人工智能专业就业方向及就业前景分析
人工智能专业介绍
人工智能是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学。
AI需要非常广泛的知识面和训练,学AI的学生要做好思想准备的是,你们不仅需要CS的雄厚的基础知识,还需要了解一些认知心理学、语言学、哲学和工程学的知识才能在未来的发展更顺利。除此之外,还需要掌握一些技能和工具,例如统计学、神经科学、控制、优化和运筹学。所以AI的申请者不是以单纯地成为IT人为目的的,而是要拥有丰富的知识量和技能的,未来多是冲着做researcher而去的。
人工智能属于什么专业
人工智能属于自然科学和社会科学的交叉性学科,它与计算机科学、信息学、数学、神经生理学、认知科学、心理学等众多学科有极强的关联性。目前,人工智能在计算机领域内得到了广泛的重视,并在机器人,经济政治决策,控制系统,仿真系统等方面得到应用。
因此,从这些个解读考虑,在本科阶段可以选择与计算机、数学相关的专业,如计算机科学与技术、软件工程、通信工程、应用数学、统计数学等专业,以及近年来高校新设立的智能科学与技术、数据科学与大数据技术等专业。此外,也还可以考虑自动化、机械类专业,有些高校在此类专业基础上延伸至人工智能方向。
学习人工智能相关院校推荐
北京大学、清华大学、复旦大学、上海交通大学、南京大学、浙江大学、中国科学技术大学、哈尔滨工业大学、西安交通大学等。2017年5月28日,中国科学院大学发文成立人工智能技术学院,成为我国人工智能技术领域首个全面开展教学和科研工作的新型学院。这些高校都可以作为第一选择,不过各校人工智能研究的方向不同,要区分选择。
目前开设智能科学与技术专业的高校已有三十多所,也可以选择,如北京邮电大学、中南大学、南开大学、厦门大学、湖南大学、首都师范大学、西安电子科技大学、武汉工程大学、北京科技大学等等。智能科学与技术专业是北京大学智能科学系在2003年提出成立的,智能科学系主要从事机器感知、智能机器人、智能信息处理和机器学习等交叉学科的研究和教学。
AI的就业方向主要有,科研机构(机器人研究所等),软硬件开发人员,高校讲师等。当然了,鉴于一些高科技公司开辟出了新的研究领域,比如谷歌的无人驾驶汽车,在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点正好都是3-5年后的时间,正好是同学们学成归来的时候!
1)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)。
2)医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。
3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等。还有一个大的方向是车牌识别。目前鉴于视频监控是一个热点问题,做跟踪和识别也不错。
4)还有一些图像处理方面的人才需求的公司如威盛、松下、索尼、三星等。
人工智能人才需求呈上涨趋势
在智联招聘发布的《2017人工智能就业市场供需与发展研究报告》中我们可以看到,人工智能人才是一个很大的缺口,需求量骤升。
还有在《2017人工智能就业市场供需与发展研究报告》显示,过去一年中,人工智能的人才需求增长近3倍,并且40%拥有AI技能的人才现阶段薪酬区间主要集中于10001元至15000元/月,远高于全国平均水平。
所以人工智能的就业前景非常不错,人工智能发展也处于比较好的阶段。
人工智能前景好不好
今年,人工智能、移动终端、云计算、大数据等相关专业应届生备受企业关注,同学们都是被几家企业同时抢着要。数据显示,我国人工智能相关人才缺口超过500万,“坑多萝卜少”的现状让企业展开了校园人才争夺战。国家提出了人工智能三步走的发展战略,现在人工智能已经上升到战略层面。在今年的人大会议中,总理在政府工作报告中再提“人工智能”。我们都知道,被列入国家发展规划后,国家会颁发很多政策去促进这一计划的实现,所以越早进入人工智能领域就越有发展潜能。
这是一个属于人工智能的时代。当前,人工智能是一颗闪耀的“明星”,已经成为国际竞争的新焦点,世界多国都在加紧人工智能发展布局,以至于提到了战略高度的地位。人工智能专业毕业后可以留校当老师,公司研发岗位,人工智能实验室等。具体岗位有:数据挖掘工程师、下位机算法工程师、售前技术支持(商业智能方向)、行业研究员(股市)、科技公司的电气工程师、C/C++算法开发工程师等等。
新一代人工智能的发展与展望
随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。
人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。
当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。
事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。
未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。
学人工智能以后从事什么工作这6大就业方向前景广阔
学AI以后从事什么工作?近些年来,科技的快速发展,使人工智能方面的人才炙手可热。根据此前UiPath发布的数据显示:我国AI岗位空缺数量最多,有12113个相关职位因为招聘不到人才而发生空缺。
我国对于AI人才的渴求已经超过了人工智能大国美国。因此,我国人工智能专业的毕业生,他们未来的就业前景将会非常广阔。
学人工智能以后从事什么工作?这6大就业方向前景广阔
智能金融
近些年,手机支付成了很多人日常生活中主要的支付方式,取代了现金在生活中的地位。而手机支付也是智能金融的一部分,人工智能在这方面起到了极大地推动作用。
很多金融机构对于人工智能技术十分青睐,并且依靠人工智能技术实现了降低金融诈骗的风险。
人工智能专业的毕业生可以进入智能金融的领域,将人工智能和金融知识相结合。这也是人工智能专业毕业生目前非常火热的就业发展方向之一。
计算机视觉
计算机视觉岗位这也是人工智能领域非常火热的就业方向之一。
拍照的时候,相机可以自动地将人脸的画面进行识别和检测;P图的时候,可以针对人脸进行相应的美化处理(眼睛变大、涂腮红)等等。
当冷冰冰的机器能够感知到具体的影像,并且对此进行识别时,人工智能相当于为机器安上了一双眼睛,这种“神奇”的技术手段在岗位需求中自然会占有先机。
数据服务
大数据时代,人们在网络上获取信息变得更加丰富多元。但是因为数据量过大,人们搜索的结果可能不够准确。有人工智能进行干预,大数据的推算会更加符合搜索者的心意,搜索的结果也会更加准确。
数据服务还包括数据商为网络提供更加海量的数据支持,也为先进的人工智能算法提供了搭建模型的基础。
数据服务的就业前景十分广阔,也是人工智能毕业生比较青睐的就业方向之一。
智能教育
线上教育蓬勃发展,人们学习的方式变得更加多元。除了线下具体的实物教育之外,智能教育将教育的方式推向了一个新的高度。
智能教育通过在教育方式上加入人工智能的手段让人们获得知识的方式更加便捷。
学生在网络搜题的时候变得更加简单,甚至还可以获得相关知识点的推送。而且人工智还能帮助老师批改作业,不仅确保了准确率,同时也极大地降低了老师的工作量。
随着人工智能的逐步发展,智能教育将会变得更加先进,比如说为每个学生制定有针对性的学习方案,更加能够实现真正意义上的因材施教。
机器学习
机器学习是一种较为复杂的就业方向,其目的是让机器在大量的数据训练后学习如何更好地完成任务。这也是人工智能中最复杂、最核心的内容。
机器学习所要求的技术人才水平更高。目前,全世界的人工智能水平仍然处于弱智能阶段,想要帮助机器建立人脑的神经网络确实存在一定的难度。
B站就有很多免费的课程,这里推荐一个大家可以看看:
【冒死整理】小白也能听懂的人工智能课程,AI入门+项目实战,这不比追剧有意思?python-深度学习-机器学习-决策树_哔哩哔哩_bilibili
智能医疗
机器可以进行海量的数据分析,不断地学习医学专业知识,帮助医生分析医学影像,医生可以通过机器所提供的帮助为患者诊断病情。
智能医疗的应用可以让医疗资源得到极大的丰富,降低了医疗成本,人工智能在医疗方面的应用是功德无量的。
人工智能专业的毕业生也可以从事智能医疗相关的工作,智能医疗行业的发展潜力非常巨大,如果可以凭借自身拥有的人工智能知识促进我国的医疗事业发展,是一件非常有意义的事。
人工智能的产业链相较于其他行业,已经发展得较为清晰,主要包括基础支撑、关键技术以及行业应用。毕业生可以根据所学专业的侧重点以及自身的兴趣爱好进行相关就业方向的选择。
免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。
为了更好的系统学习AI,推荐大家收藏一份。
下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号321领取(一定要发暗号321)一、人工智能必读书籍
二、人工智能免费视频课程和项目
三、人工智能论文合集
四、人工智能行业报告
学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。
点击下方名片,扫码关注公众号【AI技术星球】发送暗号321免费领取文中资料人工智能十大发展方向
人工智能(ArtificialIntelligence),英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是对人的意识、思维的信息过程的模拟。但不是人的智能,能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。从诞生以来,人工智能理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的容器。正因为如此,人工智能的应用方向才十分之广。
1、机器视觉
机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。
人工智能能使机器能够担任一些需要人工处理的工作。而这些工作需要做一定的决策,要求机器能够自行的根据当时的环境做出相对较好的决策。这就需要计算机不仅仅能够计算,还能够拥有一定得智能。而要对周围的环境进做出好的决策就需要对周边的环境进行分析,即要求机器能够看到周围的环境,并能够理解它们。就像人做的那样。所以机器视觉是人工智能中非常重要的一个领域。
机器视觉在许多人类视觉无法感知的场合发挥重要作用,如精确定律感知、危险场景感知、不可见物体感知等,机器视觉更突出他的优越性。现在机器视觉已在一些领域的到应用,如零件识别与定位,产品的检验,移动机器人导航遥感图像分析,安全减半、监视与跟踪,国防系统等。它们的应用于机器视觉的发展起着相互促进的作用。
2、指纹识别
指纹识别技术把一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。每个人(包括指纹在内)皮肤纹路在图案、断点和交叉点上各不相同,也就是说,是唯一的,并且终生不变。依靠这种唯一性和稳定性,我们才能创造指纹识别技术。
指纹识别主要根据人体指纹的纹路、细节特征等信息对操作或被操作者进行身份鉴定,得益于现代电子集成制造技术和快速而可靠的算法研究,已经开始走入我们的日常生活,成为目前生物检测学中研究最深入,应用最广泛,发展最成熟的技术。
指纹识别系统应用了人工智能技术中的模式识别技术。模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。很显然指纹识别属于模式识别范畴。
3、人脸识别
人脸识别,特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。人脸识别是一项热门的计算机技术研究领域,人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度;它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。
人脸识别技术是基于人的脸部特征,对输入的人脸图象或者视频流。首先判断其是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。
在人工智能与人脸识别技术结合上,百度可能已经领先众人一步,有人在秘密上爆料,说是百度人脸识别技术有了新成果,估计是与支付相关。如果百度这次推出的确实是人脸识别支付,则在移动支付上就可以甩开阿里、企鹅很大一步。
百度的人脸识别技术加支付场景,有两个层面上的解读。第一方面是将识图技术与商业层面打通,建立更加丰富的购物场景。目前我们的购物支付场景多是遵循常规的手法:code,命令。人脸在很大程度上可以提升交易安全性和速度,是未来的必要趋势。
而更深层次的是和大数据打通。尤其人脸大数据,无论在日常生活,还是商业运作上都是语音、动作之后最重要的数据之一,它更能够将个人大数据实现更大化的整合,甚至重建信用体系规则。
4、智能信息检索技术
数据库系统是储存某个学科大量事实的计算机系统,随着应用的进一步发展,存储的信息量越来越大,因此解决智能检索的问题便具有实际意义。
智能信息检索系统应具有如下的功能:
(1)能理解自然语言,允许用自然语言提出各种询问;
(2)具有推理能力,能根据存储的事实,演绎出所需的答案;
(3)系统具有一定常识性知识,以补充学科范围的专业知识。系统根据这些常识,将能演绎出更一般的一些答案来。
实现这些功能要应用人工智能的方法。
据此前百度公布的信息显示,百度已经建成全球规模最大的深度神经网络,这一称为百度大脑的智能系统,目前可以理解分析200亿个参数,达到了两、三岁儿童的智力水平。随着成本降低和计算机软硬件技术的进步,再过20年,当量变带来质变,用计算机模拟一个10-20岁人类的智力几乎一定可以做到。
似乎可以毫无悬念地预判到人工智能在互联网企业日后竞争中的核心地位,在这个发展的过程了,相信人工智能也会开始接触更多更大,那些我们本以为互联网很难渗透进去的领域。
5、智能控制
智能控制(intelligentcontrols)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。控制理论发展至今已有100多年的历史,经历了经典控制理论和现代控制理论的发展阶段,已进入大系统理论和智能控制理论阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。
对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。因此,在研究和设计智能系统时,主要注意力不放在数学公式的表达、计算和处理方面,而是放在对任务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。
此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的智能。
随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。
6、视网膜识别
视网膜是眼睛底部的血液细胞层。视网膜扫描是采用低密度的红外线去捕捉视网膜的独特特征,血液细胞的唯一模式就因此被捕捉下来。
视网膜也是一种用于生物识别的特征,有人甚至认为视网膜是比虹膜更唯一的生物特征,视网膜识别技术要求激光照射眼球的背面以获得视网膜特征的唯一性。
虽然视网膜扫描的技术含量较高,但视网膜扫描技术可能是最古老的生物识别技术,在20世纪30年代,通过研究就得出了人类眼球后部血管分布唯一性的理论,进一步的研究的表明,即使是孪生子,这种血管分布也是具有唯一性的,除了患有眼疾或者严重的脑外伤外,视网膜的结构形式在人的一生当中都相当稳定。
7、虹膜识别
人的眼睛结构由巩膜、虹膜、瞳孔三部分构成。虹膜是位于黑色瞳孔和白色巩膜之间的圆环状部分,其包含有很多相互交错的斑点、细丝、冠状、条纹、隐窝等的细节特征。这些特征决定了虹膜特征的唯一性,同时也决定了身份识别的唯一性。
虹膜的形成由遗传基因决定,人体基因表达决定了虹膜的形态、生理、颜色和总的外观。人发育到八个月左右,虹膜就基本上发育到了足够尺寸,进入了相对稳定的时期。除非极少见的反常状况、身体或精神上大的创伤才可能造成虹膜外观上的改变外,虹膜形貌可以保持数十年没有多少变化。另一方面,虹膜是外部可见的,但同时又属于内部组织,位于角膜后面。要改变虹膜外观,需要非常精细的外科手术,而且要冒着视力损伤的危险。虹膜的高度独特性、稳定性及不可更改的特点,是虹膜可用作身份鉴别的物质基础。
在包括指纹在内的所有生物识别技术中,虹膜识别是当前应用最为方便和精确的一种。虹膜识别技术被广泛认为是二十一世纪最具有发展前途的生物认证技术,未来的安防、国防、电子商务等多种领域的应用,也必然的会以虹膜识别技术为重点。这种趋势已经在全球各地的各种应用中逐渐开始显现出来,市场应用前景非常广阔。
8、掌纹识别
掌纹识别是近几年提出的一种较新的生物特征识别技术。掌纹是指手指末端到手腕部分的手掌图像。其中很多特征可以用来进行身份识别:如主线、皱纹、细小的纹理、脊末梢、分叉点等。掌纹识别也是一种非侵犯性的识别方法,用户比较容易接受,对采集设备要求不高。
掌纹中最重要的特征是纹线特征,而且这些纹线特征中最清晰的几条纹线基本上是伴随人的一生不发生变化的。并且在低分辨率和低质量的图像中仍能够清晰的辨认。
点特征主要是指手掌上所具有的和指纹类似的皮肤表面特征,如掌纹乳突纹在局部形成的奇异点及纹形。点特征需要在高分辨率和高质量的图像中获取,因此对图像的质量要求较高。
纹理特征,主要是指比纹线更短、更细的一些纹线,但其在手掌上分布是毫无规律的。掌纹的特征还包括几何特征:如手掌的宽度、长度和几何形状,以及手掌不同区域的分布。
掌纹中所包含的信息远比一枚指纹包含的信息丰富,利用掌纹的纹线特征、点特征、纹理特征、几何特征完全可以确定一个人的身份。因此,从理论上讲,掌纹具有比指纹更好的分辨能力和更高的鉴别能力。
9、专家系统
专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。
专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统是早期人工智能的一个重要分支,它可以看作是一类具有专门知识和经验的计算机智能程序系统,一般采用人工智能中的知识表示和知识推理技术来模拟通常由领域专家才能解决的复杂问题。
专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性、系统的透明性和灵活性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和环境来研制大型综合专家系统。
在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。
10、自动规划
自动规划是一种重要的问题求解技术,与一般问题求解相比,自动规划更注重于问题的求解过程,而不是求解结果。此外,规划要解决的问题,如机器人世界问题,往往是真实世界问题,而不是比较抽象的数学模型问题。与一些求解技术相比,自动规划系统与专家系统均属高级求解系统与技术。
规划是一种重要的问题求解技术,它从某个特定的问题状态出发,寻求一系列行为动作,并建立一个操作序列,直到求得目标状态为止。
规划可用来监控问题求解过程,并能够在造成较大的危害之前发现差错。规划的好处可归纳为简化搜索、解决目标矛盾以及为差错补偿提供基础。