工智能是指能擅长于单个方面的人工智能,规则是封闭的。AlphaGo的判断可以用于围棋,达到很高的水平,它要下象棋也能达到很高的水平,但是就要从头再搞一套象棋的软硬件,它在围棋的深度学习无法通用于其他领域。

强人工智能

强人工智能是指在各方面都能和人类比肩的人工智能,人类能做的脑力活动它都能做。它没有既定规则和领域,是开放式的。

人工智能+机器学习+深度学习的包含关系

     

1、机器学习只是人工智能的一种非常有效的实现方法,但人工智能不只是机器学习;

2、深度学习只是实现机器学习的一种非常有效的技术,但机器学习不只是深度学习;

3、深度学习只是目前最热的一种技术,但不意味着人工智能的终点。未来:小数据大任务,大数据小任务。

机器学习分类

根据训练的模型不同,一般有如下的几种机器学习方法:

监督学习无监督学习半监督学习强化学习

强化学习(ReinforcementLearning,简称RL)是机器学习的一个重要分支。在强化学习中,包含两种基本的元素:状态与动作,在某个状态下执行某种动作,这便是一种策略,学习器要做的就是通过不断地探索学习,从而获得一个好的策略。例如:在围棋中,一种落棋的局面就是一种状态,若能知道每种局面下的最优落子动作,那就攻无不克/百战不殆了~

若将状态看作为属性,动作看作为标记,易知:监督学习和强化学习都是在试图寻找一个映射,从已知属性/状态推断出标记/动作,这样强化学习中的策略相当于监督学习中的分类/回归器。但在实际问题中,强化学习并没有监督学习那样的标记信息,通常都是在尝试动作后才能获得结果,因此强化学习是通过反馈的结果信息不断调整之前的策略,从而算法能够学习到:在什么样的状态下选择什么样的动作可以获得最好的结果。

强化学习任务通常使用马尔可夫决策过程(MarkovDecisionProcess,简称MDP)来描述,具体而言:机器处在一个环境中,每个状态为机器对当前环境的感知;机器只能通过动作来影响环境,当机器执行一个动作后,会使得环境按某种概率转移到另一个状态;同时,环境会根据潜在的奖赏函数反馈给机器一个奖赏。综合而言,强化学习主要包含四个要素:状态、动作、转移概率以及奖赏函数。

状态(X):机器对环境的感知,所有可能的状态称为状态空间; 动作(A):机器所采取的动作,所有能采取的动作构成动作空间; 转移概率(P):当执行某个动作后,当前状态会以某种概率转移到另一个状态; 奖赏函数(R):在状态转移的同时,环境给反馈给机器一个奖赏。

因此,强化学习的主要任务就是通过在环境中不断地尝试,根据尝试获得的反馈信息调整策略,最终生成一个较好的策略π,机器根据这个策略便能知道在什么状态下应该执行什么动作。

来自:https://www.cnblogs.com/CJT-blog/p/10281396.html

_______ _________________________

参考:

http://www.360doc.com/content/19/1006/20/410279_865196339.shtml

https://cloud.tencent.com/developer/news/15608

https://www.jianshu.com/p/2fc2afc2bc85

 

 

 

 

 

 

如何认识人工智能对未来经济社会的影响

原标题:如何认识人工智能对未来经济社会的影响

人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。

人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。

总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。

作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。

一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。

另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。

当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。

(作者单位:国务院发展研究中心创新发展研究部)

(责编:赵超、吕骞)

分享让更多人看到

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇