博舍

新一代人工智能的发展与展望 人工智能产业的发展历史200字

新一代人工智能的发展与展望

    随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

    人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

    当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

    事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

    未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

人工智能发展的历史、现状和未来展望

例如,在医疗领域,人工智能可以通过学习大量的病历数据,帮助医生进行疾病诊断和治疗决策。在制造业领域,人工智能可以帮助企业提高生产效率和质量,减少资源浪费和成本开支。

当然,伴随着人工智能的发展取得了长足进步,一些风险和挑战也随之而来,如隐私保护、数据安全、伦理道德等问题。因此,在人工智能的发展过程中,需要加强法律和道德监管,保障人们的利益和权益。

人工智能发展的历史

人工智能的起源可以追溯到上世纪50年代初,当时计算机科学家们开始思考如何让机器像人类一样思考和行动。当时的研究集中在解决一些基础问题,如机器如何理解和处理语言,以及如何模拟人类的逻辑思考等。

1956年,达特茅斯会议上正式提出了“人工智能”这个术语,并且人工智能这个领域也开始逐渐成为一个独立的学科。

在接下来的几十年里,人工智能领域经历了多次的高潮和低谷。尽管在理论和技术方面有了长足的进步,但是人工智能技术在实际应用中一直受到限制,缺乏足够的数据和计算能力等资源。

人工智能技术的发展历程可以大致分为以下几个阶段:

1,机器逻辑阶段(1950年代-1960年代)

这个阶段的人工智能技术主要集中在逻辑推理和符号计算方面。研究人员尝试用数学公式和逻辑规则来描述人类的思维过程,并通过编程实现在计算机上。早期的人工智能研究集中在推理、学习和问题求解等方面,如“通用问题求解”。

2,知识库阶段(1960年代-1970年代)

在这个阶段,研究人员意识到单纯的逻辑规则和符号计算并不能解决所有问题,因为现实世界的知识和经验是复杂而模糊的。因此,研究人员开始构建知识库,将人类的知识和经验存储在计算机中,以便机器可以使用这些知识来推理和解决问题。

3,神经网络阶段(1980年代-1990年代)

这个阶段的人工智能技术主要集中在神经网络和机器学习方面。研究人员试图通过模仿人类神经系统的结构和功能来构建神经网络模型,实现自主学习和模式识别等功能。这个时期的代表性工作包括BP神经网络算法、支持向量机等。

4,深度学习阶段(2000年代-至今)

随着大数据、高性能计算和云计算等技术的发展,以深度学习为代表的新一代人工智能技术开始兴起。

深度学习使用多层神经网络来自动学习特征,并利用大量数据来训练模型,实现高精度的图像识别、语音识别、自然语言处理等任务。深度学习的代表性工作包括卷积神经网络(CNN)、循环神经网络(RNN)等。

总体来说,人工智能技术的发展历程表明,人工智能技术不断进步和发展,越来越接近于实现真正的智能化,为人类社会带来了广泛的应用和变革。

人工智能现状

一、人工智能技术的应用领域

人工智能技术已经广泛应用于各个领域,包括但不限于以下几个方面:

自然语言处理领域——

自然语言处理是人工智能的一个重要领域,包括语音识别、文本理解、自然语言生成等方面的应用。自然语言处理技术已经应用于语音识别、机器翻译、智能客服等众多场景。

计算机视觉领域——

计算机视觉是人工智能的另一个重要领域,主要包括图像识别、目标检测、图像生成等方面的应用。计算机视觉技术已经应用于安防监控、智能交通、智能家居等领域。

机器学习领域——

机器学习是人工智能的核心技术之一,包括监督学习、无监督学习、强化学习等方面的应用。机器学习技术已经应用于金融风控、推荐系统、智能营销等众多领域。

智能制造领域——

智能制造是近年来人工智能技术的新应用领域,包括智能物流、智能工厂、工业互联网等方面的应用。智能制造技术可以提高生产效率、降低成本、提升产品质量,已经成为制造业转型升级的重要手段。

医疗健康领域——

人工智能技术在医疗健康领域的应用也越来越广泛,包括疾病诊断、医疗影像分析、健康管理等方面的应用。人工智能技术可以帮助医生进行更准确的诊断和治疗,提高医疗水平和效率。

二、人工智能技术的发展现状

目前,人工智能技术正在经历快速发展期,比如,随着深度学习等技术的发展,人工智能技术的算法和模型越来越成熟,应用领域也越来越广泛。

与此同时,人工智能技术的应用场景也在不断扩展,包括智能驾驶、智能客服、智能家居等新兴领域。同时,人工智能技术在传统领域的应用也越来越深入,如金融、制造业等。

当然,人工智能技术的发展也推动了产业链的不断完善,从算法、芯片、硬件到软件、应用等各个环节都有了更加成熟的供应链和生态系统,为人工智能技术的发展提供了更好的支撑。

如今随着5G、物联网、云计算等新技术的不断发展,人工智能与其他技术的融合也加速了。这些新技术为人工智能技术的应用提供了更好的条件,同时也为人工智能技术的发展带来了更多的机遇和挑战。

三、人工智能技术的发展趋势

从当前发展情况来看,未来,人工智能技术的发展将呈现出以下几个趋势:

更加智能化——

人工智能技术将更加智能化,不仅能够感知环境、识别物体、理解语言等基本能力,还将具备更高级的智能能力,如推理、判断、决策等。

更加个性化——

人工智能技术将更加个性化,能够根据不同用户的需求和偏好,为用户提供更加个性化的服务和体验,进一步提高用户满意度。

更加普及化——

人工智能技术将更加普及化,不仅会在传统领域发挥作用,还将进入更多新兴领域,如教育、娱乐、社交等领域,为人们的生活带来更多的便利和乐趣。

更加安全可靠——

人工智能技术将更加安全可靠,随着人工智能技术在金融、医疗等领域的应用不断加深,安全和可靠性将成为人工智能技术发展的重要考量因素。

更加生态化——

人工智能技术将更加生态化,人工智能技术的发展将不仅仅是技术的发展,还将涉及到人才培养、产业生态、政策法规等多个方面,为人工智能技术的健康发展提供更好的支撑。

人工智能的社会和经济影响

人工智能作为一项新兴技术,对社会和经济产生了深远的影响,具体表现在以下几个方面。

人工智能技术作为一项新兴的技术,对社会产生了深远的影响,涉及到社会、经济、文化等各个方面。

一、社会影响

人工智能技术的应用可以提高社会效率。例如,在医疗领域,人工智能技术可以用于医学图像分析、智能诊断、药物研发等方面。通过人工智能技术的辅助,医生可以更快速地判断病情,提高治疗效率,缩短就诊时间,降低医疗成本,从而让更多的患者受益。

除此之外,人工智能技术的应用,改变了就业结构。例如,在制造业中,人工智能技术可以用于机器人生产线的自动化,从而减少了人工成本,提高了生产效率。这将会对传统工业产业链带来重大的影响。

另外,在服务业中,人工智能技术可以用于客服机器人、智能语音助手等领域,替代一些低端服务工作。虽然这种替代会导致一些人失业,但同时也会创造一些新的就业机会。

当然,人工智能技术的应用也改变了人们的生活方式。例如,在智能家居领域,人工智能技术可以用于智能家电的控制、智能家居设备的连接、家庭安防等方面,让人们的生活更加智能、便捷、舒适。

二、经济影响

人工智能技术的应用,推动了产业升级。例如,在制造业中,人工智能技术可以用于机器人生产线的自动化,从而提高生产效率,降低生产成本,提高产品质量,推动了制造业的转型升级。

与此同时,它还带来了新的商业模式。例如,在电商领域,人工智能技术可以用于智能推荐、智能搜索、智能客服等方面,为用户提供更加智能、个性化的购物体验。

另外,在金融领域,人工智能技术可以用于风险评估、投资分析、智能理财等方面,为投资者提供更加精准、有效的投资建议,也带来了新的投资模式和机会。

例如,在智能汽车领域,人工智能技术可以用于智能驾驶、智能交通、智能制造等方面,推动了智能汽车产业的发展。另外,在物联网领域,人工智能技术可以用于智能家居、智能医疗、智能城市等方面,推动了物联网产业的发展。

三、文化影响

人工智能技术的应用,改变了人机交互方式。例如,在智能语音助手领域,人工智能技术可以用于语音识别、语音合成、自然语言处理等方面,让人们与机器之间的交互更加自然、便捷、智能。

与此同时,这也改变了信息获取方式。

例如,在智能推荐领域,人工智能技术可以通过分析用户的兴趣、行为、历史等数据,为用户推荐个性化的信息和服务。这种信息获取方式,相对于传统的搜索和浏览方式,更加高效、准确、便捷。

当然,同样值得一提的是,人工智能技术的应用也推动了文化创意领域的创新。

例如,在音乐创作领域,人工智能技术可以用于生成音乐、作曲、编曲等方面,为音乐创作带来了新的思路和方式。

另外,在文学创作领域,人工智能技术可以用于文本生成、情感分析、内容推荐等方面,为文学创作带来了新的可能性。

话说到这儿,尽管人工智能的发展为人类社会带来了很多优势和机会,但是也带来了一些负面影响。以下是人工智能发展对人类社会带来的负面影响:

如,人工智能技术可以代替人类完成许多工作,尤其是那些重复性、简单性较高的工作。这种替代,可能会导致部分工人失去工作机会,增加了他们失业的风险。

同时人工智能技术需要大量的数据进行学习和训练,这些数据往往包含了用户的个人信息和隐私。如果这些数据被不法分子窃取或滥用,就可能导致用户的隐私和安全问题。

人工智能技术虽然可以完成许多工作,但它本身并不具有道德判断力。这就需要人类对人工智能技术进行监管和管理,以防止它被滥用。例如,在军事领域,人工智能技术可以用于无人机、自动化武器等方面,但如果这些技术被恶意使用,就可能导致不可预测的后果和伤害。

当然,最为严峻的是,人工智能技术的应用,可能会导致社会分化。由于人工智能技术对于高技能、高知识、高素质人才的需求越来越大,他们往往能够获得更多的机会和回报。

相反,低技能、低知识、低素质的人可能会失去工作机会,进一步加剧社会的分化。

笔者观点

综上所述,人工智能技术的应用,对社会产生了深远的影响,不仅带来了诸多的优势和机会,也面临着许多的挑战和问题。因此,我们应该以积极的态度面对人工智能技术的发展,同时也应该警惕其中的风险和挑战,做好充分的准备和应对措施。

参考文献

[1]通向人工智能时代——兼论美国人工智能战略方向及对中国人工智能战略的借鉴[J].何哲.电子政务,2016(12)

[2]人工智能安全问题及其解决进路[J].杜严勇.哲学动态,2016(09)

[3]人工智能:“热闹”背后的“门道”[J].钟义信.科技导报,2016(07)

[4]一个科学新领域——开放的复杂巨系统及其方法论[J].钱学森.上海理工大学学报,2011(06)

[5]复杂网络与一类开放的复杂巨系统的探讨[J].崔霞,李耀东.复杂系统与复杂性科学,2004(01)

[6]复杂巨系统科学——一门21世纪的科学[J].戴汝为.自然杂志,1997(04)

[7]开创复杂巨系统的科学与技术—祝中国系统工程学会第八届学术年会的召开[J].钱学森.系统工程理论与实践,1995(01)返回搜狐,查看更多

2023年人工智能领域发展七大趋势

2022年人工智能领域发展七大趋势

有望在网络安全和智能驾驶等领域“大显身手”

人工智能已成为人类有史以来最具革命性的技术之一。“人工智能是我们作为人类正在研究的最重要的技术之一。它对人类文明的影响将比火或电更深刻”。2020年1月,谷歌公司首席执行官桑达尔·皮查伊在瑞士达沃斯世界经济论坛上接受采访时如是说。

美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在7大领域“大显身手”。

增强人类的劳动技能

人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。

比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。

总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。

更大更好的语言建模

语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。

2020年中,人工智能公司OpenAI发布了第三代语言预测模型GPT—3,这是科学家们迄今创建的最先进也是最大的语言模型,由大约1750亿个“参数”组成,这些“参数”是机器用来处理语言的变量和数据点。

众所周知,OpenAI正在开发一个更强大的继任者GPT—4。尽管细节尚未得到证实,但一些人估计,它可能包含多达100万亿个参数(与人脑的突触一样多)。从理论上讲,它离创造语言以及进行人类无法区分的对话更近了一大步。而且,它在创建计算机代码方面也会变得更好。

网络安全领域的人工智能

今年1月,世界经济论坛发布《2021年全球风险格局报告》,认为网络安全风险是全世界今后将面临的一项重大风险。

随着机器越来越多地占据人们的生活,黑客和网络犯罪不可避免地成为一个更大的问题,这正是人工智能可“大展拳脚”的地方。

人工智能正在改变网络安全的游戏规则。通过分析网络流量、识别恶意应用,智能算法将在保护人类免受网络安全威胁方面发挥越来越大的作用。2022年,人工智能的最重要应用可能会出现在这一领域。人工智能或能通过从数百万份研究报告、博客和新闻报道中分析整理出威胁情报,即时洞察信息,从而大幅加快响应速度。

人工智能与元宇宙

元宇宙是一个虚拟世界,就像互联网一样,重点在于实现沉浸式体验,自从马克·扎克伯格将脸书改名为“Meta”(元宇宙的英文前缀)以来,元宇宙话题更为火热。

人工智能无疑将是元宇宙的关键。人工智能将有助于创造在线环境,让人们在元宇宙中体会宾至如归的感觉,培养他们的创作冲动。人们或许很快就会习惯与人工智能生物共享元宇宙环境,比如想要放松时,就可与人工智能打网球或玩国际象棋游戏。

低代码和无代码人工智能

2020年,低代码/无代码人工智能工具异军突起并风靡全球,从构建应用程序到面向企业的垂直人工智能解决方案等应用不一而足。这股新鲜势力有望在2022年持续发力。数据显示,低代码/无代码工具将成为科技巨头们的下一个战斗前线,这是一个总值达132亿美元的市场,预计到2025年其总值将进一步提升至455亿美元。

美国亚马逊公司2020年6月发布的Honeycode平台就是最好的证明,该平台是一种类似于电子表格界面的无代码开发环境,被称为产品经理们的“福音”。

自动驾驶交通工具

数据显示,每年有130万人死于交通事故,其中90%是人为失误造成的。人工智能将成为自动驾驶汽车、船舶和飞机的“大脑”,正在改变这些行业。

特斯拉公司表示,到2022年,其生产的汽车将拥有完全的自动驾驶能力。谷歌、苹果、通用和福特等公司也有可能在2022年宣布在自动驾驶领域的重大飞跃。

此外,由非营利的海洋研究组织ProMare及IBM共同打造的“五月花”号自动驾驶船舶(MAS)已于2020年正式起航。IBM表示,人工智能船长让MAS具备侦测、思考与决策的能力,能够扫描地平线以发觉潜在危险,并根据各种即时数据来变更路线。2022年,自动驾驶船舶技术也将更上一层楼。

创造性人工智能

在GPT—4谷歌“大脑”等新模型的加持下,人们可以期待人工智能提供更加精致、看似“自然”的创意输出。谷歌“大脑”是GoogleX实验室的一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑具备自我学习功能的软件。

2022年,这些创意性输出通常不是为了展示人工智能的潜力,而是为了应用于日常创作任务,如为文章和时事通讯撰写标题、设计徽标和信息图表等。创造力通常被视为一种非常人性化的技能,但人们将越来越多地看到这些能力出现在机器上。(记者刘霞)

【纠错】【责任编辑:吴咏玲】

全球人工智能产业发展现状及发展趋势浅析

人工智能是指使用机器代替人类实现认知、识别、分析、决策等功能,是研究、模拟人类智能的理论、方法、技术及应用系统的一门技术科学,其本质是对人的意识和思想的信息过程的模拟。人工智能是一种尖端技术,是新一轮科技革命和产业变革的重要驱动力量,它给经济、政治、社会等带来了颠覆性的影响,或将改变未来的发展格局。在21世纪,人工智能已逐渐成为全球各国新一轮科技战和智力战的必争之地,全球围绕人工智能领域的布局抢位日趋激烈。

一、全球人工智能发展现状

2021年7月8日,世界人工智能大会在上海开幕。根据统计数据评分,全球人工智能排名前10的国家依次为:美国、中国、韩国、加拿大、德国、英国、新加坡、以色列、日本和法国。其中,中国的综合得分为50.6分,美国为66.31分。

(一)美国着重国家和经济安全,力争保持全球领导地位

美国人工智能战略和政策的着力点在于保持其全球“领头羊”地位,并期望对人工智能的发展始终具有主动性与预见性。美国自2013年开始就发布了多项人工智能计划,并提及人工智能在智慧城市、自动驾驶和教育等领域的应用和愿景。2016年,美国将人工智能上升至国家战略层面,出台了《国家人工智能研究与发展计划》,从政策、技术、资金等方面给予一定的支持和保障。特朗普政府执政后,于2019年2月发布了第13859号总统行政令—《维持美国在人工智能领域领导地位的倡议》,从国家战略层面提出美国未来发展人工智能的指导原则,明确指出要集中联邦政府资源发展人工智能,扩大美国的繁荣,增强国家和经济安全,力图保持其在人工智能时代的全球领导地位。2021年6月,拜登政府宣布成立了由12名学术界、政界和产业界人士组成的国家人工智能研究资源工作组(NAIRR),他们将制定一项计划,让人工智能研究人员获得更多政府数据、计算资源和其他工具。该项计划基本继承了《2020年美国人工智能倡议法》的战略诉求。NAIRR的创建是美国政府加速美国国内技术进步的更广泛努力的一部分,美国参议院批准了2500亿美元的投资,用于从人工智能到量子通信等科学研究,这意味着,人工智能战略是拜登政府战略重心之一。

(二)韩国加快构建可持续的人工智能技术能力

韩国拥有雄厚的ICT产业发展根基,这为其发展人工智能奠定了良好的研发与应用生态基础。2018年5月15日,韩国第四次工业革命委员会审议并通过《人工智能研发战略》(以下简称《战略》),旨在重点推广人工智能技术进步,并加快AI在各领域的创新发展,打造世界领先的人工智能研发生态,构建可持续的人工智能技术能力。韩国认为人工智能是经济与社会大变革的核心动力之一,但其AI技术能力与中国和美国相比仍有较大差距,因此提升人工智能技术能力迫在眉睫,事关其能否在第四次工业革命中占得技术主导权。为了加快经济和社会的创新发展,为产业注入新的活力,韩国于2019年12月17日公布了《国家人工智能战略》,旨在凝聚国家力量、发挥自身优势,实现从“IT强国”到“人工智能强国”的转变。根据预算,相关措施若得以实施,到2030年,韩国将在人工智能领域创造455万亿韩元(约合2.7万亿元人民币)的经济效益。

(三)加拿大大力发展人工智能产学研用聚集中心

2017年3月,加拿大政府发布了全球首个人工智能国家战略计划——《泛加拿大人工智能战略(PanCanadianArtificialIntelligenceStrategy)》,计划拨款1.25亿加元支持AI研究及人才培养。该计划还提出了“增加加拿大优秀人工智能研究人员和熟练毕业生的数量”“在加拿大埃德蒙顿、蒙特利尔和多伦多3个主要人工智能中心建立互联的科学卓越节点”“在人工智能发展的经济、伦理、政策和法律意义上发展全球思想领导”以及“支持国家人工智能研究团体”等目标。此外,加拿大在全国范围内形成了数个有代表性城市的人工智能产学研用聚集中心,正是这些中心支撑起了加拿大人工智能发展的基本格局。这些聚集中心包括蒙特利尔、多伦多、埃德蒙顿、滑铁卢、温哥华和魁北克等城市,它们构成了加拿大人工智能研究的中坚力量。如果将加拿大人工智能领域看作一个生态系统,风险投资机构、加速器或孵化器以及公共非盈利机构构成了这个生态系统的土壤,为加拿大人工智能的研发和应用提供基础;各个人工智能产学研用聚集中心有其不同的偏重方向,就像不同种类的作物;各个聚集中心培育出来的初创企业,是人工智能服务人类生活的直接载体,就如作物结出的花朵与果实;国家和地方的政策支持、各领域方向的人才团队构成了人工智能生态的空气和养分;同时,加拿大社会开放,具备吸引外国投资机构、企业实体和人才的良好环境,为整个人工智能生态系统提供了有益补充。

(四)欧盟构建可信人工智能框架,抢占全球伦理规则主导权

欧盟很早就把发展以智能化为基础的经济模式作为其主要战略目标,注重在研发和人才上的投入,但由于缺乏风险资本和私募股权投资,以及民众过多顾虑隐私保护等问题,其在人工智能上的发展落后于中国和美国。为改变这一现状,欧盟采取多种措施大力发展人工智能,发力构建可信人工智能,力争取得全球主导权。2018年4月,欧洲25个国家签署了《人工智能合作宣言》,从国家战略合作层面来推动人工智能发展,确保欧洲人工智能研发的竞争力,共同面对人工智能在社会、经济、伦理及法律等方面的机遇和挑战。2018年12月,欧盟发布了《人工智能协调计划》,提出要进一步增加资金投入、深化人工智能技术创新与应用、完善人才培养和技能培训、构建欧洲数据空间、建立人工智能伦理道德框架、促进公共部门人工智能技术使用、加强国际合作等行动,推进欧洲人工智能的开发与应用,实现欧盟和各国人工智能投资收益最大化,推动发展符合欧中价值观和伦理观念的人工智能,力争在伦理与治理领域占据全球领先地位。欧盟于2020年2月发布的《人工智能白皮书—欧洲追求卓越和信任的策略》,透露了欧盟人工智能将由“强监管”转向“发展和监管并重”,在促进人工智能广泛应用的同时,解决新技术使用所产生的风险问题。

二、我国人工智能发展现状

我国人工智能产业在政策、资本、市场需求的共同推动和引领下快速发展。产业上,我国人工智能企业“质、量”兼顾,同步发展,集聚发展效应明显,产业规模不断扩大,产业链布局不断完善。技术上,论文数量不断攀升,在复杂的国际环境下我国迎难而上,芯片产业突破明显,在国际竞赛中我国企业成果颇丰。为进一步推动技术创新,诸多高校设置人工智能相关专业、成立人工智能学院。融合上,我国人工智能与实体经济融合在广度和深度上都进一步深化,全国人工智能产业形成了特色化的发展格局。

2015年7月,国务院印发《关于积极推进“互联网+”行动的指导意见》。《指导意见》将人工智能作为其主要的十一项行动之一,并明确提出,依托互联网平台提供人工智能公共创新服务,加快人工智能核心技术突破,促进人工智能在智能家居、智能终端、智能汽车、机器人等领域的推广应用;进一步推进计算机视觉、智能语音处理、生物特征识别、自然语言理解、智能决策控制以及新型人机交互等关键技术的研发和产业化。2016年3月,国务院发布《国民经济和社会发展第十三个五年规划纲要(草案)》,人工智能概念进入“十三五”重大工程。2017年3月十二届全国人大五次会议上,“人工智能”首次被写入政府工作报告;7月,国务院发布《新一代人工智能发展规划》,明确指出新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心;10月,人工智能进入十九大报告,将推动互联网、大数据、人工智能和实体经济深度融合;12月,《促进新一代人工智能产业发展三年行动计划(2018-2020年)》的发布,它作为对7月发布的《新一代人工智能发展规划》的补充,详细规划了人工智能在未来三年的重点发展方向和目标,每个方向的目标都做了非常细致的量化。工信部为加快推动我国新一代人工智能产业创新发展,组织实施了人工智能产业创新任务揭榜挂帅工作,在人工智能项目攻关、选才用才方面效果显著。

相关数据显示,2020年人工智能行业核心产业市场规模将超过1500亿元,预计在2025年将超过4000亿元,中国人工智能产业在各方的共同推动下进入爆发式增长阶段,市场发展潜力巨大,未来中国有望发展为全球最大的人工智能市场。

我国高度重视人工智能技术进步与行业发展,人工智能已上升为国家战略。在此背景下,许多地方出台促进人工智能发展的政策,针对人工智能开展了布局,以广东省为例,广州、深圳、佛山等不少基础雄厚的城市都在积极谋划创建人工智能试验区,其中佛山市提出要“创建国家新一代人工智能创新发展试验区”,这一举措对区域在人工智能发展赛道抢占先机十分有利,对于区域人工智能发展有着显著的带动效果。在产业布局方面,佛山市因地制宜,将人工智能与工业制造进行融合。作为全国制造业的重要基地,佛山拥有2.16万亿的工业产值,对促进人工智能和实体经济融合发展有着大量的需求,可以实现人工智能技术在区域的产业化发展。2021年7月,《佛山市推进制造业数字化智能化转型发展若干措施》提出,“建设数字化智能化示范工厂、示范车间,支持技术改造升级”,加大金融财政支持力度、推动产业链协同、增强产业数字化智能化供给能力多措并举,以加快佛山制造业数字化、网络化、智能化转型升级。8月,佛山市南海区对外释放在人工智能方面的新布局,通过聚焦前沿技术,引进高科技企业和高端人才项目,联合高校科研院所共同攻克人工智能领域关键核心技术,一系列举措阐释着佛山市南海区全力打造国内一流的人工智能创新高地,助力打造佛山市制造业数字化智能化转型发展引领区,赋能佛山制造业升级提速的信心。这是佛山市南海区制造业高质量发展的表现,也是佛山市南海区在人工智能发展到新一阶段的布局升级,同时也反映了地方政府在新的时期发展和布局人工智能的信心与决心。

三、人工智能未来发展趋势

在未来的数十年里,人工智能有可能会极大地改变人类社会结构和生存方式。人工智能技术加速融入经济社会发展各领域全过程已是大势所趋。人工智能在重组全球要素资源、重塑全球经济结构、改变全球竞争格局方面将发挥出重要作用。我国面临中华民族伟大复兴战略全局和世界百年未有之大变局,将以国内国际两个大局、发展安全两件大事为出发点,充分发挥海量数据和丰富应用场景优势,促进人工智能与实体经济深度融合,赋能传统产业转型升级,催生新产业新业态新模式。在加强核心技术攻关、加快新型基础设施建设、推动人工智能和实体经济融合发展、规范行业发展和完善行业治理等方面持续发力,促进人工智能创新发展。

参考资料

1.国家工业信息安全发展研究中心.2019-2020人工智能发展报告.2020-7

2.李月白,江晓原.钱学森与20世纪80年代的人工智能热.2019-11

3.广州日报.2020中国人工智能产业白皮书:五年内市场规模预计超过4000亿元.2021-2

4.李贺南,陈奕彤,宋微.2020年韩国人工智能国家战略.2020-4

5.韩联社.韩国斥巨资大力发展人工智能.2020

6.江丰光,熊博龙,张超.我国人工智能如何实现战略突破——基于中美4份人工智能发展报告的比较与解读.2020-1

来源:中国网

免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。

新一代人工智能的发展与展望

随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

作者:徐云峰

catalogs:13000076;contentid:7688970;publishdate:2021-06-11;author:黄童欣;file:1623414511328-aff718d9-3742-46b0-b08c-e56bdd1ed8c8;source:29;from:中华读书报;timestamp:2021-06-1120:28:23;[责任编辑:]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇